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Abstract

Neurons are capable of degenerating their axons for the physiological clearance and refinement of 

unnecessary connections via the programmed degenerative pathways of apoptosis and axon 

pruning. While both pathways mediate axon degeneration they are however distinct. Whereas in 

apoptosis the entire neuron, both axons and cell body, degenerates, in the context of axon pruning 

only the targeted axon segments are selectively degenerated. Interestingly, the molecular pathways 

mediating axon degeneration in these two contexts have significant mechanistic overlap but also 

retain distinct differences. In this review, we describe the peripheral neuronal cell culture models 

used to study the molecular pathways of apoptosis and pruning. We outline what is known about 

the molecular mechanisms of apoptosis and axon pruning and focus on highlighting the 

similarities and differences of these two pathways.

Introduction to neuronal apoptosis and axon pruning

Neuronal apoptosis occurs extensively and plays a critical role during the development of 

the nervous system (Burek and Oppenheim, 1996). During nervous system development 

neurons are produced in excess to ensure productive connections are made to the appropriate 

targets. Neurons that are unable to successfully innervate their targets, or are no longer 

necessary, are selectively eliminated by the activation of the apoptotic pathway. This 

selective elimination of non-productive neurons ensures that the developing nervous system 

ends up with the appropriate number of neurons, and that these remaining neurons have 

formed complete and functional circuits. A prime example of developmental neuronal 

apoptosis occurs within the mammalian peripheral nervous system (PNS). Developing 

sympathetic neurons are acutely dependent on nerve growth factor (NGF) for survival, and, 

during the final stages of target innervation, target-derived NGF is the only source of 

survival signaling for these neurons. Thus, superfluous neurons that fail to innervate their 

targets die by apoptosis as a consequence of NGF deprivation (Oppenheim, 1991). Similarly, 

the central nervous system (CNS) also produces excess neurons during development that 

must be eliminated via apoptosis to ensure healthy brain development. However, the cues 

that regulate apoptosis in the CNS appear to be distinct from those in the PNS, as 
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developmental apoptosis of cortical interneurons appears to be regulated by cell-autonomous 

triggers instead of target derived survival factors (Southwell et al., 2012). Despite requiring 

different cues, the removal of superfluous neurons in the CNS is an important event during 

development. Indeed, this importance is highlighted in mouse models that are genetically 

deleted for key apoptotic proteins (e.g. Apaf-1, Caspase-9, Caspase-3), which exhibit 

significant excess neurons and lethal neurodevelopmental abnormalities including 

exencephaly and cranial bone defects (Cecconi et al., 1998; Kuida et al., 1998; Kuida et al., 

1996; Yoshida et al., 1998).

In contrast to apoptosis where the entire neuron (soma and axons) degenerates, there are 

many situations in which select axons degenerate while the rest of the neuron remains intact. 

This axon-specific degeneration, known as axon pruning in physiological contexts, 

selectively removes excessive, misguided, or unnecessary axon branches while maintaining 

the integrity of the cell body (Low and Cheng, 2006; Luo and O’Leary, 2005). Axon pruning 

is believed to be a key process mediating the successful development of optimally wired 

neuronal connections by allowing the selective elimination of undesired axonal branches or 

segments. Importantly, this axonal refinement can occur in both young and mature neurons 

and has been reported in a number of regions of the developing and adult nervous system, 

including the peripheral nervous system (Cusack et al., 2013; Singh et al., 2008), visual and 

motor cortices (O’Leary and Koester, 1993), hippocampus (Bagri et al., 2003), and the 

neuromuscular system (Bishop et al., 2004). Additionally, aberrant axon pruning is 

associated with neurodevelopmental disorders such as schizophrenia (Riccomagno and 

Kolodkin, 2015) and autism (Thomas et al., 2016). Axon degeneration also occurs after 

neuronal injury and in various neurodegenerative diseases including Alzheimer’s, 

Huntington’s, and Parkinson’s diseases, and Amyotrophic Lateral Sclerosis (Burke and 

O’Malley, 2013; Ferri et al., 2003; Fischer-Hayes et al., 2013; Li et al., 2001; Stokin et al., 

2005; Vickers et al., 2009; Wang et al., 2012), although whether this resembles the 

physiological axon pruning pathway is not clear.

In this review, we will focus on the similarities and differences in the apoptosis and axon 

pruning pathways of axon degeneration in the mammalian nervous system. While not the 

focus of this current review, axon degeneration has also been well studied in the pathological 

context of axotomy (Coleman and Freeman, 2010). The mechanism of axotomy-induced 

axon degeneration, also known as Wallerian degeneration, appears to be distinct from the 

axon degeneration pathways of apoptosis and pruning and has been well covered by several 

recent reviews (Conforti et al., 2014; Geden and Deshmukh, 2016; Gerdts et al., 2016; 

Maor-Nof and Yaron, 2013; Neukomm and Freeman, 2014). Here, we will describe the 

primary models utilized to investigate the neuronal apoptosis and axon pruning pathways 

and highlight recent discoveries that have revealed similarities as well as unexpected 

differences in these two pathways.
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Compartmentalized chambers to investigate the molecular pathways of 

apoptosis versus axon pruning

The model system most frequently used to study the molecular pathways of neuronal 

apoptosis and axon pruning are developing peripheral neurons (e.g. sympathetic neurons, 

Dorsal Root Ganglion neurons) in the context of NGF deprivation (Geden and Deshmukh, 

2016; Kristiansen and Ham, 2014). Neurons globally deprived of NGF (from both soma and 

axons) activate the apoptotic pathway which results in the death and degeneration of the 

entire cell, both soma and axons. Indeed, NGF deprivation of neonatal mouse sympathetic 

neurons has been widely used as a model to study the mechanisms of neuronal apoptosis 

(Deshmukh and Johnson, 1997; Freeman et al., 2004; Greene et al., 2007; Ham et al., 2005; 

Jacobs et al., 2006; Kirkland and Franklin, 2003). In contrast, axonal deprivation of NGF 

(where distal axons are deprived but the proximal axons and soma are maintained in NGF) 

activates the axon pruning pathway instead, where only the deprived axon segments 

degenerate but the neurons survive. For in vitro study, this spatially controlled distal axon-

only deprivation of NGF requires the neurons to be cultured in compartmentalized chambers 

(e.g. Campenot, microfluidic chambers) where the soma and proximal axons can be 

fluidically isolated and spatially separated from the distal axons (Campenot, 1977; Park et 

al., 2006; Taylor et al., 2005; Taylor and Jeon, 2011). For example, neurons from postnatal 

0-day-old (P0) mouse sympathetic neurons can be plated in the soma compartment of the 

microfluidic device. These neurons are cultured in NGF containing media for the next 5 

days, during which axons extend through the central microfluidic grooves and into the axon 

compartment. Axon pruning can then be induced by exposing the axon compartment to 

NGF-free media (along with the addition of anti-NGF antibodies), while maintaining the 

proximal axons and cell bodies in NGF-containing media in the soma compartment. This 

selective deprivation of NGF from only the axon compartment induces axon-specific 

degeneration of the distal axon segments (pruning) without affecting the survival of 

proximal axons and cell bodies in the soma compartment (Fig. 1)(Cusack et al., 2013). 

Apoptosis can also be induced in these chambers by depriving NGF globally from both the 

axon and soma compartments. While the use of microfluidic chambers is not necessary for 

studying apoptosis, the advantage of using the chambers is that the pathways of apoptosis 

and axon pruning can be examined in parallel in the same model system via global or axonal 

deprivation of NGF, respectively.

It is important to note that while the mechanistic studies defining the axon pruning pathway 

have been done in the context of NGF deprivation, the fundamental axon pruning pathway is 

likely conserved and similarly engaged by other, non-NGF, triggers in vivo. However, NGF 

deprivation is currently the most common mechanism to activate mammalian axon pruning 

in vitro and provides a clear context in which to study the pathway. Importantly, mice 

deficient for key pruning pathway components, identified in the NGF model, were also 

found to have axon pruning defects in several other regions, including the CNS. For 

example, Casp3 and Casp6, which were identified to be required for axon pruning in the 

NGF pruning model in vitro are also important for mediating retinocollicular neuronal 

pruning in vivo (Cusack et al., 2013; Nikolaev et al., 2009; Simon et al., 2012).
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Molecular Pathway of Neuronal Apoptosis

The key mediators of apoptosis are caspases, a family of cysteine proteases that cleave 

specific cellular substrates to cause rapid cell death (Denault and Salvesen, 2002)(Fig. 2). In 

sympathetic neurons undergoing apoptosis due to NGF deprivation, the mechanism by 

which caspases are activated has been well-studied and is known to occur via the 

mitochondrial (intrinsic) pathway (Fricker et al., 2018; Kristiansen and Ham, 2014). NGF 

deprivation results in decreased signaling from the survival promoting kinases PI3K 

(Phosphoinositide 3-kinase) and AKT (also known as Protein Kinase B), as well as 

activation of DLK (Dual leucine zipper-bearing kinase) and JNK (c-jun-N-terminal kinase) 

kinases. This results in the activation of transcription factors (e.g. c-jun, FOXO, Myb) that 

transcriptionally induce the death promoting BH3-only genes of the Bcl-2 family. 

Specifically, NGF deprivation is generally recognized to induce at least four BH3-only 

proteins including Bim (Gilley et al., 2003; Putcha et al., 2001), DP5/Hrk (Imaizumi et al., 

1997), Puma (Besirli et al., 2005; Wyttenbach and Tolkovsky, 2006), and Bmf (Kole et al., 

2011; Kristiansen et al., 2011), which together promote activation of the proapoptotic 

protein Bax. Of these, Bim and Puma are considered as “direct activators” since they can 

directly interact with Bax to induce a conformational change and promote Bax translocation 

to the mitochondria. DP5/Hrk and Bmf are sensitizers that indirectly enable Bax activation 

by binding to and inhibiting the anti-apoptotic proteins (Bcl-2, Bcl-XL, Bcl-w, Mcl-1)

(Chipuk et al., 2010; Happo et al., 2012; Shamas-Din et al., 2011). Activated Bax then 

translocates to the mitochondria, causing the release of cytochrome c (cyt c) into the 

cytoplasm. Once in the cytosol, cyt c binds to Apaf-1 (Apoptotic protease activating factor 

1) to promote Apaf-1 oligomerization and recruitment of procaspase-9 to form the 

apoptosome complex. Through close proximity and self-dimerization on the apoptosome, 

Caspase-9 (Casp9) becomes active and directly cleaves and activates Caspase-3 (Casp3). 

Active Casp3 then cleaves specific cellular substrates to induce rapid cell death (Kristiansen 

and Ham, 2014).

While other details of the apoptotic pathway in neurons have also been identified (Fricker et 

al., 2018), we have focused here on the central components of the apoptotic pathway that 

have been shown to be important with inhibitor and mouse knock-out studies (Fig. 2). For 

example, inhibition or deletion of DLK, as well as inhibition of JNK, blocks neuronal 

apoptosis after NGF deprivation at an upstream point in the pathway (Ghosh et al., 2011; 

Watkins et al., 2013; Xu et al., 2001). Recently, the kinase inhibitor fortinib was also shown 

to strongly protect against neuronal apoptosis. While its exact mechanism of action for 

neuroprotection is still unclear (it appears to involve the inactivation a prodegenerative 

signal from the unligated NGF receptor TrkA), fortinib treatment blocks the induction of the 

BH3-only mRNA after NGF deprivation (Feinberg et al., 2017). Deletion of individual BH3-

only genes (e.g. Bim, Puma, DP5/Hrk) has resulted in partial inhibition of neuronal 

apoptosis (Imaizumi et al., 2004; Kristiansen and Ham, 2014; Putcha et al., 2001; 

Wyttenbach and Tolkovsky, 2006), with additive effects seen with combined deletions (Ren 

et al., 2010), a finding that is consistent with the known redundant functions of these 

proteins. Interestingly, ectopic expression of miR-29, a microRNA that can target and inhibit 

multiple members of the BH3-only gene family, is effective in blocking neuronal apoptosis 
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(Kole et al., 2011). Downstream of the BH3-only proteins, the apoptotic pathway converges 

on Bax as deletion of Bax alone is sufficient to inhibit apoptosis in neurons (Deckwerth et 

al., 1996). Likewise, deletion of Apaf-1, Casp9, or Casp3 inhibits neuronal apoptosis 

(Wright et al., 2007), demonstrating the essential function of these apoptosome pathway 

components in this context.

Molecular Pathway of Axon Pruning

The apoptosis and axon pruning pathways share many of the same proteins but with key 

differences that are highlighted here (Fig. 2). It is crucial to note here that while both 

apoptosis and axon pruning can be triggered in peripheral neurons with NGF deprivation, 

the context of NGF deprivation is essential to consider as it results in the engagement of 

distinct pathways. Whereas apoptosis is engaged in the context of global deprivation of 

entire neuron (both soma and axons), axon pruning is only engaged in the context of distal 

axon NGF deprivation (where only the distal axon segments are deprived of NGF and the 

proximal axons and soma are maintained). Thus, in vitro examination of axon pruning 

requires the use of the compartmentalized culture models we previously describe such that 

distal axons can be selectively deprived of NGF, while the proximal axons and cell bodies 

are maintained in NGF, so that the deprived axon segments are selectively pruned. As 

described below, this consideration is important in order to accurately define the specific 

molecular events that occur in pruning versus apoptosis (Geden and Deshmukh, 2016).

The upstream events in axon pruning occur similarly as in apoptosis, where axonal 

deprivation of NGF also activates the DLK and JNK signaling pathways that are both 

important for axon pruning (Ghosh et al., 2011; Simon et al., 2016). Likewise, c-jun is also 

activated during axon pruning, but whether it is essential for pruning is not yet known 

(Ghosh et al., 2011; Mok et al., 2009). Recently, the BH3-only protein Puma was identified 

as an important mediator for axon pruning where its deficiency conferred protection against 

axonal NGF deprivation (Maor-Nof et al., 2016; Simon et al., 2016). Whether any of the 

other BH3-only genes that are involved in apoptosis are also induced and important for axon 

pruning is not known. Interestingly, the kinase inhibitor foretinib, which blocks the 

induction of BH3-only genes during apoptosis in neurons, also inhibits axon pruning after 

axonal deprivation of NGF (Feinberg et al., 2017). Importantly, like apoptosis, the axon 

pruning pathway also converges on Bax as Bax-deficiency completely inhibits axon pruning 

(Cusack et al., 2013; Nikolaev et al., 2009; Schoenmann et al., 2010). Consistent with the 

known function of Bax in mediating mitochondrial permeabilization, cyt c is released from 

mitochondria in axons undergoing pruning (Cusack et al., 2013). However, whether cyt c is 

required for pruning is not known. This is particularly relevant as cyt c is known to activate 

Casp9 via Apaf-1 on the apoptosome (Wang, 2001). It is at this point that the pathway of 

axon pruning appears to show distinct differences from apoptosis, as our results have shown 

that Apaf-1 is not required for axon pruning (Cusack et al., 2013). While Apaf-1-deficient 

neurons are protected from undergoing apoptosis after global NGF deprivation (Simon et al., 

2016; Wright et al., 2007), they still remain capable of undergoing axon pruning in response 

to local axonal NGF deprivation (Cusack et al., 2013). Interestingly, despite not requiring 

Apaf-1, axon pruning requires both Casp9 (Cusack et al., 2013) and Casp3 (Cusack et al., 

2013; Simon et al., 2012). Additionally, axon pruning is dependent on Casp6 (Cusack et al., 
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2013; Nikolaev et al., 2009), a caspase which is not essential for apoptosis (Cusack et al., 

2013). Importantly, Casp6 is also activated in degenerating axons in models of brain injury 

and disease (Akpan et al., 2011; Albrecht et al., 2009; Graham et al., 2011; Guo et al., 2004; 

LeBlanc et al., 1999; Uribe et al., 2012). However, exactly how caspases are activated via a 

novel, Apaf-1-independent mechanism during axon pruning, or even their precise order of 

activation, remains unknown (Fig. 2).

A striking aspect of axon pruning is that the degeneration is restricted to only the targeted 

axon segments that are deprived of NGF. At this point, we do not know the precise 

mechanism by which axon degeneration is spatially restricted during pruning. In the 

Drosophila model, localized degradation of the caspase inhibitory protein DIAP1 (Death-

associated Inhibitor of Apoptosis-1) is known to enable localized caspase activation and 

degeneration during dendritic pruning (Kuo et al., 2006). A similar mechanism by which 

caspase activity is restricted to the targeted axons during pruning appears to be regulated via 
XIAP (X-linked Inhibitor of Apoptosis Protein). XIAP is known to strictly regulate caspase 

activation in neurons (Potts et al., 2003). Indeed, XIAP-deficient neurons not only exhibited 

enhanced axon degeneration than wild-type neurons but also aberrant caspase activation in 

the cell bodies during axon pruning (Cusack et al., 2013; Unsain et al., 2013). The 

importance of XIAP in regulating neuronal activity (presumably via regulation of axonal 

and/or synaptic pruning) is underscored by the observation that mice deleted for XIAP also 

exhibit reduced number of synapses and defects in memory and learning (Gibon et al., 2016; 

Martinez-Marmol et al., 2016). Together, these results suggest that differential modulation of 

XIAP function may enable either a permissive environment (e.g. low XIAP in axon regions 

targeted for pruning) or a repressive environment (e.g. high XIAP in soma and undeprived 

proximal axons) to spatially restrict caspase activity during axon pruning.

While the details of synaptic remodeling are beyond the scope of this review, it is interesting 

to note that synaptic pruning also appears to be regulated by many of these same pathway 

components as pruning and apoptosis. For example, both Bax and Casp3 have been shown to 

be important for synaptic pruning and in the regulation of long-term depression (Jiao and Li, 

2011; Li et al., 2010; Li and Sheng, 2012). As previously mentioned, XIAP appears to 

regulate synaptic remodeling in hippocampal neurons, presumably by mediating the 

activation of Casp3 in synapses (Gibon et al., 2016). These findings indicate that the 

pathways for refinement and elimination of synapses have similarity to the elimination of 

axon segments via pruning. However, whether the pathways of synaptic and axon pruning 

are identical is still unclear.

Thus, increasing evidence indicates that although the neuronal pathways of apoptosis and 

axon pruning utilize many of the same components to promote axon degeneration, the two 

pathways are distinct. Interestingly, both pathways engage very similar signaling upstream 

events to trigger Bax activation. However, downstream of Bax activation the pathways 

diverge, with apoptosis requiring Apaf-1 but not Casp6, and axon pruning requiring Casp6 

but not Apaf-1. Many of the interesting details about pruning and axon degeneration 

pathways remain to be discovered. Some questions that remain unclear in the axon pruning 

pathway include: What is the essential role for Casp6? How are caspases activated 

independently of Apaf-1? and, Why is Bax activation required while formation of the 
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apoptosome is not required? While the primary discussion in this review is focused on the 

mechanisms of programmed axon degeneration, it is important to note that activation of 

these pathways that result in aberrant pruning could also lead to the underlying pathology of 

neurodevelopmental disorders and neurodegenerative disease. Research into these 

mechanisms will undoubtedly reveal new insights and remain an exciting area of 

investigation.
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Fig. 1. Microfluidic chamber model for studying the pathways of apoptosis and axon pruning.
(Left) Illustration of microfluidic chambers in NGF maintained (top), Apoptosis (global 

NGF deprivation; middle), and Axon pruning (axonal NGF deprivation; bottom) conditions. 

(Right) Fluorescent images of neurons labeled with α-tubulin shows healthy and 

degenerated soma and axons in the indicated conditions.

Geden et al. Page 12

Neurosci Res. Author manuscript; available in PMC 2019 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. The pathways of apoptosis and axon pruning induced by global or axonal NGF 
deprivation, respectively.
Top schematic shows the neuronal pathway of apoptosis activated with global NGF 

deprivation. Bottom schematic shows the neuronal pathway of axon pruning with axonal 

deprivation of NGF (from distal axons). The proteins shown in blue boxes are common to 

both apoptosis and axon pruning whereas the proteins shown in orange boxes highlights the 

proteins that are distinct between these two pathways.
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