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Abstract

Background and aim: Unsuccessful defibrillation shocks adversely affect survival from out-of-

hospital cardiac arrest (OHCA). Ventricular fibrillation (VF) waveform analysis is the tool-of-

choice for the non-invasive prediction of shock success, but surrogate markers of perfusion like 

end-tidal CO2 (EtCO2) could improve the prediction. The aim of this study was to evaluate EtCO2 

as predictor of shock success, both individually and in combination with VF-waveform analysis.

Materials and methods: In total 514 shocks from 214 OHCA patients (75 first shocks) were 

analysed. For each shock three predictors of defibrillation success were automatically calculated 

from the device files: two VF-waveform features, amplitude spectrum area (AMSA) and fuzzy 

entropy (FuzzyEn), and the median EtCO2 (MEtCO2) in the minute before the shock. Sensitivity, 

specificity, receiver operating characteristic (ROC) curves and area under the curve (AUC) were 

calculated, for each predictor individually and for the combination of MEtCO2 and VF-waveform 

predictors. Separate analyses were done for first shocks and all shocks.

Results: MEtCO2 in first shocks was significantly higher for successful than for unsuccessful 

shocks (31 mmHg/25 mmHg, p<0.05), but differences were not significant for all shocks (32 

mmHg/29 mmHg, p>0.05). MEtCO2 predicted shock success with an AUC of 0.66 for first 

shocks, but was not a predictor for all shocks (AUC 0.54). AMSA and FuzzyEn presented AUCs 

of 0.76 and 0.77 for first shocks, and 0.75 and 0.75 for all shocks. For first shocks, adding 

MEtCO2 improved the AUC of AMSA and FuzzyEn to 0.79 and 0.83, respectively.

Conclusions: MEtCO2 predicted defibrillation success only for first shocks. Adding MEtCO2 to 

VF-waveform analysis in first shocks improved prediction of shock success. VF-waveform 
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features and MEtCO2 were automatically calculated from the device files, so these methods could 

be introduced in current defibrillators adding only new software.
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1. INTRODUCTION

Cardiopulmonary resuscitation (CPR) and electrical defibrillation are the cornerstones of 

therapy for out-of-hospital cardiac arrest (OHCA). Defibrillation shocks are the only 

effective way to terminate ventricular fibrillation (VF) and restore a perfusing rhythm. 

However, the mechanisms of defibrillation are not fully understood [1], and many electrical 

shocks are unsuccessful. Unsuccessful shocks may cause myocardial damage [2], and 

interruptions in chest compressions to deliver the shock are associated with a rapid decrease 

in coronary perfusion pressure [3]. All these factors adversely affect survival, and 

compromise the success of later shocks in prolonged cardiac arrest [2–4].

VF waveform analysis has been extensively studied as a non-invasive tool to predict shock 

success, and thus optimize CPR/defibrillation therapy [5]. Many VF waveform features have 

been proposed for this purpose [6–9], ranging from classical amplitude, slope or spectral 

analyses of VF [6, 10], to quantitative measures of its non-linear nature such as Poincare 

plot [11] and detrended fluctuation analyses [12], fractal dimension [13] or Hurst and 

Scaling exponents [13, 14]. The best known VF-waveform feature is Amplitude Spectrum 

Area (AMSA), a measure of amplitude and frequency distribution of VF [15, 16]. Recently, 

VF waveform regularity and predictability measures based on entropy estimates have been 

shown to accurately predict shock success [17, 18], and Fuzzy Entropy (FuzzyEn) was 

identified as the most accurate predictor based on entropy estimates outperforming other 

classical predictors [17].

Advanced life support guidelines recommend continuous use of end-tidal carbon dioxide 

(EtCO2) to monitor quality of CPR, confirm endotracheal intubation, detect return of 

spontaneous circulation and guide the rescuer during CPR [19]. EtCO2, measured as the 

peak value of the capnogram at the end of exhalation, is a surrogate indicator of coronary 

perfusion during CPR [20]. Abrupt increments of EtCO2 and higher values of EtCO2 have 

been associated with restoration of spontaneous circulation, quality of CPR and patient 

outcome [21–26]. Higher EtCO2 has been linked to shock success in animal models [20], 

and positive correlations between AMSA and EtCO2 have been found in animal data [27] 

and during a prolonged case of refractory VF in OHCA [28]. Although the evidence is not 

conclusive, the mean EtCO2 in the minute preceding defibrillation is associated to 

defibrillation success [29], and the accuracy of defibrillation success prediction may be 

increased by combining EtCO2 and VF-waveform features [30].

The aim of this study was to evaluate the value of capnography for the prediction of 

defibrillation success using OHCA data, and to develop automatic prediction methods based 

on the capnogram. For that purpose the median EtCO2 (MEtCO2) in the minute before the 
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shock was used. The assessment was done in two ways, using MEtCO2 alone, and 

combining MEtCO2 with AMSA and FuzzyEn to evaluate its aggregate value for the 

prediction of shock success.

2. MATERIALS AND METHODS

2.1. Data materials

The study dataset was obtained from OHCA patients treated by the DFW Center for 

Resuscitation Research (UTSW, Dallas, Texas) and the Tualatin Valley Fire and Rescue 

(Portland, Oregon) between 2010 and 2016. Data collected using the MRx monitor-

defibrillator (Philips Medical Systems, Andover, MA, USA) was analysed. MRx data 

included the ECG, compression depth from a CPR-assist pad, and the capnogram acquired 

using Microstream technology (sidestream acquisition). The ECG was recorded with a 0–50 

Hz bandwith, 250 Hz sampling rate and a resolution of 1.03 µV per least significant bit. The 

capnogram was acquired with a sampling rate of 40/125 Hz and a resolution of 0.004 mmHg 

per bit. Cases were included in the study if the patient presented VF cardiac arrest, and had 

at least one defibrillation attempt with: concurrent recordings of capnogram (to compute 

MEtCO2) and compression depth (to assess CPR quality) in the 1-minute interval before the 

shock, an artifact free ECG in the 5-sec interval before the shock to compute the VF-

waveform features, and 1-minute post shock ECG to annotate whether the shock was 

successful.

All shocks were visually reviewed and annotated by two experienced biomedical engineers 

(EA, UI). Shock success was defined as the appearence of sustained QRS complexes with a 

rate above 40 beats/min within 60-seconds after the shock [16]. The appearence of sustained 

QRS complexes after the shock has been a widely accepted criterion for the definition of 

shock success in many previous studies [8, 29–33]. Figure 1 shows two representative 

examples. In the example above the patient presents a rhythm with sustained QRS 

complexes (rate around 60 beats/min) after the shock, the bottom example shows a case with 

refractory VF. In both shocks there was a minute of end-tidal CO2 data before the shock to 

compute MEtCO2.

2.2. Predictors of defibrillation success

Three predictors of defibrillation success were computed, MEtCO2 and two established VF 

waveform predictors, AMSA and FuzzyEn. MEtCO2 was calculated using a 1-minute 

interval before the shock. First, ventilations were automatically detected in the capnogram 

using the algorithm proposed in [34], which is very accurate even in the presence of chest 

compressions. Then, the EtCO2 value for each ventilation was obtained as the maximum 

value of the CO2 waveform during the alveolar plateau (see Fig 1). MEtCO2 was the median 

value of the EtCO2 values. VF waveform features were computed using a 2-sec interval 

before the shock, leaving a 1-sec guard interval to avoid interferences (see Fig 1). The ECG 

was bandpass filtered (0.5–30 Hz) using forward-backward filtering and an order 8 elliptic 

filter to remove baseline oscillations and high frequency noise. The spectral amplitudes of 

the ECG were computed using the Fast Fourier Transform, and AMSA was obtained in the 

2–48 Hz frequency range as AMSA = ∑ Ak f k, where Ak is the amplitude corresponding to 
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frequency fk [16]. FuzzyEn quantifies the regularity of VF by analyzing repetitive patterns 

along the waveform. VF-amplitude was considered in the calculation of FuzzyEn as 

proposed in [17, 18], because VF-amplitude has been shown to correlate to the state of the 

myocardium [35].

2.3. Statistical analysis

CPR quality metrics associated with every shock were computed using the 1-minute interval 

before the shock. The mean chest compression rate (CR) and depth (CD), were obtained 

using the compression depth signal from the CPR assist pad, the mean ventilation rate (VR) 

was obtained from the ventilations detected in the capnogram. CPR quality metrics, 

MEtCO2, AMSA and FuzzyEn are reported as median (interquartile range, IQR) for 

successful and unsuccessful shocks because their distributions did not pass the Anderson-

Darling normality test. Distributions for successful and unsuccessful shocks were compared 

using the Mann-Whitney U-test, and differences were considered statistically significant for 

p<0.05.

Univariate logistic regression analyses were done for all predictors and CPR quality metrics. 

The parameters that showed significant differences (p<0.05) were further included in 

multivariate logistic regression models. The analyses were done separately for first shocks 

and all shocks. Data was randomly partitioned patient-wise into training (60%) to fit the 

models, and test (40%) to report the results. The process was repeated 100 times to obtain 

the statistical distribution of the performance metrics. For patients with multiple shocks (all 

shocks group) generalized estimating equations with time adjusted correlations were used to 

account for repeated measures [36]. The performance of the models was evaluated in terms 

of Sensitivity (Se), the capacity to identify successful shocks, and specificity (Sp), the 

capacity to identify unsuccessful shocks. ROC curves were obtained and the Area Under the 

Curve (AUC) was used to compare the accuracy of the models [37]. The optimal point in the 

ROC curve was determined using the Youden index, which gives equal importance to Se and 

Sp [38]. All calculations were done using the Statistics and Machine Learning toolbox from 

MATLAB (Mathworks Inc, Natick, MA, USA).

3. RESULTS

A total of 1933 cases from the study period were analyzed and 214 met the inclusion 

criteria. In the study dataset the mean (SD) duration of the cases was 41 (15) min, 77% of 

patients were male, and the median (IQR) age was 60 (51–71) years. A total of 76 patients 

achieved ROSC, and 12% survived. There were 514 shocks that met the inclusion criteria, 

196 were successful and 318 were not. The median number of shocks included per patient 

was 2 (1–3). In 75 cases first shocks were available, 33 of which were successful.

Table 1 compares the distributions of the CPR quality variables for successful and 

unsuccessful shocks, and the p-value of an univariate analysis for each individual variable. 

There were no significant differences in CR and VR, although CD was significantly larger 

for unsuccessful shocks (4.7 cm vs 4.9 cm). Similar values were observed for the subgroup 

of first shocks. The univariate analyses for the CPR quality metrics confirmed these results, 
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with p-values for the models based on CR and VR not significant for both all shocks and 

first shocks groups, and significant for CD in both groups.

Figure 2 compares the distributions (boxplots) of the shock success predictors for successful 

and unsuccessful shocks, both for all shocks (top) and first shocks (bottom). VF-waveform 

features were significantly different between successful and unsuccessful shocks in all cases. 

MEtCO2 was larger for successful shocks in both cases, but the difference between 

successful and unsuccessful shocks was only statistically significant for the subgroup of first 

shocks. For this subgroup the median MEtCO2 value was 31.0 (22.5–50.3) mmHg for 

successful shocks and 25.0 (11.3–34.5) mmHg for unsuccessful shocks. Figure 3 shows the 

proportion (raw percentages) of successful and unsuccessful first shocks for three ranges of 

MEtCO2. MEtCO2 under 20 mmHg are associated to low quality CPR [39, 40], and values 

above 40 mmHg to ROSC [40]. We observed a large increase in the proportion of successful 

shocks from 25% for MEtCO2<20 mmHg to over 60% for MEtCO2>40 mmHg.

Table 2 summarizes the results of the univariate and multivariate analyses with the test set 

for all shocks and first shocks. VF waveform features, AMSA and FuzzyEn, were significant 

(p<0.05) for first shocks and all shocks. AMSA was not significant in multivariate models 

that combined AMSA and FuzzyEn, so AMSA and FuzzyEn were considered separately in 

multivariate analyses (Table 2). For all shocks CD was significant, but MEtCO2 was not and 

it was not considered for multivariate analyses. Adding CD to AMSA or FuzzyEn increased 

the AUC by less than 1-point. For first shocks both MEtCO2 and CD were significant, but 

MEtCO2 contributed more than CD to multivariate models. The AUC of AMSA/FuzzyEn 

increased by 3/6 points when MEtCO2 was added, but adding CD only increased the AUC of 

AMSA by 3 points, showing no improvement for FuzzyEn. For AMSA, MEtCO2 and CD 

contributed independently but did not outperform the model with FuzzyEn and MEtCO2 

which had the largest AUC for first shocks. Figure 4 shows how VF-waveform features and 

MEtCO2 values are distributed, and how first successful shocks concentrate on high values 

of the VF-waveform predictors and MEtCO2 (north-east corner). For first shocks MEtCO2 

contributes to the separability of successful and unsuccessful shocks.

4. DISCUSSION

This study provides new evidence on value of MEtCO2 for the prediction of defibrillation 

success. MEtCO2 showed predictive power only for first shock attempts, for which it also 

added predictive power to VF-waveform features. Furthermore, all MEtCO2 calculations and 

VF-feature calculations were performed automatically using the waveforms recorded by the 

monitor defibrillator, and could therefore be integrated into current equipment adding only 

new software.

Many studies have analysed the value of EtCO2 in cardiac arrest as a surrogate marker of 

perfusion, with emphasis on its value to monitor CPR quality [21, 22] or to provide an early 

indication of return of spontaneous circulation [23–25, 41]. However, little is known on its 

value to predict defibrillation success. In our data, low MEtCO2 values in the first shock 

were associated to unsuccessful shocks, and higher MEtCO2 values were an indication of an 

increased probability of successful shocks (Fig 3). First shocks with MEtCO2 values under 
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11 mmHg (n=10) were always unsuccessful, while 60% were successful for MEtCO2 above 

40 mmHg (n=22). Our low MEtCO2 cutoff for unsuccessful shocks is similar to the values 

observed by Savastano et al [29], and confirm an MEtCO2 value around 10 mmHg may be 

used as an indication to delay the shock. These findings are aligned with the European [19] 

and American [40] guidelines which suggest 10 mmHg as an indicator of good quality CPR. 

However, our cutoffs for successful shocks were higher than the 31 mmHg proposed by 

Savastano et al. This suggests that differences in the measurements of EtCO2 might be 

expected when different devices and technologies are used. Further analyses are needed to 

define universal EtCO2 thresholds.

We found an accuracy for the prediction of defibrillation success for first shocks using 

MEtCO2 (AUC of 0.66) similar to the one reported by Savastano et al [29] for all shocks 

(AUC of 0.67). However, our analysis showed that MEtCO2 was not useful as a predictor for 

all shocks (AUC of 0.54). EtCO2 values may be affected by many factors in recurrent VF 

and prolonged cardiac arrest, such as quality of CPR, type of CPR (manual/mechanical 

ventilation and manual/mechanical compressions), ventilation rate, compression site on the 

sternum or pharmacological treatment [42, 43]. In our data, compression and ventilation 

rates were similar in successful and unsuccessful shocks, but compression depth was 

significantly larger for unsuccessful shocks. Differences in manual chest compressions may 

also be associated to rescuer changes, that may affect the position of the hands on the chest 

and the quality of CPR. For the subgroup of unsuccessful shocks, median MEtCO2 values in 

all shocks were significantly larger than in first shocks (see Fig 2), 29 mmHg to 25 mmHg 

(p<0.05). In Savastano et al [29] patients were mechanically ventilated and mechanically 

compressed, so there were no differences in CPR quality, which may explain why MEtCO2 

was a predictor of shock success for all shocks. Our findings stress the importance of 

controlling for additional variables like CPR quality when using MEtCO2 for the prediction 

of defibrillation success. The effects may be larger for patients with prolonged therapy, i.e. 

shocks other than the first shock.

VF-waveform analysis is the tool-of-choice for the non-invasive prediction of defibrillation 

success [6, 8, 9, 16]. The AUCs obtained in this study for AMSA and FuzzyEn are in line 

with previous findings, which are in the 0.60–0.85 range [9, 12, 16, 30, 44, 45]. FuzzyEn 

following the definition introduced in [17] slightly outperformed AMSA, although the AUCs 

were very similar. Most importantly, when MEtCO2 had prognostic value, it also added 

valuable information to the VF-waveform features. For first shocks, the addition of MEtCO2 

significantly increased the AUC for AMSA and FuzzyEn, with an increase of 3-points for 

AMSA and 6-points for FuzzyEn. These results suggest that MEtCO2 could be used as a 

complementary tool to VF-waveform analysis to predict defibrillation in first shocks, 

confirming some previous findings with very small datasets [30]. The inclusion of CD in the 

predictive model produced a smaller increase in AUC of AMSA and no increase for 

FuzzyEn.

Finally, MEtCO2 was automatically obtained using a capnogram based ventilation detector 

[34], and a simple definition of EtCO2 as the maximum CO2 value in the alveolar plateau. 

When we compared the MEtCO2 values obtained from manual and automatic EtCO2 

measurements, we found a median (IQR) error of −1 (−3–0) mmHg, and a median unsigned 
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error of 2 (1–4) mmHg. This confirms MEtCO2 can be automatically determined before the 

shock, and then be used to improve the prediction of defibrillation success in the subgroup 

of first shocks. The method could therefore be integrated into current monitor-defibrillators 

that use capnography modules simply adding software.

4.1. Limitations

Three were the main limitations of this study. First, the capnogram was not available in the 

initial shocks of some cases, in which it was introduced once the advanced airway had been 

placed. Second, the capnogram was acquired using Microstream (sidestream) technology. 

EtCO2 measurements using other devices or technologies (mainstream, nasal cannulae, ...) 

may be slightly different. Third, no information on ROSC after every shock was available, so 

the criterion to define successful shocks was based on the appearence of sustained QRS 

complexes in the post-shock interval. This is the most frequently used criterion in the studies 

on the prediction of shock success.

5. Conclusions

MEtCO2 was only a predictor of defibrillation success for first shocks, and it added 

prognostic value to VF-waveform features. The method introduced in this study is the first 

fully automatic method that combines MEtCO2 values and VF-waveform features for the 

prediction of defibrillation success.
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Figure 1. 
Representative examples of two shocks, a successful shock (top) and an unsuccessful shock 

with refractory VF (below). VF-waveform features (AMSA and FuzzyEn) were computed in 

the 2-sec analysis interval with a 1-sec guard before the shock. MEtCO2 and the CPR 

metrics were computed in the 1-min interval before the shock. Chest compressions obtained 

from the compression depth are marked as vertical red lines, and the EtCO2 values for each 

ventilation as red dots.

Chicote et al. Page 11

Resuscitation. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Boxplots of the defibrillation success predictors, for all shocks (top) and for the first shocks 

(bottom).
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Figure 3. 
Distribution of first shocks as successful or not successful for three representative intervals 

of MEtCO2.
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Figure 4. 
Analysis of the models for the prediction of first shock success based on VF-waveform 

features combined with MEtCO2. The scatter plots show how the pair of values for each 

shock are distributed, and in both cases successful shocks (blue dots) fall in the north-east 

side indicating that they correspond to high values of MEtCO2 and the VF-waveform 

predictor. Unsuccessful shocks (red dots) concentrate in the south-west corner, 

corresponding to low values of MEtCO2 and the VF-waveform predictor. The blues and red 

areas are separated by the median decision boundary corresponding to 100 replicas of the 

logistic regression classifier. The curves on the sides are a non-parametric estimation of the 

probability distribution of each variable (AMSA left, FuzzyEn right, and MEtCO2 bottom) 

for successful (blue) and unsuccessful (red) shocks. The dashed green line and area indicate 

the median (IQR) of the thresholds for 100 replicas, corresponding to AMSA, 9.0 (7.2–10.1) 

mVHz, FuzzyEn, 1.4 (1.4–1.5), and MEtCO2, 20 (15–37) mmHg, respectively.
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Table 1

Distributions of the CPR quality parameters for all shocks and for the first shocks. The abbreviations are: VR 

(ventilation rate), CR (compression rate) and CD (compression depth).

All shocks First shocks

Success No Success p Success No Success p

VR (min−1) 10.0 (7.0 – 12.0)  9.0 (7.0 – 12.0) > 0.05  9.0 (5.7 – 10)  8.0 (6.0 – 9.0) > 0.05

CR (min−1) 107 (100 – 115) 107 (100 – 115) > 0.05 109 (100 – 115) 107 (100–114) > 0.05

CD (cm)  4.7 (4.1 – 5.2)  4.9 (4.3 – 5.4) < 0.05  4.4 (3.9 – 5.0)  5.0 (4.4 – 5.4) < 0.05
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Table 2

ROC curve analysis for the four individual predictors and for the combination of VF-waveform predictors, 

MEtCO2 and CD when each one alone is significant. All features were significant with a p < 0.05, except 

MEtCO2 for all shocks (*), so MEtCO2 combinations for all shocks are not reported. The median(IQR) of the 

distributions are reported for the AUC, Se and Sp with the test set, after repeating training/test partitioning 100 

times. The Se/Sp are given for the optimal point (Youden index)

Data base

All shocks First shocks

AUC Se (%) Sp (%) AUC Se (%) Sp (%)

Univariate

  AMSA 0.75 (0.72 – 
0.75)

79.8 (71.4 – 
85.5)

63.2 (58.5 – 
71.6)

0.76 (0.72 – 
0.82)

82.1 (76.2 – 
88.4) 59.9 (52.9 – 64.7)

  FuzzyEn 0.75 (0.73 – 
0.77)

73.6 (67.1 – 
78.8)

69.4 (64.1 – 
75.6)

0.77 (0.73 – 
0.82)

83.0 (78.1 – 
89.5) 62.5 (58.8 – 70.6)

  MEtCO2
0.54 (0.51 – 

0.57)*
48.1 (42.0 – 

69.3)
66.1 (43.3 – 

72.1)
0.66 (0.60 – 

0.71)
69.1 (57.9 – 

86.5) 53.0 (38.3 – 64.7)

  CD 0.58 (0.56 – 
0.60)

56.2 (34.6 – 
75.7)

62.7 (42.2 – 
82.8)

0.65 (0.61 – 
0.72)

76.9 (53.8 – 
92.3) 58.8 (35.3 – 85.3)

Multivariate

  AMSA+CD 0.75 (0.73 – 
0.77)

78.5 (72.1 – 
84.3)

63.7 (59.2 – 
70.3)

0.76 (0.72 – 
0.81)

69.2 (61.5 – 
84.6) 82.4 (70.6 – 88.2)

  AMSA+MEtCO2 - - - 0.79 (0.75 – 
0.85)

85.1 (81.2 – 
89.8) 60.7 (52.9 – 67.6)

  AMSA+MEtCO2 +CD - - - 0.82 (0.77 – 
0.86)

92.3 (84.6 – 
96.2) 70.6 (64.7 – 82.4)

  FuzzyEn+CD 0.76 (0.73 – 
0.78)

79.5 (75.8 – 
82.2)

65.1 (60.6 – 
69.2)

0.80 (0.74 – 
0.85)

84.6 (76.9 – 
92.3) 76.5 (70.6 – 82.4)

  FuzzyEn+MEtCO2 - - - 0.83 (0.78 – 
0.88)

85.9 (80.5 – 
91.6) 65.4 (58.8 – 70.6)

  FuzzyEn+MEtCO2 +CD - - - 0.83 (0.78 – 
0.88)

84.6 (76.9 – 
92.3) 82.4 (70.6 – 88.2)
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