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In Ontario over the period 1995 to 2005, diabetes had a 
prevalence of 8.8% and an annual incidence of 8.2 per 
1000.1 More recently, the Public Health Agency of 

Canada reported an age-adjusted overall population preva-
lence of 7.8% in 2013/14,2 whereas Diabetes Canada 
reported an estimated 9.3% prevalence in 2015.3 However, 
these rates aggregate all forms of diabetes and, importantly, 
do not differentiate between type  1 and type 2 diabetes 
mellitus. The management of diabetes in Canada, includ-
ing management of the type 1 form, has shifted to a more 
interdisciplinary, team-based, integrated approach, based 
on implementation of the Chronic Care Model.4 The abil-
ity to accurately distinguish between type 1 and type 2 dia-
betes is important for clinical quality improvement, given 
the difference in management approaches between the 
2  conditions, as well as for health outcomes research and 
pragmatic trials.

Existing validated case definitions for diabetes include those 
developed by Clottey and colleagues,5 Hux and colleagues,6 
Amed and colleagues7 and Guttmann and colleagues8 Few 
studies have validated case definitions distinguishing between 
type 1 and type 2 diabetes.9,10 A recent systematic review11 
identified 16 studies that used administrative data coded with 
the International Classification of Diseases (ICD) to derive vali-
dated case definitions for diabetes in adults. None of these 
studies were able to differentiate between type 1 and type 2 
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Background: Identifying cases of disease in primary care electronic medical records (EMRs) is important for surveillance, research, 
quality improvement and clinical care. We aimed to develop and validate a case definition for type 1 diabetes mellitus using EMRs.

Methods: For this exploratory study, we used EMR data from the Southern Alberta Primary Care Network within the Canadian Pri-
mary Care Sentinel Surveillance Network (CPCSSN), for the period 2008 to 2016. For patients identified as having diabetes mellitus 
according to the existing CPCSSN case definition, we asked family physicians to confirm the diabetes subtype, to create the refer-
ence standard. We used 3 decision-tree classification algorithms and least absolute shrinkage and selection operator logistic regres-
sion to identify variables that correctly distinguished between type 1 and type 2 diabetes cases.

Results: We identified a total of 1309 people with type 1 or type 2 diabetes, 110 of whom were confirmed by their physicians as hav-
ing type 1 diabetes. Two machine learning algorithms were useful in identifying these cases in the EMRs. The first algorithm used 
“type 1” text words or age less than 22 years at time of initial diabetes diagnosis; this algorithm had sensitivity 42.7% (95% confi-
dence interval [CI] 33.5%–52.5%), specificity 99.3% (95% CI 98.6%–99.7%), positive predictive value 85.5% (95% CI 72.8%–93.1%) 
and negative predictive value 94.9% (95% CI 93.5%–96.1%). The second algorithm used a combination of free-text terms, insulin 
prescriptions and age; it had sensitivity 87.3% (95% CI 79.2%–92.6%), specificity 85.4% (95% CI 83.2%–87.3%), positive predictive 
value 35.6% (95% CI 29.9%–41.6%) and negative predictive value 98.6% (95% CI 97.7%–99.2%). 

Interpretation: We used machine learning to develop and validate 2 case definitions that achieve different goals in distinguishing between 
type 1 and type 2 diabetes in CPCSSN data. Further validation and testing with a larger and more diverse sample are recommended.
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diabetes. The Canadian Primary Care Sentinel Surveillance 
Network (CPCSSN) extracts, transforms, cleans and codes 
primary care data from electronic medical records (EMRs) 
into a standardized data model and makes the processed data 
available for research, surveillance, quality improvement and 
panel management.12 Previously, the CPCSSN developed a 
definition for undifferentiated diabetes that had excellent accu-
racy (95.3% sensitivity and 97.1% specificity).13 The current 
study builds on that CPCSSN definition by identifying 
patients by diabetes type using artificial intelligence machine 
learning. This data-oriented method is designed to find pat-
terns or generate predictive models using large and complex 
data sets to identify the most accurate case definition within 
the data.14 Our objective was to assess whether machine learn-
ing methods can be used to create human-readable case defini-
tions that distinguish between type 1 and type 2 diabetes.

Methods

Data source and reference standard
The CPCSSN extracts de-identified clinical data from the 
EMR systems of about 1500 sentinel family physicians, nurse 
practitioners and community pediatricians, who contribute 
data for about 1.8 million patients in 7 provinces and 1 terri-
tory across Canada. These data include patient demographic 
characteristics, diagnoses, prescribed medications, laboratory 
results, physical measurements (e.g., weight, blood pressure), 
medical procedures, behavioural risk factors, physician billing, 
allergies, vaccinations and referrals. Previous work has shown 
that the CPCSSN database includes patients who are gener-
ally representative of the Canadian population.15 CPCSSN 
data are available to researchers upon approval; further details 
about the CPCSSN have been published previously16 and can 
be found on the CPCSSN website (www.cpcssn.ca).

For this study, we used data from one of the CPCSSN’s 
participating practice-based research networks, the Southern 
Alberta Primary Care Research Network, extracted on Dec. 
31, 2016, and derived for the period 2008–2016 inclusive. This 
network generally had more than 200 000 patients (e.g., 
237 734 in the fourth quarter of 2016, of whom 17 003 had 
diabetes). We identified and sampled a cohort of patients of all 
ages, who were believed to have diabetes, using the current 
validated CPCSSN case definition. Family physicians who 
agreed to participate in this study were able to re-identify the 
patients with CPCSSN-defined diabetes in the EMR systems 
of their respective practices. We sent an e-mail invitation to 
family physicians who were part of the Southern Alberta Pri-
mary Care Research Network and who belonged to 1 of 4 
clinics in southern Alberta that we had identified as having a 
large population of patients with diabetes. We first asked the 
family physicians to confirm that the specified patients had dia-
betes and then to determine whether each patient had type 1, 
type 2 or another diabetes subtype, according to their clinical 
expertise and any supporting evidence they chose to use. The 
physicians performed these tasks before any machine learning 
classification was performed. The list of physician-confirmed 
diabetes cases, along with the diabetes subtype for each case 

(type 1, type 2 or other) constituted the reference standard for 
the analysis. By using this method of sampling patients, we 
attempted to preserve the true distribution of type 1 and type 2 
cases within the undifferentiated diabetes population. This 
approach allowed us to comfortably report positive predictive 
value (PPV) and negative predictive value (NPV) metrics.

Machine learning
We applied supervised machine learning methods to the 
large, complex, multivariable CPCSSN data set and the refer-
ence standard (physician-confirmed diabetes subtype) to 
“learn” the clinical characteristics (called “features”) that dif-
ferentiated people with type 1 diabetes mellitus from those 
with other subtypes of the disease.

Selection of features
Before the machine learning processing began, we selected and 
defined as binary outcomes all plausibly relevant variables 
within the CPCSSN data. More specifically, we selected fea-
tures using information from various parts of the patient chart: 
age, physician billing, current and historical diagnoses, referrals 
and prescribed medications. Diagnoses in the Canadian pri-
mary care setting are generally coded using the International 
Classification of Diseases, 9th Revision (ICD-9). Therefore, we 
considered as a feature every unique ICD-9 code present in the 
EMR database. In addition, we generated features on the basis 
of 2 instances of a code in the year leading up to the chart 
review, as well as 2 instances within 2 years. We used a similar 
approach for the medication and referral codes. We included 
diagnoses, referrals and medications that were recorded as free 
text using a simple “bag-of-words” approach, which creates a 
binary indicator for each unique word that appears in any free-
text field within the CPCSSN database. Similarly, we added 
non–case-sensitive wildcard searches for the following key-
words and phrases related to diabetes status: “type 1,” “type 2,” 
“type i,” “type ii,” “insulin dependent,” “insulin dep,” “tidm,” 
“tiidm,” “non insulin dependent,” “type 1 insulin dependent,” 
“iddm,” “niddm,” “dm1,” “dm2,” “dmi,” “dmii,” “t2dm” and 
“t1dm.” We also included the following combinations as fea-
tures: “type 1+ insulin dependent+ insulin dep+ type 1 insulin 
dependent” and “type i+ tidm.”

For each prescribed medication recorded in the EMR, 
CPCSSN assigns codes from the Anatomical Therapeutic 
Chemical (ATC) Classification system.17 We included as a 
feature each unique ATC code appearing in the medication 
table, using truncated codes to identify families of drugs 
rather than specific examples. We also assessed the frequency 
of ATC codes, particularly whether 2  instances of the same 
code were used within 1 year, and 2  instances of the same 
code within 2 years. 

We also included laboratory values. The diabetes-related tests 
available in the CPCSSN data are hemoglobin A1c and fasting 
plasma glucose measures. We created binary indicators for 
whether or not a patient had certain laboratory values over ranges 
of thresholds (e.g., HbA1c > 6.3%, > 6.4%, > 6.5%, > 6.6%).

We included various age cut-offs as features because 
recent evidence suggests that 48% of type 1 cases are 
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diagnosed before the patient reaches 30 years of age, and 
that the remaining 52% of cases are diagnosed between ages 
30 and 60 years.18 The peak incidence period for diagnosis of 
type 1 diabetes is age 10 to 14 years.19 We included each 
age-year between 18 and 50 inclusive as candidate features, 
with age being calculated at the date of intitially meeting the 
general case definition for diabetes.

Algorithms
We required that the generated case definitions be entirely 
human-readable and easily translated into a set of logic 
statements. These criteria ruled out many of the “black-box” 
machine learning algorithms like the random forest algo-
rithm, support-vector machines and artificial neural net-
works. We used the following machine learning algorithms 
for feature selection in this analysis: the C5.0 decision tree,14 
the classification and regression tree decision tree,20 the chi-
square automated interaction detection (CHAID) decision 
tree21,22 and the least absolute shrinkage and selection opera-
tor (LASSO) logistic regression.23,24 These algorithms are 
commonly used in machine learning settings and were 
selected for their ability to generate human-readable rule 
sets that can be used as case definitions.14 

Statistical analysis
Each of the machine learning algorithms has tuning param
eters that can be manipulated to control the complexity and 
size of the final definition. These complexity parameters 
include maximum depth of the tree, a confidence factor or 
complexity parameter, a minimum number of cases required 
to make a split and a loss matrix. We selected the tuning 
parameters using a bootstrap method. We took a random 
sample with replacement of the study population for a range 
of possible values for the tuning parameters. We repeated the 
process 30 times for each tuning parameter value, until we 
could determine which tuning parameter values optimized 
the accuracy metrics. Specifically, we investigated the mis-
classification rate, the F1 score, the PPV and the Youden J 
statistic. The F1 score is defined as (sensitivity × PPV)/(sensi-
tivity + PPV). The Youden J statistic is defined as sensitivity 
+ specificity – 1.

Once we had selected the tuning parameters, we used 
10-fold cross-validation to determine the validity esti-
mates.25 We accomplished this by splitting the study popu-
lation into 10 segments or “folds.” We conducted training 
of the model using 9 of these folds, and performed testing 
on the remaining fold. We repeated the cross-validation 
10  times, such that each fold was used once for testing. 
After determining the validity estimates, we fitted the 
model with the entire study population to get the final case 
definition. We used R statistical software version 3.3.1 for 
all statistical analyses. 

Ethics approval
The study received ethics approval from the University of 
Calgary’s Conjoint Health Research Ethics Board (Ethics ID 
REB17–0091).

Results

A total of 189 physicians in the southern Alberta CPCSSN 
were approached about the study, and 23 agreed to partici-
pate. From the patient rosters of these physicians, we ini-
tially identified a sample of 1501 patients who were thought 
to have diabetes, of whom 102 were subsequently found not 
to have the disease (i.e., had been misclassified by the phys
ician). Of the remaining 1399 patients, an additional 90 
patients (6.0% of the original sample) were excluded for 
various reasons: 14 patients had died, 68 were no longer 
active in the physician’s panel, and 8 had gestational diabe-
tes or a relatively rare diabetes subtype (e.g., latent auto
immune diabetes of adults, mature onset diabetes of the 
young). Therefore, 1309 patients were confirmed to have 
the disease and were included in the analysis. Of this sam-
ple, 1199 people (91.6%) were classified by their family 
physician as having type 2 diabetes and 110 people (8.4%) 
were classified by their family physician as having type 1 
diabetes; the cohort thus created included substantially 
more cases of type 2 diabetes than type 1 diabetes.

Patients with type 1 diabetes were younger, and this group 
included more females (Table 1). Also, a substantially greater 
proportion of patients with type 1 diabetes had insulin 
prescriptions, both issued in the past year (30.0% v. 6.6%) 
and at any time (76.4% v. 13.0%). 

The 10-fold cross-validation results are presented in Table 2. 
Prevalence of the disease in the sample was relatively low, so 
the algorithms naturally favoured high-specificity models, 
except when the validity metrics that favour sensitivity were 
maximized (e.g., the Youden J statistic). The sensitivities for 
misclassification rate, F1 score and PPV ranged from 40.0% 
to 61.8%, whereas the specificities for these tuning parame-
ters ranged from 96.3% to 99.3%. When the Youden J statis-
tic was maximized, however, sensitivities ranged from 52.7% 
to 87.3%, and specificities from 85.4% to 97.9%.

Table 3 shows the final case definitions for 2 notable 
models from the 10-fold cross-validation results. The first is 
the CHAID method maximizing PPV. The cross-fold esti-
mate here had a PPV of 85.5% but lacked sensitivity (42.7%). 
The case definition interpreted for this model used the free-
text term “type 1” appearing anywhere in the text fields for 
problem list, encounter diagnosis, billing or medication rea-
son. Also, all those who were under the age of 22 years at the 
time of first meeting the general case definition or diabetes 
were considered to represent type 1 cases. 

The second reported case definition is the LASSO imple-
mentation maximizing the Youden J statistic. This method 
yielded sensitivity of 87.3% and specificity of 85.4%. The 
added sensitivity came at the cost of PPV, which was estimated 
as 35.6%. The features selected for this case definition were 
the term “type 1” appearing in any text field, a prescription for 
insulin or age less than 30 years at the time of first meeting the 
general case definition for diabetes. The importance of each 
feature, as ranked by the random forest model, is presented in 
Appendix 1 (available at www.cmajopen.ca/content/7/2/E246/
suppl/DC1).
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Interpretation

We have shown that machine learning methods can be used 
to create interpretable case definitions that distinguish 
between type 1 and type 2 diabetes in CPCSSN-processed 
EMR data. Although we found no single case definition with 
high sensitivity, specificity and predictive values, we judge 
that at least 2 useful case definitions were identified. The 
first adopted the CHAID implementation maximizing PPV. 
This simple case definition has high PPV and NPV. High 
predictive values are ideal for creating cohorts in observa-
tional studies and for other screening purposes, because 
patients for whom there is a strong probability of having the 
condition of interest are identified with high accuracy. The 
second case definition adopted the LASSO approach maxi-
mizing the Youden J statistic and had good sensitivity and 
specificity (87.3% and 85.4%, respectively). This case defini-
tion would be useful for epidemiologic and surveillance pur-
poses, such as examining population-level temporal trends of 
incidence and prevalence.

Clottey and colleagues5 developed a case definition for 
undifferentiated diabetes which consisted of at least one of the 
following criteria: at least 2 physician billing claims within a 
2-year period or 1 hospital admission with an ICD code for dia-
betes. Hux and colleagues6 generated 2 definitions, the first 
involving either 1 claim or 1 hospital admission, and the second 

involving either 2 claims or 1 hospital admission. In British 
Columbia, Amed and colleagues7 developed 2 additional defini-
tions intended for use in children and adolescents. The first was 
based on 1 hospitalization, 2 physician billing claims in a single 
year, and combinations of insulin and oral antidiabetic medica-
tions. The second consisted of 4 billing codes over 2 years. 
Guttmann and colleagues8 developed a definition for pediatric 
diabetes using claims data exclusively, concluding that 4 phys
ician billing claims using ICD-9 code 250.X in a 2-year period 
provided optimal sensitivity and specificity. Each study 
included in the recent systematic review by Khokhar and col-
leagues11 used physician claims either alone or in combination 
with hospital discharge data. Physician billing is not necessarily 
an accurate reflection of the content of a given encounter. For 
example, Wyse and colleagues26 identified 15% under-reporting 
of polypectomy when validated against clinical records. 
Muhajarine and colleagues27 identified similar misclassification 
rates for hypertension. Hux and colleagues6 reported PPVs for 
their case definitions ranging from 0.61 to 0.80, which indi-
cated substantial misclassification of diabetes relative to chart 
review. Hence, our study represents 2 important achievements: 
it exploits data other than hospital admissions and physician 
claims in determining cases and creating case definitions that 
maximize sensitivity, specificity, PPV and NPV, and it also 
presents validation metrics for the case definitions supporting 
differentiation between type 1 and type 2 diabetes. 

Table 1: Demographic and relevant clinical features comparing patients with type 1 and type 2 diabetes

Group; % of patients (95% CI)*†

Characteristic
Type 2 diabetes

n = 1199
Type 1 diabetes

n = 110
Total

n = 1309

Sex, male 53.5 (50.6–56.3) 47.3 (37.7–57.0) 52.9 (50.2–55.7)

Age, yr, mean (95% CI) 64.6 (63.9–65.3) 46.0 (42.8–49.2) 63.0 (62.3–63.8)

No. of encounters in past year, mean (95% CI) 5.1 (4.8–5.3) 4.0 (3.2–4.8) 5.0 (4.8–5.2)

Prescription for insulin (A10AB - -)‡ 

    In past year 6.6 (5.3–8.2) 30.0 (21.8–39.6) 8.6 (7.1–10.2)

    In past 2 years 8.8 (7.2–10.5) 47.3 (37.8–57.0) 12.0 (10.3–13.9)

    At any time 13.0 (11.2–15.1) 76.4 (67.1–83.7) 18.3 (16.3–20.6)

Prescription for blood glucose–lowering drugs excluding insulin (A10B - - - )‡

    In past year 45.5 (42.6–48.3) 12.7 (7.4–20.8) 42.7 (40.0–45.4)

    In past 2 years 54.6 (51.8–57.5) 20.9 (14.0–29.9) 51.8 (49.0–54.5)

    At any time 71.9 (69.2–74.4) 26.4 (18.6–35.8) 68.1 (65.5–70.6)

Occurrence of “type 1” in any text field 0.7 (0.3–1.4) 40.0 (30.9–49.8) 4.0 (3.0–5.2)

Billing code 250.01 in past year 0 10.0 (5.3–17.6) 0.8 (0.4–1.5)

Occurrence of “type 2” in any text field 26.3 (23.8–28.9) 7.3 (3.4–14.3) 24.7 (22.4–27.1)

Occurrence of “diabetes” in any text field 95.3 (93.9–96.4) 99.1 (94.3–100) 95.6 (94.4–96.7)

Note: CI = confidence interval.
*Except where indicated otherwise.
†CIs for proportions are exact.
‡The parenthetical notation represents relevant codes in the Anatomical Therapeutic Chemical Classification system, where each code is 7 characters long and dashes 
represent “wild card” characters. Specifically, insulin is represented by various codes in which the first 5 characters are A10AB, and blood glucose–lowering drugs other than 
insulin are represented by various codes in which the first 4 characters are A10B.
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Limitations
This study had a small number of confirmed cases of type 1 
diabetes. We believe that the under-recording of insulin pre-
scriptions for patients confirmed as having type 1 diabetes 
derives from their receiving most of their diabetes-specific 
care from an endocrinologist or other diabetes specialist in an 
outpatient clinic setting, transactions that are usually not sub-
sequently recorded in primary care EMRs (which was our 
data source). Future research on a larger sample would result 
in more stable validity results and feature selection. The valid-
ity measures should be interpreted with caution, given that 
the diabetes cohort was selected from patients meeting the 
previously validated case definition for diabetes, and their 
inclusion was conditional upon CPCSSN-processed data and 
criteria and the validity of that definition. The sample that 
defined the reference set may not have been representative of 
the Canadian population, despite the fact that CPCSSN is 
generally representative of patients seen in Canadian primary 
care. Misclassification as to the type of diabetes is also possi-
ble; however, we are confident that the rate of misdiagnosis 
was reasonably low, because type 1 diabetes has little diagnos-
tic uncertainty (based on extreme thirst, urination and weight 

Table 3: Final case definitions for 2 notable instances of 
cross-validation results* 

Type of analysis Case definition

CHAID with maximized 
PPV

Any of the following 2 criteria:
•	Anywhere text “type 1” 
•	Age < 22 yr at time of original 

diabetes diagnosis

LASSO with maximized 
Youden J statistic

Any of the following criteria:
•	Anywhere text “type 1” 
•	Any occurrence of A10AB- -  in the 

medication table (insulin and 
analogues for injection, fast acting)†

•	Age < 30 yr at time of original 
diabetes diagnosis

Note: CHAID = chi-square automated interaction detection, LASSO = least 
absolute shrinkage and selection operator, PPV = positive predictive value.
*Disease status assumed to be type 2 diabetes or a diabetes subtype, unless 
the patient meets criteria for type 1 diabetes.
†The specified notation represents relevant codes in the Anatomical Therapeutic 
Chemical Classification system, where each code is 7 characters long and 
dashes represent “wild card” characters. Specifically, insulin is represented by 
various codes in which the first 5 characters are A10AB.

Table 2: Ten-fold cross-validation results for each of 4 machine learning algorithms, minimizing or maximizing various metrics*

Metric and algorithm Sensitivity, % Specificity, % PPV, % NPV, % Accuracy, %†

Misclassification rate

C5.0 40.9 (31.8–50.7) 99.3 (98.6–99.7) 84.9 (71.9–92.8) 94.8 (93.4–95.9) 94.4 (93.0–95.5)

CaRT 40.9 (31.8–50.7) 99.3 (98.6–99.7) 84.9 (71.9–92.8) 94.8 (93.4–95.9) 94.4 (93.0–95.5)

CHAID 40.0 (30.9–49.8) 99.3 (98.6–99.7) 84.6 (71.4–92.7) 94.7 (93.3–95.9) 94.3 (92.9–95.5)

LASSO 40.9 (31.8–50.7) 99.3 (98.6–99.7) 84.9 (71.9–92.8) 94.8 (93.4–95.9) 94.4 (93.0–95.5)

F1 score

C5.0 61.8 (52.0–70.8) 96.5 (95.2–97.4) 61.8 (52.0–70.8) 96.5 (95.2–97.4) 93.5 (92.0–94.8)

CaRT 60.9 (51.1–69.9) 96.3 (95.0–97.3) 60.4 (50.6–69.4) 96.4 (95.1–97.3) 93.3 (91.8–94.6)

CHAID 51.8 (42.1–61.4) 98.6 (97.7–99.1) 77.0 (65.5–85.7) 95.7 (94.3–96.7) 94.6 (93.2–95.8)

LASSO 40.9 (31.8–50.7) 99.3 (98.6–99.7) 84.9 (71.9–92.8) 94.8 (93.4–95.9) 94.4 (93.0–95.5)

PPV

C5.0 43.6 (34.3–53.4) 99.1 (98.3–99.5) 81.4 (68.7–89.9) 95.0 (93.6–96.1) 94.4 (93.0–95.5)

CaRT 40.9 (31.8–50.7) 99.3 (98.6–99.7) 84.9 (71.9–92.8) 94.8 (93.4–95.9) 94.4 (93.0–95.5)

CHAID‡ 42.7 (33.5–52.5) 99.3 (98.6–99.7) 85.5 (72.8–93.1) 94.9 (93.5–96.1) 94.5 (93.1–95.7)

LASSO 40.9 (31.8–50.7) 99.3 (98.6–99.7) 84.9 (71.9–92.8) 94.8 (93.4–95.9) 94.4 (93.0–95.5)

Youden J statistic

C5.0 85.5 (77.2–91.2) 85.5 (83.4–87.5) 35.3 (29.7–41.5) 98.5 (97.4–99.1) 85.5 (83.5–87.4)

CaRT 80.9 (72.1–87.5) 89.2 (87.2–90.8) 40.8 (34.3–47.7) 98.1 (97.0–98.8) 88.5 (86.6–90.1)

CHAID 52.7 (43.0–62.2) 97.9 (96.9–98.6) 69.9 (58.7–79.2) 95.7 (94.4–96.8) 94.1 (92.6–95.3)

LASSO‡ 87.3 (79.2–92.6) 85.4 (83.2–87.3) 35.6 (29.9–41.6) 98.6 (97.7–99.2) 85.5 (83.5–87.4)

Note: CaRT = classification and regression tree, CHAID = chi-square automated interaction detection, LASSO = least absolute shrinkage and selection operator, NPV = 
negative predictive value, PPV = positive predictive value.
*The misclassification rate metric was minimized, whereas the F1 score, PPV and Youden J statistic metrics were maximized. 
†A dummy classifier that assumes all cases were type 2 diabetes would achieve an accuracy of 91.6%.
‡Instances reported as final case definitions. 
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loss), requires immediate medical attention and immediate 
insulin use, and often presents with diabetic ketoacidosis (and 
hospital admission). Further study is required to determine 
the validation metrics of the case definitions for type 1 diabe-
tes in non-CPCSSN EMR data. Furthermore, an external 
validation study would provide better evidence of the general-
izability of the new case definitions. 

Conclusion
We used machine learning to develop and validate 2 case def-
initions that achieve different goals in distinguishing between 
type 1 and type 2 diabetes in CPCSSN data. One of these 
case definitions is suited for screening and cohort develop-
ment, with high PPV and NPV. The other case definition is 
suited for epidemiologic purposes, having a reasonable bal-
ance between sensitivity and specificity. Further validation 
and testing with a larger and more diverse sample are 
recommended.
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