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In heart transplantation, selection of an optimal recipient-donor match has been constrained by the

lack of individualized prediction models. Here we developed a customized donor-matching model
(CODUSA) for patients requiring heart transplantations, by combining simulated annealing and artificial
neural networks. Using this approach, by analyzing 59,698 adult heart transplant patients, we found that
donor age matching was the variable most strongly associated with long-term survival. Female hearts were
given to 21% of the women and 0% of the men, and recipients with blood group B received identical matched
blood group in only 18% of best-case match compared with 73% for the original match. By optimizing the
donor profile, the survival could be improved with 33 months. These findings strongly suggest that the
CODUSA model can improve the ability to select optimal match and avoid worst-case match in the clinical
setting. This is an important step towards personalized medicine.

eart transplantation is the only option for survival for selected patients with end-stage heart failure. In

recent years, survival after heart transplantation has improved significantly. Reasons for improved out-

come include refinement of donor and recipient selection methods, better donor organ preservation,
lower perioperative mortality rates, and enhanced immunosuppressive protocols'. The median survival is now
more than 10 years®. However, donor scarcity is a major issue. In addition, suboptimal recipient-donor match
may lead to acute rejection and cardiac allograft vasculopathy, leading to early and late mortality. Much research
has been directed towards identifying factors predicting survival and optimal organ utilization.

Organ matching is primarily based on ABO blood group compatibility and patient size. Other factors such as
gender, allograft ischemia time, medical conditions prior to transplant, and human leukocyte antigen (HLA)
mismatch have all been implied as risk factors for acute rejection but may not be used in the organ matching®>.
Scant information exists concerning predictors of long-term survival after heart transplantation®. The long-term
outcome depends on several factors, and it is important to recognize that the influence from some of these varies
over time. Because of the inherent complexity of coupled nonlinear biological systems, the development of
computational models may be necessary for achieving a quantitative understanding of the outcome’. More
complex analyses, including the interaction between several of the variables, are lacking and no study has to
date created a personalized recipient donor matching model for identifying worst-case match, and to find best
possible match in heart transplantation. Instead of using the traditional methodology based on standard linear
model with the assumption of proportional hazards to predict the survival, a more flexible non-linear survival
model based on artificial neural networks (ANNS) is preferable®. Despite computational learning approaches
being well suited for medical application there are only a few examples within the field of transplantation’.

The simulated annealing (SA) algorithm can be found in various research fields for parameter optimization.
The SA algorithm developed by Kirkpatrick et al.’® has been previously applied to a wide range of medical
problems, including microbial engineering, classification of cancer gene expression data and gamma knife
planning''""*. SA is a random-search optimization technique for finding the global minimum of a cost function.
SA is inspired by the physical process of controlled cooling of solid materials.

Here we show that SA could be used to ‘customize’ an optimal donor for the heart transplant recipients on the
waiting list, which makes it possible to avoid poor recipient-donor match, and identify the best possible match.
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Results

A total of 62,114 recipients of heart transplants from deceased
donors were collected from the International Society for Heart and
Lung Transplantation (ISHLT) Registry during the 19-year study
period. After case records with incomplete mandatory data were
excluded, the final study population comprised 59,698 patients.
The mean age of the overall cohort was 51 = 11 years and 20% were
women. The patient material comprised 318,904 patient-years, with
a mean follow-up duration of 5.3 * 4.6 years (median 4.5, range 0—
19.8 years). The most common indication for heart transplantation
and cause of end-stage heart failure were ischemic cardiomyopathy
in 26,266 patients (44%) and non-ischemic cardiomyopathy in
26,047 patients (44%). The average donor age was 32 * 13 years.
The majority of donors were men (69%). The study material was
randomly divided in a derivation cohort (N = 49,856) and an

independent validation cohort (N = 9,842). The used variables in
the model development were based on which information is available
at the time of transplantation (Table 1A-B). The derivation and the
validation cohorts were generally similar although a higher propor-
tion of symptomatic peripheral vascular disease was registered in the
validation group.

Calibration and discrimination of the ANN survival model. The
applied ANN model (a generalization of the standard Cox pro-
portional hazard model) is a flexible non-linear survival models.
To improve the performance we used an ensemble (Committee
Machine) of ANNGs instead of a single prediction model'*". We
optimized the model by ranking and minimizing the number of
risk variables, similar to a stepwise backwards elimination proce-
dure (Figure 1A). The final model included 30 of the 38 candidate

Table T1a | Demographics and clinical characteristics of the study population (1988-2006)
Derivation Cohort Validation Cohort

N N = 49,856 N = 9,842 P-value
Recipient data
Recipient’s diagnosis 59,698 0.937
Non-ischemic cardiomyopathy 21,789 (44%) 4,258 (43%)
Ischemic cardiomyopathy 21,911 (44%) 4,355 (44%)
Graft failure 971 (2%) 203 (2%)
Valvular heart disease 1,530 (3%) 296 (3%)
Congenital 950 (2%) 191 (2%)
Miscellaneous 2,705 (5%) 539 (5%)
Age (year) 59,698 5111 5111 0.212
Female gender 59,698 10,052 (20%) 1,978 (20%) 0.884
Height (cm) 48,042 1739 173+ 9 0.605
Weight (kg) 48,042 76 15 7615 0.412
COPD 23,035 615 (3%) 136 (4%) 0.217
Hypertension 23,784 7,262 (38%) 1,447 (37%) 0.600
Peripheral vascular disease 23,783 648 (3%) 170 (4%) <0.001
Unstable angina 29,089 2,373 (10%) 523 (11%) 0.010
History of cerebrovascular disease 23,791 714 (4%) 153 (4%) 0.360
Infection within two weeks 25,516 2,077 (10%) 442 (11%) 0.124
Cytomegalovirus status 31,998 18,823 (70%) 3,693 (70%) 0.504
Amiodarone prior fo transplant 23,794 4,727 (24%) 888 (23%) 0.122
Antiarrhymics 22,134 6,916 (37%) 1,364 (37%) 0.947
Previous transplant 47,311 1,263 (3%) 261 (3%) 0.412
Previous cardiac surgery 5,600 2,056 (44%) 391 (43%) 0.893
PVR (wood units) 21,689 2.1(1.4-3.2) 2.1(1.4-3.2) 0.718
Creatinine (umol/I) 27,909 106 (88-132) 106 (88-132) 0.834
Serum bilirubin (mg/dl) 25,181 0.9 (0.6-1.4) 0.9 (0.6-1.4) 0.482
Dialysis pretransplanted 2,033 28 (2%) 3 (1%) 0.334
Medical condition at transplant 59,698 0.549
Not hospitalized 31,507 (63%) 6,252 (64%)
Hospitalized 4,903 (10%) 933 (10%)
ICU 13,446 (27%) 2,657 (27%)
Life support
Inotropic support prior to transplant 39,128 12,901 (39%) 2,548 (40%) 0.754
Mechanical ventilation 36,421 938 (3%) 195 (3%) 0.435
Intra-aortic balloon pump 37,399 2,123 (7%) 387 (6%) 0.182
ECMO 36,542 92 (0%) 14 (0%) 0.377
Donor data
Age (year) 59,698 32+13 32+13 0.278
Female gender 59,698 15,470 (31%) 3,096 (31%) 0.402
History of hypertension 28,421 2,636 (11%) 517 (11%) 0.981
Cytomegalovirus status 43,209 20,425 (57%) 4,015 (57%) 0.774
Ischemia time (minutes) 47,359 178 + 63 178 + 63 0.416
Era of transplantation 59,698 0.824
2001-2006 13,933 (28%) 2,724 (28%)
1996-2000 14,088 (28%) 2,786 (28%)
1991-1995 15,017 (30%) 3,005 (31%)
1988-1990 6,818 (14%) 1,327 (13%)
Data are mean + SD, number (%). The numbers are calculated on patients with available data. COPD, chronic obstructive pulmonary disease; ECMO, extracorporeal membrane oxygenation; ICU,
intensive care unit; PVR, pulmonary vascular resistance. Test used: y2fest; Wilcoxon test.
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Table 1b | Blood groups and HLA for the study population

Derivation Cohort Validation Cohort

N = 49,856 N = 9,842 P-value
Recipient blood group 0.655
A 22,152 (44%) 4,369 (44%)
B 6,238 (13%) 1,271 (13%)
AB 2,990 (6%) 599 (6%)

18,476 (37%) 3,603 (37%)
Donor blood group 0.820
A 19,979 (40%) 3,943 (40%)
B 4,985 (10%) 1,014 (10%)
AB 1,333 (3%) 259 (3%)
O 23,559 (47%) 4,626 (47%)
Recipient-donor match
HLA-A, 1 mismatch 11,417 (41%) 2,405 (41%) 0.994
HLA-A, 2 mismatch 15,372 (55%) 3,320 (56%) 0.161
HLAB, 1 mismatch 7,471 (24%) 1,400 (23%) 0.095
HLAB, 2 mismatch 22,894 (75%) 4,697 (76%) 0.0962
HLADR, 1 mismatch 9,543 (36%) 1,905 (36%) 0.997
HLADR, 2 mismatch 16,555 (62%) 3,246 (61%) 0.1712
Recipient-Donor Height ratio 0.997 = 0.062 0.996 = 0.061 0.403
Recipient-Donor Weight ratio 1.03 = 0.21 1.03 = 0.21 0.259

Data are mean = SD, number (%). The numbers are calculated on patients with available data. HLA, Human Leukocyte Antigen. Test used: ytest; Wilcoxon test.

variables corresponding to 41 inputs. The hazard ratios (HR) for the
top confounding risk factors, ranked in order of influence upon
discriminatory power, are presented together with the mandatory
variables in Table 2. The 12 mandatory variables (age, blood
group, gender, height and weight ratio) were not included in the
ranking because we wanted them incorporated in the ANN model
regardless of discriminatory power. We validated the model by
predicting the cumulative survival for each patient in the vali-
dation cohort. The Harrell's Concordance index for the ANN
model was 0.59 (95% CI, 0.586-0.594) and the difference in area
under the predicted survival curve was 1.4% compared with the
Kaplan-Meier survival curve (Figure 1B).

Customize an optimal donor using simulated annealing. We used
the SA to ‘customize’ an optimal and worst donor, respectively, for
the recipients. The main feature of the SA algorithm is the ability to
avoid being trapped in local minimum. This is done by letting the
algorithm accept not only better solutions but also worse solutions,
“uphill moves”, with a given probability’®. The SA algorithm is
expressed by a flowchart in Figure 2A. We tested the SA algorithm
for selecting best-case match (N = 36,696) and worst-case match (N
= 34,638) using the five donor variables: age, gender, blood group,
height and weight. The area under the predicted survival curve
(AUPSC) was calculated for each recipient-donor match.
Figure 2B shows how much the AUPSC changes as one of the five
donor variables is altered. Figure 2C shows the monitoring of the SA
function that is looking for a best recipient-donor match for one ran-
domly selected patient from the registry. At approximately 7,000
iterations, the temperature was close to zero and an (approximate)
optimum set of input values (the donor profile) was found. In
Figure 3A, a plot of a random selection of 1,000 patients and their
respective predicted survival curve from the experiment is drawn
based on the best-case donor variables. The corresponding plot for
worst-case match is shown in Figure 3B.

Donor age was the variable that influenced outcome at most of the
five evaluated donor variables. All patients received extreme values.
For best-case match the optimal donor age was 15 = 0.0 years com-
pared with 32 * 13 years, P < 0.001, for the original recipient-donor
match. For the worse case match the donor age was 80 * 0.0 years
compared with 32 * 13 years, P < 0.001, for the original recipient-
donor match. Furthermore, in the best-case match only 57 female

hearts were given to 29,295 men while 1,568 (21%) female hearts
were given to 7,384 women. Thus, not all women received a female
donor organ. In the worst-case match, 27,652 (100%) female hearts
were given to 27,668 men and 6,699 (96%) female hearts to 6,970
women, Table 3.

The blood group matching was analysed and differences between
optimal and suboptimal outcomes were studied. Controversially,
recipients with blood group B received identical matched blood
group in only 18% of best-case match and 68% in worst-case match
compared with 73%, P < 0.001 for the original recipient-donor
match. We observed a similar finding for recipient with blood group
AB. The SA algorithm avoided donor blood group B in the best-case
match. Only 2% of these recipients were matched to donors with
blood group B compared with 24%, P < 0.001, for the original
recipient-donor match, Table 3.

The last of the five studied variables, weight ratio, showed a similar
result as donor age for the best-case match. 65% of the recipients
received an extreme value of a recipient-donor ratio of 0.5. For the
recipients with non-extreme values (N = 12,682) the optimal recipi-
ent donor weight ration was 0.83 = 0.24. We could not see the same
results for the recipient donor height ratio. In the best-case match
none of the recipients achieved any extreme value. Instead, the
optimum ratio was 1.08 = 0.10. However, in the worst-case match
the recipient donor height ration was 1.5 in 64% of the cases and 0.5
in 36% of the cases, Table 3.

Prediction of conditional failure after heart transplantation.
Figure 1B illustrates the mean value for all best-case and worst-
case matches. By optimizing the donor profile, the survival could
be improved with 33 months. In order to evaluate if the SA had
been able to improve the survival compared to “real-life” donor
profiles, we performed a virtual recipient-donor match (VRDM).
The recipient was matched using all the different donor profiles
from the registry. The recipient-donor combination with best-
predicted survival was chosen. The procedure was repeated for all
recipients and the mean predicted survival curve for all best-case
matches was plotted. We identified the worst combination in a
similar way. Of note, even if we created artificial combinations by
changing the five variables, we could not improve survival compared
to using VRDM combinations. On the other hand, we could identify
much worse combinations using SA, Figure 1B.
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Figure 1| Schematic illustration of the variable-ranking process for ANN training and validation. Panel (A): Step I: training of the survival

model using fivefold cross-validation and a committee machine with 8 members. Step II: variable ranking using the trained survival model from step I.
Each variable is omitted from the model and the decrease in performance is recorded. The variable resulting in the least reduction in performance is
removed. Steps I-1I are repeated until only one variable is left. A ranking list is constructed using the elimination order. To evaluate whether the final ANN
risk prediction model was applicable in a patient cohort that had not been used in the development of the ANNS, the validation set (N = 9,842) was used as
a blind test. Panel (B): Heart transplantation prediction of conditional failure probability. The solid grey line presents the predicted mortality in the
validation cohort using the ANN survival model. The dashed black line presents the observed mortality for the validation cohort (Kaplan-Meier estimate).
The predicted mortality obtained with our pilot Simulated Annealing (SA) model is presented with a blue line, Virtual Recipient Donor Match (VRDM)
model with a red line. Best match is presented with solid line and worse match with dashed line.

Discussion
Heart transplantation remains the therapy of choice for end-stage
heart failure. There is shortage of donors and many candidates die
awaiting transplantation. Simulation-based analysis offers a practical
way to make informed decisions by predicting likely outcomes from
different choices'. To our knowledge, this study represents the first
to show how to utilize SA in heart transplantation. SA is a stochastic
optimization technique for non-linear modeling. SA has been used in
medical research to solve optimization problems and has gained
renewed interest since its introduction in the 1980s'*"". Further-
more, ANNs have become a very powerful and practical method to
model very complex non-linear systems. However, the published
experience with ANNs within transplantation research is limited.
Only a few studies have been published in kidney, liver and heart
transplantation’. In this study, we demonstrated that by combining
SA and ANNS, a customize optimal donor using simulated annealing
(CODUSA) model for patients requiring heart transplantation can
be developed that is accurate and highly reproducible, allowing
for identification of optimal and even more important worst-case
recipient-donor match.

In the present study, after the selection of influential variables by
the SA model, some variables remained different between the

optimal and sub-optimal matches. This finding suggests that best-
case and worst-case matches are governed by different sets of factors.
Thus, some recipient-donor combinations must be avoided at all
times while some combinations of characteristics must be considered
in every transplantation attempt. The strength of our SA model lies in
the identification of unsuitable donors for a specific recipient. To our
knowledge, this is the first study of its kind and a step towards so
called ‘personalized medicine’ in the field of heart transplantation.
Future studies, should include more donor variables, but may also
include genomic and proteomic data to increase the predictive ability
of the SA model.

During the last decades, several studies have evaluated the import-
ance of the matching criteria age, ischemia time, ABO blood group,
and body size. The influence of age on survival is well established.
Older donors and recipients are associated with atrial fibrillation,
cardiac allograft vasculopathy, and higher mortality'®'"”. The import-
ance of donor age was confirmed in the present study, and all reci-
pients in the CODUSA model were matched to a low age donor.

The long-term effect of gender is a matter of controversy. Our data
showed that female hearts should not be given to men, but the SA
model did also prefer male donor to female recipients. Generally,
heart transplant patients with donor-recipient sex mismatch have

| 3:1922 | DOI: 10.1038/srep01922

4



Table 2 | Hazard ratio for the risk factors included in the ANN model. Confounding variables ranked in order of importance for the ANN
model
Mandatory risk variable HR mean (95% Cl)
Donor age 1.107 (1.107-1.107)
Recipient age 1.126 (1.125-1.126)
Donor blood group O 0.979 (0.979-0.980)
Donor blood group B 1.055 (1.055-1.05¢)
Donor blood group AB 1.024 (1.023-1.025)
Recipient blood group A 1.008 (1.008-1.009)
Recipient blood group B 1.027 (1.027-1.028)
Recipient blood group O 1.084 (1.083-1.084)
Donor female gender 1.034 (1.034-1.035)
Recipient female gender 1.025 (1.024-1.025)
Recipient-donor height match 0.998 (0.998-0.999)
Recipient-donor weight match 1.013(1.013-1.013)
Rank no. Confounding risk variables
1 Diagnosis: Non-ischemic cardiomyopathy 0.882(0.881-0.882)
2 Life support: Ventilator 1.152(1.150-1.153)
3 Transplantation era: 2001-2006 0.946 (0.946-0.947)
4 Creatinine (umol/I) 1.019(1.018-1.019)
5 Duration of ischemia (min) 1.020 (1.020-1.020)
6 Diagnosis: Ischemic cardiomyopathy 1.011(1.010-1.012)
7 Transplantation era: 1988-1990 1.451 (1.449-1.452)
8 Transplantation era: 1991-1995 1.227 (1.226-1.228)
9 Medical condition at transplant: In ICU 1.192 (1.191-1.193)
10 Previous transplantation 1.136 (1.136-1.137)
11 Height (cm) 0.977 (0.977-0.977)
12 Infection (within 2 weeks of transplant) 1.051 (1.050-1.051)
13 Diagnosis: Graft failure 1.756 (1.752-1.759)
14 Weight (kg) 1.027 (1.027-1.027)
15 Bilirubin (mg/dl) 1.003 (1.003-1.003)
16 Diagnosis: congenital heart disease 0.912(0.912-0.913)
17 Medical condition at transplant: Hospitalized 1.159(1.158-1.160)
18 Diagnosis: Valvular heart disease 0.844 (0.844-0.845)
19 Life support: Intra-aortic balloon pump 1.015(1.015-1.01¢)
20 HLA-DR mismatch 0.940 (0.939-0.940)
21 Life support: ECMO 1.179(1.177-1.180)
22 Drugtreated hypertension 1.018(1.018-1.018)
23 Peripheral vascular disease 1.131(1.130-1.132)
24 PVR (wood units) 1.004 (1.004-1.004)
25 Prior cardiac surgery 0.987 (0.986-0.987)
26 HLA-B mismatch 0.944 (0.944-0.945)
27 COPD 1.086 (1.085-1.08¢)
28 Cerebrovascular disease 1.064 (1.063-1.065)
29 Life support: Inotropic support 0.965 (0.964-0.965)
ANN, artificial neural network; COPD, chronic obstructive pulmonary disease; ECMO, exiracorporeal membrane oxygenation; HLA, Human Leukocyte Antigen; HR, hazard ratio; ICU, intensive care unit;
PVR, pulmonary vascular resistance.

inferior survival>***'. But, for female recipient this is controversial.
Weiss et al showed, analyzing the UNOS registry, that no survival
advantage was seen for women receiving organ with same sex®.
Many mechanisms explaining these discrepancies have been pro-
posed, but remain to be fully elucidated. For example, it has been
suggested that there may be immunologic or hormonal factors
involved®. Gender differences in the susceptibility to ischemia reper-
fusion injury have also been suggested, and at any given duration of
cold ischemia, heart transplants coming from female donors had
consistently worse graft survival compared with male donors™.

We found no significant difference in survival following compat-
ible versus identical ABO matching. Similar findings have been
reported in previous studies using donor hearts with compatible,
but non-identical, blood group match*->*. However, our results indi-
cate that donor blood group B is not selected and these patients are
instead given donor blood group 0. A similar finding was seen for the
recipients with blood group AB. Also here donors with blood group B
were avoided. Already in the series from Barnard’s group®, reduced

survival in recipients with the B antigen was seen. It has been
hypothesized that patients with blood group B may elicit a greater
immune response but this remains controversial®”’.

The present study demonstrated that weight and height have been
handled differently depending on if it is best-case match or worst-
case match. Previous data suggest that the donor-recipient weight
match criteria may be extended to increase the donor pool’**.
However, height has been proposed to be a better predictor of heart
size as estimated by left ventricular end-diastolic diameter, as well as
a novel measurement from the superior vena cava-right atrium junc-
tion to inferior vena cava-right atrium junction®. Here we show that
the optimal recipient-donor weight ratio is around 0.8, but a recipi-
ent-donor height ratio should be 1.08. Both extreme undersize and
oversize in height were correlated with reduced survival.

The limitations of the present study deserve further discussion.
The complexity between different risk variables from two individuals
is extreme. Certain variables have historically been considered more
important than others and we have therefore focused on these (blood
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Figure 2 | Recipient donor match using simulation annealing (SA). Panel (A): The simulated annealing (SA) Monte Carlo algorithm: A recipient is
randomly selected from the recipient registry. The predicted survival is calculated and the existed recipient-donor profile and the data are recorded. Then
the simulation process is started. A donor variable and the value for this variable are selected at random. The difference (delta) between the predicted
survival for this new recipient donor profile and the earlier best survival is calculated. If the predicted survival is better than the previous, the best
recipient-donor profile and the best-predicted survival are updated. If not the test for allowance “uphill” moves are performed. The allowance for "uphill"
moves saves the method from becoming stuck at local minima, which means that a worse value can be accepted in some cases. This procedure is repeated
50 times and then the temperature is decreased with 4%. The whole procedure is started with 50 new trials at this new temperature. When the temperature
has gone below 0.000025 the simulation for this patient is ended and a new is selected. The waiting list is updated with a new recipient, and the procedure is
repeated. Panel (B): Area under predicted survival curve (AUPSC) related to change in one of the SA variables. Panel (C): Monitoring of the simulated
annealing (SA) function as it is looking for a best-case match.
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Figure 3 | Customize Optimal Donor Using Simulated Annealing (CODUSA). Panel (A): Random selection of 1,000 patients and their respective
survival curve based on the best case customized donor profile. Panel (B): Random selection of 1,000 patients and their respective survival curve based on
the worse case customized donor profile.
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group, gender, age, weight, height) due to temporal constraints. Each
simulation usually spanned several hours, which limited the study. It
took 30 days a 24 hours for the cluster to calculate the results of
approximately 35,000 patients. In one experiment, we identified
best-case match and in another experiment worst-case match.
Ischemia time was not included. Ideally we would have included
more donor variables than the 5 utilized in our study.

In conclusion, by applying ANNs, we have designed an effective
model for predicting long-term outcomes in patients undergoing
heart transplantation that can incorporate multiple recipient and
donor-related variables. A CODUSA model based on SA shows
strong potential to enhance the prediction of patient survival and
to identify important variables that have an impact on individual
matching outcome. Information provided by our CODUSA model
may improve the ability to select optimal match and avoid worst-case
match in the clinical setting, functioning as an alternative to pro-
spective cross-matching.

Methods

Data source. In this registry study, we used the International Society for Heart and
Lung Transplantation (ISHLT) registry (www.ishlt.org), the largest repository of
heart transplant data in the world>.

The registry includes data since 1983 and at present, over 223 centers from 18
countries submit data to this registry. Heart donors and the corresponding recipient
transplanted between January 1, 1988 and December 31, 2006 were included in the
study population. The latest yearly follow up was on January 19, 2008. We excluded
patients if they were younger than 18 years at transplantation or have incomplete
mandatory data (diagnosis, blood group, age, gender, follow up duration and/or cause
of death). A subset of 38 clinically relevant variables, of the registered 293, were
selected, Table 1. The Ethics Committee for Clinical Research at Lund University,
Sweden approved the study protocol.

Design of ANN. The applied ANN survival model follows the principles described by
Biganzoli et al., with the extension of using an ensemble of ANNs instead of a single
prediction model®* (Supplementary Methods). The number of hidden nodes was
determined based on experiments starting with a single node and increasing the
number of nodes until the highest accuracy was found for the development set. The
selection of risk variables to use as inputs was achieved using a backward elimination
technique removing low ranking risk variables, Figure 1A. To improve the
generalization performance weight-decay regularization, optimized using a 5-fold
cross-validation technique, was used in the model building process. The number of
ANN models used in the ensemble was 8 and no effort was made to tune this number.
The ensemble output was the mean of the 8 individual ANN model®.

Time dependent hazard ratio. The time dependent hazard ratios for the risk
variables were determined in a similar way as described by Lippmann and co-
workers® (Supplementary Methods). By changing the risk variable in a patient from
absent to present and calculating the hazard for the two conditions at each time
interval, a time dependent hazard ratio for the specific risk variable of each patient
could be determined. A hazard ratio for the specific variable was then obtained by
computing the geometric mean of the hazard ratio from all patients. The 95%
confidence intervals hazard ratio was calculated using the bootstrap technique

(N = 10,000).

SA algorithm. The SA is the metallurgical process of heating up a solid material and
cooling it slowly until it crystallizes. Atoms have high energies at very high
temperatures, which give them freedom in their ability to restructure themselves.
When the temperature is reduced the energy decreases, until a state of minimum
energy for the atom is achieved. SA seeks to emulate this process. SA begins at a high
temperature where the input values are allowed to have a pronounced range of
variation. As algorithm progresses temperature is allowed to fall, which restricts the
inputs to vary. The algorithm will progress to a better solution, just as a metal achieves
a better crystal structure through the annealing process. The main feature of SA
algorithm is the ability to avoid being trapped in local minima by allowing for uphill
moves of the cost function. SA begins at a high temperature, allowing for almost all
uphill moves, and new solutions are generated given a pre-defined range of variation
for each input variable. A new solution is always accepted if it improves the cost
function (downhill move) and with a certain probability if it worsens the cost function
(uphill move). As the SA algorithm is running the temperature is gradually lowered,
thereby making it harder and harder for uphill moves to occur. Finally, when a very
low temperature has been reached the best obtained solution is extracted, which then,
hopefully, is close to the optimal one.

The SA simulation started with selection of a starting temperature (t = 1). Five
donor features were used to toggle (age, gender, blood group, weight and height).
Which of the donor variables to be changed were randomly selected in each of the trial
loops at a given temperature. For each temperature 50 trials were performed. The
best recipient-donor combination was selected using the SA with acceptance of

dis-improvements, or “uphill moves”. In the next step the temperature was decreased
with 4% (k = 0.96) and the procedure was repeated. When the temperature was below
0.000025 the procedure was ended and a new recipient was chosen, Figure 2A.

Statistics. Values are reported as mean (s.d.) or median (i.q.r) for continuous
variables and as percentages for categorical variables. Participant characteristics were
compared using y’-test for categorical variables and Wilcoxon test for continuous
variables. Kaplan-Meier survival analysis was performed to demonstrate whether
survival predictions from ANNs trained by the outcome data in a particular time
point was capable of predicting survival for the entire follow-up period. Harrell’s
Concordance index** was used to measure prediction performance in the survival
analysis. Multiple and probability imputation was used to deal with missing data®>**
(Supplementary Methods).

High-performance computing clusters were used to train and evaluate the ANNS,
and performing the SA. The ANN calibration and analyses were performed with
MatLab Distribution Computing Server 2010a, Neural Network Toolbox
(MathWorks, Natick, Mass). Graphs and statistical analyses were performed using
the Stata MP version 12.1 (2012) statistical package (StataCorp LP, College Station,
TX) and R version 2.15.1 (2012, The R Foundation for Statistical Computing).

Data and materials availability. Requests for the data should be directed to the
ISHLT Transplant Registry (https://www.ishlt.org/registries/registriesDataRequest.
asp). The developed neural network model, including weights (Matlab® net files), can
be obtained from the corresponding author.
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