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Abstract
The growing demands of brain science and artificial intelligence create an urgent need for the development of
artificial neural networks (ANNs) that can mimic the structural, functional and biological features of human neural
networks. Nanophotonics, which is the study of the behaviour of light and the light–matter interaction at the
nanometre scale, has unveiled new phenomena and led to new applications beyond the diffraction limit of light.
These emerging nanophotonic devices have enabled scientists to develop paradigm shifts of research into ANNs. In
the present review, we summarise the recent progress in nanophotonics for emulating the structural, functional and
biological features of ANNs, directly or indirectly.

Introduction
The human brain is the most complex biological organ

in the universe and remains unknown to us. Several
countries have started large programmes or alliances on
brain science1. Together, these initiative projects will
undoubtedly lead to major breakthroughs in under-
standing how the human brain functions, which will
provide possible solutions to curing brain-related diseases.
These projects will also inspire neuromorphic computing
to meet growing demand for artificial intelligence2 to
build a machine that mimics the capability of humans
towards various applications.
To obtain a better understanding of the brain, investi-

gations of biological neural networks (BNNs) have been
widely carried out to study the biological, structural and
functional features of the brain. One category of this
research involves the use of advanced electrophysiology
and imaging techniques to map and study the activities of
BNNs, which include: microelectrodes3, electro-
encephalograms (EEGs)4, magnetic resonance imaging5,
computed tomography6, electron beam microscopy6 and
super-resolution fluorescence microscopy7. This category
allows an understanding of the operation of the brain via a

bottom–up approach using the large amount of data
obtained through BNN studies. Another category of BNN
research focuses on the building of artificial neural net-
works (ANNs) that could emulate the biological, struc-
tural and functional features of BNNs. This category uses
simplified and controllable models to test new theories of
brain functions derived from the data of BNNs and to test
new drugs on the brain-related diseases. ANNs can also
provide brain-like computing platforms for artificial
intelligence with higher efficiencies.
Building ANNs includes research in the fields of soft-

ware simulations based on conventional von Neumann
computers8,9 and hardware simulations, such as the
implementation of ANNs indirectly based on electro-
nics10,11 and photonics12–15 and the direct growth of
ANNs with biological neuron cells16. Although versatile
supercomputers based on conventional von Neumann
computers are now available to conduct millions of
operations, the software simulation of ANNs with von
Neumann computers in 100% real time and at the scale of
the whole human brain has not yet been achieved and
would consume at least 500MW of energy17, not to
mention its huge size. These drawbacks are mainly owing
to the serial nature of von Neumann computers, which is
fundamentally different from how the BNNs work. The
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development of ANNs based on hardware is an important
step for the practical realisation of ANNs.
Nanophotonics—the study of the behaviour of light and

the light–matter interaction at the nanometre scale—is of
great importance to demonstrate hardware-based ANNs.
In fact, the interplay between nanophotonics and ANNs
has already generated new fields. The application of
software-based ANNs in nanophotonics has enabled new
realms in automatic optical sensing18, automatic optical
microscopy imaging19 and the inverse design of photonic
devices20. Nanophotonics is a highly promising tool for
studying BNNs with optical imaging and optogenetics.
The development of optical imaging—especially the
invention of far-field super-resolution optical microscopy
(awarded the 2014 Nobel Prize in Chemistry), has initiated
research into imaging neural networks at the nanos-
cale21,22. Based on the same principle as far-field super-
resolution imaging, a two-beam optical nanolithography
technique, termed super-resolution photoinduction-
inhibited nanolithography (SPIN), has been developed to
fabricate features as small as 9 nm23, which reaches the
feature size of BNNs. Such a technique has the potential to
develop the three-dimensional (3D) direct nanoprinting of
ANNs with high complexity and capacity. In addition, the
photon is an important information carrier for ANNs,
exhibiting a broad bandwidth and low transmission scat-
tering compared with the electron. The development of
ANNs based on nanophotonic devices has opened a new
avenue to achieve orders-of-magnitude improvements in
both computational speed and energy consumption over
existing solutions based on electronics (Fig. 1).
In the present review, we discuss the recent advance-

ments in nanophotonic techniques for the development of
ANNs that mimic and study the structural, functional and
biological features of BNNs. First, we describe the

nanophotonics-enabled indirect ANNs based on electronics
and photonics, including the laser writing of electronic
devices for ANNs and the development of nanophotonic
devices for ANNs. After that, we briefly summarise the
recent advancement in building ANNs based on biological
neurons with controlled topology. Finally, we summarise
the nanophotonic techniques used for the imaging and
signal detection of ANNs based on biological neurons.

Indirect ANNs enabled by nanophotonics
The construction of intelligent machines that mimic

BNNs has been pursued since soon after the invention of
the modern computer. Most of the research into ANNs is
based on software simulation using von Neumann com-
puters. The concept of mimicking BNNs with electronic
or photonic hardware, which is also called neuromorphic
computing, was introduced in late 1980s12,24. Compared
with the ANNs directly based on biological neural cells,
these ANNs rely on electronic or photonic systems con-
taining artificial neurons to indirectly mimic the neuro-
biological architectures presented in BNNs.

Working principles of indirect ANNs
The biological counterparts of artificial neurons are

biological neurons, which represent the building blocks of
BNNs. The BNNs consist of billions of neurons of dif-
ferent types and sizes. Figure 2a shows a schematic of a
simplified biological neuron25 with the four basic funda-
mental units—dendrites, axons, somas and synapses.
ANNs follow a simplified model inspired by BNNs. The

unit of this model, a simple formalised artificial neuron
introduced by McCulloch and Pitts26, acts as a compu-
tational element in the ANN. The execution of a task
involves the parallel activation of a large number of arti-
ficial neurons. As shown in Fig. 2b, one or more inputs (x)
from the other neurons were sent into an artificial neuron
and the inputs are summed up to produce outputs (y) to
the other neurons on axons. Separated by weighted (w), a
non-linear function known as an activation function or
transfer function (f); the activation function can be a step
function, Sigmoid function, etc. The mathematical form
of the artificial neuron is as follows:

yj ¼ f
Xn

i¼0
wijxi

� �
ð1Þ

The functions of the key components (axon, dendrite,
soma and synapse) in ANNs are summarised in Table 1.
The analogy between artificial neurons and biological
neurons holds that the interconnections of the signals
stand for the axons and dendrites, the summation and
threshold approximate the activation in the soma, and the
connection weights and memory represent the synapses.
Artificial neurons can be organised in any topological

architecture to form ANNs. A common architecture, the
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Fig. 1 Development of artificial neural networks8,10,12,15
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feed forward ANN27, is shown in Fig. 2c. In this network,
the information moves only in the forward direction. A
series of artificial neurons are integrated to form the layer
of input. Within the ANNs, the input signal is passed
through one or more hidden layers. At the end of this
structure, the output layer provides the results. Different
from the current von Neumann computer that performs
tasks by the pre-design of the programme, the ANN can
learn to run a task through a sequence of training with
examples. For example, one of the typical learning pro-
cesses is the supervised learning method by updating
weights with the backpropagation errors between known
target values and the output values28.
The most common unsupervised learning method is the

spike timing-dependent plasticity (STDP) algorithm29,
inspired from the spiking nature of BNNs. Recent neu-
rological research has shown that biological neurons
encode information in the timing of single spikes29.
Functionally, STDP constitutes a mechanism for imple-
menting a Hebbian learning rule30, allowing for the
learning process without supervision.

Laser-written electronic memristors for ANNs based on
electronics
The ANNs based on electronics were first demonstrated

with very large-scale integration (VLSI) systems24. The
electronic wires on the chips can be used as electronic
axons and dendrites. The combination of several tran-
sistors in VLSI are used to approximate electronic
synapses and somas. ANNs with a large amount of arti-
ficial neurons based on VLSI have been developed11.
However, the integrated level of such a kind of ANN is
still low owing to the complexity of the architecture.
Memristors, the fourth basic element in electronic circuits
predicted in 197131 and demonstrated in 200832, provide a
new path to demonstrate ANNs with a high integration of
electronic devices.
Memristors are passive two-terminal circuit elements,

usually with a metal/insulator/metal structure33 (Fig. 3a).
Mimicking a biological synapse, the resistance of a
memristor can be adjusted by tuning input amplitude of
the charge or flux. It has been demonstrated that the
synaptic functions can be implemented experimentally
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Fig. 2 Working principle of artificial neural networks. a A
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Table 1 Summary of the key components of artificial neural networks

Components Functions Photonic devices

Axon and dendrite Interconnection Free space12, waveguides13–15

Soma Summation and thresholding Photodetectors12–15, electric-optic modulators14, light sources (LED and laser)12, optical

amplifiers52, saturable absorbers52, optical bistable devices53

Synapse Weighting Hologram12, MZI15, micro-ring resonators14

Memory Electronic memories12–15, reversible optical memories54
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with nanoscale silicon-based memristors34. The learning
function has been demonstrated in a circuit composed of
memristor synapses and complementary metal-oxide
semiconductor neurons35. An artificial soma function
has been demonstrated with a neuristor built using two
nanoscale Mott memristors36. An ANN unsupervised
learning for pattern classification based on memristors
has recently been demonstrated recently37.
Nanophotonics offers a new solution to fabricate mem-

ristors by the laser reduction of graphene oxide. Graphene
has received significant attention owing to its superior
electronic and optical properties38. Direct laser writing
(DLW) with laser reduction can realise the simultaneous
direct growth and patterning of rGO. Various rGO elec-
tronic devices such as capacitors39, gas sensors40 and mul-
tifunctional devices41 have been demonstrated.
A memristor based on rGO has been experimentally

demonstrated. DLW is used to realise rGO fabrication for
use as the bottom electrode of the memristor on flexible
substrates (Fig. 3b). An insulating layer of 10 nm HfOx is
blanket deposited by thermal evaporation. The top elec-
trode is made by curable silver paste or using thermal

evaporation. The fabricated Ag/HfOx/rGO structure
exhibits stable switching up to 100 cycles42. Metal-free
memristors have been fabricated through the DLW pro-
cess with rGO/g-C3N4-NSs/rGO thin films43.

Introduction of ANNs based on photonics
Photons are an ideal information carrier because of

their specific properties, such as inherently massive par-
allelism, fast propagation speed and no side effects of
mutual interference. Optical signals can be multiplexed in
time44, space45, polarisation45,46, angular momentum47

and wavelength45,48 domains, and optical technologies
may overcome the problems inherent to electronics.
Thus, the research and development into optical inter-
connect technology has already led to the replacement of
copper connections in computer chips and data centres
by optical waveguides or fibres49, which can potentially
improve the performance of ANNs based on software
simulation and electronics. An ANN based on reservoir
computing50 has been demonstrated with temporal mul-
tiplexing in a single optical fibre. ANNs based on nano-
photonics offer a promising alternative approach with a
faster response and lower power consumption.
ANNs based on nanophotonics can be achieved by

providing key optoelectronic or optical components for
the functions of ANNs (Table 1). Nanophotonic tech-
nology has several advantages in making interconnections
with free space and waveguides, specifically with regard to
broad bandwidth, low-loss and low-crosstalk. Photonic
somas can be achieved either by optical–electrical and
electrical–optical signal transferring with photo-
detectors12,14,15, electro-optic modulators14 and light
sources (LED and laser)51 or by an all-optical process with
lasers51, optical amplifiers52, saturable absorbers52 and
optical bistable devices53. The weighting function can be
achieved by optical switches such as holograms12,
Mach–Zehnder interferometers (MZIs)15 and MRRs14.
The memory function to record the weights in a synapse
can be achieved by electronic memories or non-volatile
optical memories12,54.

ANNs based on holography in free space
In ANNs based on holography, the full parallelism of

light in free space can be used and additional function-
alities become available. These strengths have been
recognised for many years, and early implementations
utilised reconfigurable holograms for forming inter-
connections between optoelectronic artificial neurons12.
The architect of the ANNs based on holography with
optoelectronic artificial neurons is shown in Fig. 4a. The
light sources and photodetectors combine as optoelec-
tronic neurons. The input signal is generated by the
modulation of the light source. The holographic inter-
connection is achieved by optical diffraction with
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holographic gratings. Holography gratings can be pro-
duced by using spatial light modulators (SLMs)55 and the
photorefractive effect12. The detectors integrate the

optical signal and transfer it into an electronic signal. The
threshold function is achieved by processing the electro-
nic signal with electronic circuits. Although free-space
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optics provide the media for the highly integrated large
number of free-space interconnections and data com-
munication at the speed of light, the hologram provides
an approach for storing and implementing the weight
matrix data between fully connected neural layers.
Recently, a all-optical deep learning framework in the

terahertz region (0.4 THz) has been demonstrated as an
all-optical deep learning network, in which the ANN
consists of multiple layers of a hologram fabricated by 3D
additive printing56. The ANN is created by using several
layers of a diffractive surface, where each point on a given
layer represents an artificial neuron (Fig. 4b). The learning
process of such an ANN is based on a computer simu-
lation to design the phase modulation of each layer (Fig.
4c), which can be fabricated with a 3D printer and based
on plastic materials. The ANN cannot be tuned after the
fabrication process. Compared with previous ANNs based
on holography composed of optoelectronic neurons, this
kind of ANN is based on all passive elements.
The ANNs based on holography can be easily scaled up

using various fabrication techniques including electron
beam lithography and photolithography. ANNs based on
holography provide the potential for a large number of
artificial synapses and neurons owing to the high paralle-
lism in free space. If we assume that the artificial neurons in
two adjacent layers of an ANN are all arbitrary inter-
connected. The relationship between the density of artificial
neurons (Dn) and the density of artificial synapse (Ds) is:

Dn ¼
ffiffiffiffiffi
Ds

2
p ð2Þ

The maximum number of artificial synapse via holo-
graphy is equal to the maximum number of gratings that
can be supported by the hologram12. From the sampling
theorem, the number of sinusoids or gratings that can be
recorded in the medium is equal to the number of sam-
ples. Considering the pixel size of a hologram is δ in all
dimension (δ > λ), the maximum number of independent
artificial synapse is V/δ3 in a volumetric hologram or A/δ2

in a thin hologram, where V and A are the volume and
area of the hologram, respectively. As shown in Fig. 4d, for
a commercial SLM with a pixel size of 4 µm, the areal
density of synapses (Dsa) is 6.25 × 104/mm2. A recent
advancement in holography induced by laser has
demonstrated a hologram with a pixel size of 0.55 µm46,
which corresponds to a synapse density of 3.31 × 106/
mm2. As this hologram is induced by the tight focusing of
laser light, it has potential to achieve a volume synapse
density (Dsv) of 6.01 × 109/mm3 if a volume hologram can
be induced by laser in three dimensions. The corre-
sponding maximum areal neuron density (Dna) and
volume neuron density (Dna) can be calculated by Eq. (2),
as shown in Fig. 4d. A recent advancement in the SPIN
technique, with a feature size of 9 nm23 and optical signal

multiplexing45,47, can further improve the density of
synapses and neurons.
Apart from plastic materials and SLMs, ANNs based on

holography can be achieved with different materials (Table
1). The 3D two-photon polymerisation of polymers23 and
chalcogenide glass57 can be used for ANNs based on
holography. Holography imaging has been demonstrated by
DLW with the photoreduction of graphene oxide46. A
hologram with a thickness of 60 nm using a topological
insulator material has been demonstrated by DLW58. ANNs
based on the materials above are write-once only owing to
the non-reversible photoinduced effect, requiring learning
with pre-design structures in computers.
Reversible holograms have been demonstrated with pho-

torefractive polymers59 and photorefractive polymers syn-
thetised with nanoparticles60. A hologram based on an
ultrathin layer of phase change material Ge2Sb2Te5 (GST)

61

is also demonstrated. These holograms can be erased and
written by the DLW technique owing to the thermally
reconfigurability of GST. These reversible holography effects
open a new avenue for ANNs with a closed-loop learning
capability, which allows direct updates of the weighting in
ANNs after receiving feedback from the outputs.

ANNs based on photonic circuits on a chip
Integrated photonic circuits on a chip are an ideal

platform for ANNs with a high compactness and high
stability. As the photonic axons and dendrites, the low-
loss waveguides transmit the optical signal. The devel-
opment of integrated lasers, photodetectors and optical
non-linear devices can serve as photonic somas. The
weights can be achieved in the optical domain by using
reconfigurable optical switches or splitters, which utilise
the temperature dependence of the refractive index (the
thermo-optics effect) to realise reconfigurable function-
ality by heating the devices in most of current devices.
Interest in integrated lasers with neuron-like-spiking

behaviour has flourished over the past several years51.
Biological neurons use spikes to send information. Recently,
neurological research has discovered that information in
biological neurons are encoded in the temporal domain of
single spikes29. Lasers operating in the excitable regime are
perfectly dynamic candidates but are ~ 8 orders-of magni-
tude faster. However, most experimental work has focused
on isolated neurons or single chain of neurons (Fig. 5a).
Isolated artificial synapses on photonic circuits have

been demonstrated by integrating a phase change mem-
ory (PCM) on an optical waveguide62 (Fig. 5b). As shown
in Fig. 5b, the synapse is based on a tapered waveguide
with PCM regions on top. The synaptic weight can be
controlled by changing the number of optical pulses sent
through the waveguide.
In parallel with the work on isolated artificial neurons

and synapses, recent research has also investigated the
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capability of photonic circuits to mimic neural networks,
focusing on the networks with connectivity to multiple
neurons and layers. An ANN scheme based on silicon
waveguide interconnections has been demonstrated by
using a reconfigurable MZI to control the weights
between the interconnections of neurons (Fig. 5c), which
are laser and photodetectors15. Recently, a “broadcast-
and-weight” scheme has been demonstrated to use
wavelength-division multiplexing (WDM) to support a
large number of reconfigurable interconnections enabled
by micro-ring resonators (MRRs) on a silicon photonic
chip14. A 294-fold acceleration against a conventional von
Neumann computer is predicted.
The size of the reconfigurable MRRs or MZIs is from 625

to 20,000 µm2, resulting in a synapse density of 50–1600/
mm2. The neuron density is at the same level and is based
on the size of the integrated lasers and photodetectors on
the chip. As mentioned in the previous paragraphs, current
ANNs utilise the thermo-optics effect in reconfigurable
MZIs or MRRs to realise artificial synapse functionality by
heating the devices, resulting in an additional power con-
sumption of 10mW per synapse to maintain the reconfi-
gurable MRRs or MZIs. However, the weights can be set by
integrated on-chip non-volatile memory, such as a PCM,
which requires no power to maintain.

Future perspectives
The ANNs based on photonics have a significantly

higher rate and lower computation energy compared to
those of their electronic counter parts. ANNs based on

holography can achieve an ultrahigh density of synapses
owing to the high parallel processing in free space.
Nonetheless, current ANNs based on photonic circuits
cannot compete with the density of electronics. However,
novel implementations of ANNs based on nanoscale
optical data storage63, photonic crystal nanocavity64 and
plasmonic nanocavity65 technologies may become
important to the future scaling down of the artificial
neuron and synapses on a chip to the diffraction limit
scale (~ 1 µm) or even beyond the diffraction limit. Three-
dimensional photonic integration enabled by DLW could
enable ANNs with larger number of artificial neurons and
synapses by adding another spatial degree of freedom.
Furthermore, the feeding of input signals through tem-
poral multiplexing would be able to realise ANNs with
larger number of artificial neurons and synapses
effectively.
Apart from the demonstration of single lasers or laser

chains, the coding of ANNs based on photonics has been
demonstrated using analogue optical signals. ANNs based
on photonics can be coded with the spiking method to
further improve the signal robustness and enable unsu-
pervised learning. Current ANNs based on photonics are
derived from simplified artificial neuron models. The
performance of ANNs can be further improved with a
better understanding of the working mechanism of BNNs.

Direct ANNs enabled by nanophotonics
One of the fundamental interests in building ANNs lies

in the possibility of unravelling the myth in the

Excitatory neuron

Inhibition neuron

Inhibition signal

Laser

Laser

Isolator

Isolator

ES filter

ES filter

GS-Pulses

a

GS-Pulses

GS-PulsesGS-Pulses

Excitation signal Excitation signal

Excitation signal

Axon/Dendrite: optical waveguide

Soma: directional coupler

2

1 μm 2 μm

Δw

3
Optical interference unit (OIU)

b

Input Modes
SU (4) Core DMMC

Detectors

1

PCMs Waveguide

tposttpre tpost-tpre

Post-neuronPre-neuron PCM
synapse

Taper

b

d

c

Fig. 5 Artificial neural networks based on photonic circuits on a chip. a Schematic representation of the basic operation of an excitatory and
inhibition neuron with an integrated semiconductor laser on a photonic circuit51. b Schematic drawing of artificial synapses62. c The architecture of
an artificial neural network based on photonic circuits15. d Integrated phase change memories on a photonic circuit as artificial synapses62

Zhang et al. Light: Science & Applications            (2019) 8:42 Page 7 of 14



interactions between neurons. Building well-defined
ANNs based on biological neurons with controlled
topology (micro-platforms)66 can be used for studying
neural activities such as axonal path finding and synap-
togenesis, drug screening and targeting, and recreation
computational units based on living cells67. Furthermore,
transplantable ANNs68 consisting of biological neural
tissue might offer the capability to treat several diseases
that interrupt the connectome in neural systems, includ-
ing Parkinson’s disease, traumatic brain injury, stroke and
brain tumour excision69. A crucial unit for the successful
building of ANNs based on intricate 3D bio-tissue is the
manufacturing and adoption of well-designed 3D scaf-
folds. Successful scaffolds in tissue engineering applica-
tions rely critically on the physical and chemical
characteristics of microstructures. Nanophotonics is the
key enabling technology for the building of 3D scaffolds.
In this chapter, we summarise different approaches and
materials that are available to build ANNs enabled by
nanophotonics.

Fabrication of direct ANNs in two dimensions
The mechanical and geometrical features of the sur-

rounding structural matrix can have an impact on the
structure and functions of the neurons70. To create well-
defined direct ANNs with a desired topology, micro-
platforms that emulate the structural features of BNNs
should be created on a biologically compatible substrate,
as shown in Fig. 6a–c. Different lithographic techniques
have been utilised to create 2D microstructures on bio-
logically compatible materials.
Soft lithography can be used to build small hutches to

trap neurons on the surface of electrodes71. Similar
structures such as troughs and wells can be etched into a
silicon wafer. A triangular network with next-nearest-
neighbour connections can be manufactured with the
same method72. The biocompatible materials for ANN
fabrication are polydimethylsiloxane (PDMS) parylene73

and hydrogels74. With structures like through-holes,
neuron cells can be immobilised and connected and using
micro tunnels, which can be encoded into a layer of
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PDMS or hydrogel for neurite outgrowth nanodiamond
(ND) layering75 has also been demonstrated to be an
excellent growth substrate for functional neuronal net-
works with the aid of photolithography methods.
After the fabrication of a scaffold, the ANN with desired

topology can be achieved by cell placement, which is
usually the combination of cell delivery and localisation.
Cell placement is usually feasible using glass micro-
pipettes76, microfluidics, laser guidance77 and micro-
manipulation systems78 for pick-and-place positioning.

Fabrication of direct ANNs in two dimensions
The current methods for building direct ANNs based

on biological neurons are largely limited to two-
dimensional (2D) substrates. Such 2D neural cultures
cannot achieve the 3D spatial extensions of axons and
dendrites. However, BNNs in the human brain possess
extraordinary connectivity and complexity from the
millimetre-scale down to a scale of several nanometres in
3D, which include the microscale of single neurons and
synapses (nm–μm, synapse-by-synapse), the mesoscale of
neuronal populations and their interconnecting circuitry
(region-by-region), and the macroscale of anatomically
distinct brain regions and pathways. Consequently, the
development of accurate ANNs that mimic the brain
remains a significant obstacle to our understanding of the
functioning of the brain at different levels.
Recent developments in using 3D additive printing

technique demonstrated it great capability potential in
building large-scale 3D ANNs (Fig. 6d–f). Hydrogel-made
3D brain-like structures consisting of primary neurons
have been created with a peptide-modified biopolymer79.
This technique has been used for the creation of intricate
functionalized 3D brain-like modular formed from cor-
tical tissue, maintained alive for months in vitro. 3D
architectures that compartmentalising biological tissues
have also been achieved by 3D additive printing using silk-
collagen protein scaffolds80 and hydrogels81, which have
then been used to build 3D brain-like tissue seeded with
primary cortical neurons.
One clear disadvantage of these 3D ANNs is that the

connections between neurons are randomly patterned.
The fabrication resolution of traditional 3D additive
printing limits its capability of creating 3D ANNs with
micrometre- or nanometre scale resolution.

Towards building direct ANNs based on biological neurons
with nanoscale resolution in three dimensions
One potential solution towards the building of 3D and

nanometre scale ANNs lies in the recent development of
3D DLW. 3D DLW, such as single-beam two-photon
DLW and two-beam SPIN23,82, has been widely studied
and utilised to produce 3D nanophotonic structures82,
holograms46, microfluidics83, biomedical implants84,85, 3D

scaffolds for cell cultures and tissue engineering86,87 and
biomimetic neuron structures88–91.
Owing to an intrinsic ability to produce 3D structures

with a wide range of photosensitive materials, single-beam
two-photon DLW has been used to fabricate scaffolds for
ANNs with biological cells to study the growth of neurons
and guidance92, as shown in Fig. 6g–i. Low-profile barrier
structures have been successfully fabricated using bovine
serum albumin (BSA) and laminin to guide the interactions
of brain cortical neurons and neuroblastoma–glioma hybrid
cells (NG108-15) in neuron cell culture93,94. Using hya-
luronic acid hydrogels, guidance pathways of biotinylated
BSA functionalized with IKVAV peptides for rat dorsal root
ganglion cells and rat hippocampal neural progenitor cells
have also been created95. 2PP have also been used to create
scaffold using synthetic biodegradable polymers. 3D struc-
tures have been fabricated using polylactide-based photo-
polymer with the shape of linear guidewires, with which the
directed growth behaviour of NG108-15 and PC12 neuro-
blastoma cells have been studied96.

Future perspectives
Intense ongoing research activity is focused on the use

of two-photon DLW in the fabrication of 3D scaffolds for
neuron growth and neuron tissue regeneration. Two-
photon DLW is the only technique able to provide the 3D
fabrication capability and high spatial resolution that are
necessary to create a scaffold mimicking the structural
features of BNNs. This technique may offer the means to
produce scaffolds that are bioactive at micrometre scale
and even at nanometre scale.
Modification of the physical and chemical character-

istics of 3D nano/microstructures with submicron reso-
lution will act as a crucial key in the study of BNNs.
Because of the unique electrical and optical properties
assembled on these platforms, they also hold the potential
to augment brain functions. Creation of 3D nano/micro-
structures-based biosensors is faced with many chal-
lenges, but the aim is to achieve single electrical
connections in brain neuron circuits and neural networks
of interest. Eventually, nano/microstructures manifest the
interactive platform between nanotechnology and neu-
roscience, making them promising medium in neuron
technology for diagnosing and treatment of brain diseases
in neurology.

Signal detection of direct ANNs enabled by
nanophotonics
Unlike indirect ANNs based on electronics and photo-

nics with input and output connections for signal detec-
tions, the spiking of biological neurons are the signals of
direct ANNs. The detection of such weak electric signals
at the nanoscale is of critical importance to studying
neural activities. Novel devices that are ultrasensitive to
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weak electric fields, such as micro-electrode arrays and
patch clamps, have been introduced to study neural
activities. However, these devices have a low spatial
resolution and are invasive, which might cause damage to
the biological neurons. Nanophotonics, especially nano-
sensing enabled by nitrogen-vacancy (NV−) centres in
bulk diamonds and NDs, has opened the possibility of the
far-field detection of neural activities with nanoscale
resolution.

Sensing of the action potential
The electrical potential associated with the passage of a

spiking impulse along neurons is called action potential
(AP). APs play a central role in the communication
between individual neurons. The signals between neurons
propagate along axons via APs. Different techniques can
be implemented for the measurement of APs. Electro-
physiology is a recording method with a patch-clamping
configuration that remains the gold standard for the
measurement of individual APs. The technique has an
excellent temporal resolution and good signal-to-noise
ratio, but the spatial resolution is limited to ~ 10 µm.
Nanophotonic techniques to measure APs offer many

advantages, but they typically require high power, which
can cause photodamage to neurons. In addition, voltage-
sensitive fluorescent proteins must be genetically
expressed, which may alter the neuronal functions. Owing
to their optical and magnetic properties, NV− centres can
be applied to study neural networks and the firing of
neural cells to study brain activity97.
NV− centres have attracted significant attention in the

recent years owing to their outstanding optical and
magnetic properties98,99. The ground state of an NV−

centre is a triplet state with six unpaired electron spins,
each one with an associated magnetic moment; the spin
sublevels are ms= ±1,0100. The energy sublevels ms= ±1
in the ground state can be perturbed with an external
magnetic field. This paramagnetism of the ground state
can be mathematically described by the spin Hamiltonian
of the system100:

H ¼ DgsS
2
z þ Egs S2x � S2y

� �
þ ggsμB

!� S! ð3Þ

where Dgs is the ground state zero-field splitting, ~S is the
spin operator vector, Egs is the ground state strain-
induced splitting coefficient, ggs the ground state g-factor
and µ is the Bohr magneton101. In brief, the first term
corresponds to the energy gap between the two sublevels
in the ground state, the second term represents the energy
shift owing to the strain from the lattice, and the last term
is the Zeeman effect102,103.

When NDs are stimulated by a microwave (mw) field, it
is possible to redistribute the population of ground state
electrons in NV− centres. In particular, by switching on

an mw field at the zero-field splitting frequency, D=
2.87 GHz, there is a redistribution of the electrons from
the most populated sublevel, ms= 0, to the less-populated
sublevel, ms= ±1.
Under an excitation beam at wavelength 532 nm, an

NV− centre is polarised in its ground state ms= 0. The
application of an mw field at the zero-field splitting fre-
quency causes an increase in the population of the ms=
±1 spin sublevels. This leads to an overall decrease in the
fluorescence because of the non-radiative decay via the
intermediate metastable state. The observed photo-
luminescence decrease is called the optically detected
magnetic resonance (ODMR) signal. It is also possible to
apply a magnetic field along the z axis that degenerates
the energy sublevels ms= ±1.
In case of the weak-magnetic field regime, the magnetic

field is calculated with the following104:

BNV ¼ ω2 � ω1

2ggsμ
ð4Þ

Under this circumstance, the recorded ODMR signal
shows two dips owing to the redistribution of the elec-
trons in the sublevels ms=−1 and ms=+1. The
separation between the recorded ODMR dips increases
with the strength of the applied magnetic field.
In fact, APs are time-varying electrical fields, which lead

to time-varying magnetic fields. The main principle
behind sensing APs with NV− centres is the detection of
time-varying magnetic fields generated by APs via ODMR
signals. The measurement of the AP via magnetic field
sensing confers important advantages: it is non-invasive,
label-free and able to detect neuronal activity through
intervening tissue and whole organisms.
In the first work of applying NV− centres to measure

the axon transmembrane potential, the magnetic field
generated by a single axon potential is modelled, magnetic
field generated by a single axon potential is modelled and
the magnetic field has been generated by a microwire on
the surface of a diamond substrate, which simulates the
AP of a morphologically reconstructed hippocampal CA1
pyramidal neuron. The detection system is composed of a
commercial grade single crystal ultra-pure diamond sub-
strate with a layer NV− defect centres with a standoff of
100 nm. The detection system is able to image planar
neuron dynamics non-invasively with temporal resolution
at millisecond and spatial resolution at micron spatial
resolution (10 µmTHz−1/2) within wide-field view105.
NV− centres in bulk diamonds have been implemented to
measure the APs of a giant axon in an invertebrate,
Myxicola infundibulum97.
The bipolar azimuthal magnetic field associated with an

AP is depicted in Fig. 7a, in the inset is the energy level of
the NV− centres. A light beam at a wavelength of 532 nm
is applied to the sensing NV− centre layer through the
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diamond at a sufficiently shallow angle so that the light
reflects off the top diamond surface and therefore does
not irradiate the living sample (Fig. 7b)97. The magnetic
field from the AP measured via electrophysiology can be
mathematically expressed as97:

ϕinðtÞ : BðtÞ ¼
Z

sdϕindt ð5Þ

The measured AP voltage and the calculated magnetic
field are illustrated in Fig. 7c–e. The measurements with
NV− centres are consistent with the prediction97.
With NV− centres, it is also possible to measure the AP

propagation direction at a single point97. The results lay
the groundwork for the real time, non-invasive 3D mag-
netic mapping of functional neuronal networks, ultimately
with a circuit-scale (~ 1 cm) field-of-view.

Labelling and tracking of neuronal differentiation with NDs
An understanding of biological processes involves the

tracking of several cells to study their differentiation and
development. Owing to their photostability, their
robustness against photobleaching and their biocompat-
ibility, NDs are ideal candidates for long-term cell track-
ing106. A study has been reported on the tracking of
neuron cells derived from a model of embryonal carci-
noma stem cells with fluorescent NDs107. The NDs are
detected with a confocal microscope (Fig. 7f). No effect on
the morphological development of the cells is recorded
nor do the NDs induce apoptosis during the neuronal
differentiation (Fig. 7g). Therefore, the implementation of
fluorescent NDs to track neural cell development could
provide potential therapeutics for neural diseases107.

Future perspectives
Studies on the detection of APs by measuring the

ODMR signal with NV− centres in bulk diamonds have
been reported97. There are several technical challenges
with this technique. First, the magnetic field sensitivity
needs to be improved to enable AP measurement from
individual mammalian neurons97. Second, single-point
detection needs to be developed for the 2D and 3D
mapping of APs in neuronal networks. Third, the high-
resolution imaging of AP magnetic fields is also required.

NDs can provide a new solution to the three challenges
listed above. NDs has a wide range of applications in the
life sciences in the life sciences compared with bulk dia-
monds108. Currently, NV− centres in NDs have been
applied to study the formation and patterning of neural
networks and to label and track the neuron cells75,107.
First, a higher density of NV− centres can yield a sensi-
tivity improvement. NDs provide a substantially higher
density of NV− centres than does bulk diamond. Some
types of NDs contain ~ 1000 NV− centres in one ND with
a diameter of 5 nm. Second, NDs enable 3D magnetic
imaging. The magnetic imaging based on diamond layers
can only achieve 2D imaging because the neuron net-
works can only be fixed on the surface of the diamond
layers. However, NDs can be labelled everywhere inside
the neuron networks, which makes it possible to obtain
3D magnetic images. Third, a higher spatial resolution can
be achieved with NDs. Smaller NDs in biomedical ima-
ging are highly required, and the blinking phenomenon is
more prevalent when reducing the size of a ND is
reduced109–111. Super-resolution imaging based on
blinking fluorescence would allow the nanometric
reconstruction of synapse connections by labelling the
neuron cells with 5 nm oxide NDs109,111.
The employment of the ODMR signal to interpret APs

via magnetic field measurements could lay new ground-
work for the development of nanoscale biomarkers for
both the super-resolution optical imaging and magnetic
sensing of ANNs.

Conclusions
In the present review, we have surveyed the recent

advancements in nanophotonic technology for indirect
and direct ANNs. Holography and integrated photonic
circuits have shown potential for achieving indirect
ANNs. To date, the integration density of functional
devices in ANNs based on photonic circuits remains
limited. Three-dimensional photonic integration enabled
by DLW could be a solution to the development of
indirect ANNs with a high bandwidth and low-power
consumption. DLW can be used for the direct fabrication
of ANNs in three dimensions. In addition, photonic
sensing techniques can be used to study the neural
activities in direct ANNs based on biological neurons.

(see figure on previous page)
Fig. 7 Experimental overview of the measurement of action potential (AP) with NV centres97 and detection and location of nanodiamonds
(NDs) in ECS cells107. a A schematic of the bipolar azimuthal magnetic field associated with a giant axon. Inset: the energy-level diagram of an NV−

centre. b A schematic of the microscope implemented for the magnetic measurements. c Measured AP voltage with the electrophysiology
measurement. d Calculated magnetic field. e Measured magnetic field with NV− centres. f ECS cells treated with NDs. In red is the fluorescence
intensity of NDs excited with light at a wavelength of 580 nm. The emission is collected in the wavelength range of 600–700 nm. In blue is the
nucleus of the cell, and in yellow, the SSEA-1. g Differentiated neural cells. Fluorescent NDs are observed in the cytoplasm of undifferentiated ECS and
differentiated cells
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Further developments in nanofabrication and super-
resolution optical sensing techniques are essential to
achieve fabrication and detection capabilities at the scale
of the ANN nanofeatures.
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