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Abstract

Atherosclerosis is an inflammatory arterial pathogenic condition, which leads to ischemic 

cardiovascular diseases, such as coronary artery disease and myocardial infarction, stroke, and 

peripheral arterial disease. Atherosclerosis is a multifactorial disorder and its pathophysiology is 

highly complex. Changes in expression of multiple genes coupled with environmental and lifestyle 

factors initiate cascades of adverse events involving multiple types of cells (e.g. vascular 

endothelial cells, smooth muscle cells, and macrophages). IGF-1 is a pleiotropic factor, which is 

found in the circulation (endocrine IGF-1) and is also produced locally in arteries (endothelial 

cells and smooth muscle cells). IGF-1 exerts a variety of effects on these cell types in the context 

of the pathogenesis of atherosclerosis. In fact, there is an increasing body of evidence suggesting 

that IGF-1 has beneficial effects on the biology of atherosclerosis. This review will discuss recent 

findings relating to clinical investigations on the relation between IGF-1 and cardiovascular 

disease and basic research using animal models of atherosclerosis that have elucidated some of the 

mechanisms underlying atheroprotective effects of IGF-1.

1. Introduction

<Mechanisms of Atherosclerosis: Updates>

Atherosclerosis is a pathogenic condition characterized by the focal inflammatory 

thickening of arterial walls. It is the primary cause of cardiovascular diseases (CVDs), such 

as ischemic heart disease, stroke, and peripheral artery diseases. As CVDs are the leading 

cause of death worldwide [1], there have been significant continuing efforts to develop 

therapeutic strategies directly addressing atherosclerotic lesions and preventing adverse 

events. Nonetheless, development of new drugs has been challenging [2], and current 

options for medical treatment are still restricted to preventative lifestyle changes, lipid 

lowering therapy and control of risk factors such as hypertension and glycemic control.
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Atherosclerosis is a multifactorial disease [3–5] and our understanding of its pathogenesis 

has advanced significantly over the past decade. By the early 2000s, major working 

hypotheses proposed as mechanisms of atherogenesis included the “response-to-retention 
hypothesis” [6], and the “oxidative modification hypothesis” [6]. These hypotheses stated 

that lesions are initiated when there is subendothelial retention of lipids (low-density 

lipoproteins) which are modified (e.g. aggregated, oxidized) to be biologically active. 

Modified lipids elicit subintimal infiltration of macrophages, which scavenge modified lipids 

to become lipid-laden macrophages (i.e. foam cells), thereby establishing an early lesion (i.e. 

fatty streak). Modified lipids and chemokines/cytokines from pro-inflammatory cells induce 

de-differentiation and migration of medial smooth muscle cells (SMCs) into the intima. The 

undifferentiated SMCs (“synthetic phenotype” SMCs, as opposed to differentiated 

“contractile phenotype” SMCs) proliferate and deposit matrix proteins leading to neointimal 

thickening. Under highly inflammatory and oxidative conditions, macrophages and SMCs 

may undergo cell death, resulting in necrotic core formation and ultimately causing plaque 

vulnerability.

The concept of “endothelial dysfunction” that precedes atherosclerosis development is now 

widely accepted [7] and further substantiated by recent findings. In addition to its classical 

roles in vasomotor activity, thrombosis and fibrinolysis, blood-tissue exchange, and 

angiogenesis, the endothelium is now recognized as a regulatory hub orchestrating vascular 

homeostasis [8], as a sensor and principal mediator of fluid shear stress to the arterial wall 

[8–10], as a regulator of proinflammatory cell recruitment and invasion [8, 11, 12], and as an 

integral component of mechanisms of arterial stiffness [13, 14].

New insights are also emerging about the potential roles of SMCs in atherosclerosis. The 

term “phenotypic switch of SMCs” used to refer to a shift of SMC phenotype from fully 

differentiated “contractile” state to de-differentiated “synthetic” state. However rigorous 

investigations in the past decade revealed that the fate of arterial SMCs under the 

atherogenic microenvironment is more diverse, ranging from a mesenchymal stem cell-like 

phenotype to a macrophage-like phenotype [15]. More than 80% of SMC-derived cells in 

advanced plaques do not express some or all of SMC-markers but express markers of 

mesenchymal stem cells [16] or even macrophages [16–18]. Vice versa, myeloid cells can 

express SMC-markers [19, 20]. 10–15% of α-smooth muscle actin-positive cells within an 

advanced plaque are derived from myeloid cells [21]. Macrophage-like cells derived from 

SMCs are highly pro-inflammatory, limited in phagocytic capacity, and prone to cell death 

[15], which may ultimately promote atheroma formation.

The significance of SMC proliferation in terms of the development of pathogenic lesions is 

under debate. Pathologic intimal thickening (PIT) plays an important role in the initiation 

and progression of atheroma formation and is distinct from non-atherosclerotic intimal 

thickening, which is referred to as diffuse intimal thickening (DIT) and adaptive intimal 

thickening (AIT, or also called eccentric intimal thickening) [22–25]. DIT has been 

recognized for decades [26]. DIT consists of SMCs and matrix proteins without lipid 

accumulation and is widespread in the arterial bed in humans. In fact, it was reported that 

100 % of humans have coronary arterial DIT by 3-months of age [27, 28]. AIT is a focal 

thickening exceeding the thickness of DIT and frequently develops at branch-points and 
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areas of turbulent blood flow [29], sites where atherosclerotic lesions frequently develop 

[30]. However there is no clear distinction between AIT and DIT in terms of their cellular or 

noncellular composition; they often continuously develop on a span of the arterial bed. DIT 

and AIT are considered to result from a physiological response to blood flow and tensile 

stress [22–25]; nevertheless, they may make a transition to PIT through poorly understood 

processes, leading to subsequent atheroma formation. Indeed, recent findings suggest that 

the transition of DIT/AIT to PIT involves modification of extracellular matrix proteins and 

deposition of non-cellular blood components in the intima [31, 32], influx of pro-

inflammatory cells, and SMCs’ phenotypic switch and cell death [22–25]. It is noteworthy 

that most acute coronary events are related to rupture or erosion of atherosclerotic plaques 

that are not hemodynamically significant [33]. Thus one can speculate that early transition of 

AIT/DIT to PIT may contribute to development of non-obstructive but clinically significant 

(i.e. unstable) atherosclerotic lesions.

Macrophages play a key role in the pathophysiology of atherosclerosis, and recent findings 

indicate that macrophages, similarly to SMC, may undergo a phenotypic switch [15]. Thus a 

significant number of macrophage marker (e.g. CD68)-positive cells are of SMC origin, and 

vice versa, macrophages can express SMC markers (e.g. α–smooth muscle actin) [15]. 

These findings complicate the interpretation of previous studies relying on cell-type 

“specific” marker expression. A potentially beneficial function of macrophages has been 

proposed. In the classical “response-to-retention” hypothesis, macrophages are part of a 

tissue repair mechanism and remove lipids that accumulate in the intima. Macrophages also 

clear up dying cells within plaques via efferocytosis. There is evidence that plaque 

macrophages are defective in efferocytosis [34], potentially resulting in accumulation of 

dying/dead cells and necrotic core expansion.

We previously reviewed potential IGF-1 effects on atherosclerotic diseases [35, 36]. We now 

provide an update on the effects of IGF-1 on atherosclerosis after a decade of significant 

advances in our understanding of the pathophysiology of atherosclerosis.

<Insulin-like Growth Factor system>

Insulin-like growth factor 1 (IGF-1) is a major regulator of postnatal (prepubertal and 

pubertal) somatic growth, mediating many of the effects of growth hormone (GH). 

Circulating levels of IGF-1 reach to their highest at mid-teen years (111–647 ng/mL) and 

then decline with age. In healthy 40 years old adults, its reference range is approximately 

50–65 % lower than its peak range (68–226 ng/mL or 9–30 nM). IGF-1 and its related 

peptide hormone, insulin, display similar affinities for their respective cognate receptors, but 

circulating IGF-1 levels are 10-fold or higher. The majority of circulating IGF-1 molecules 

are complexed with IGF binding proteins (IGFBPs), which hinder IGF-1 from ligating to the 

insulin receptor or modulate IGF-1 binding to the IGF-1 receptor (IGF1R) [37]. IGF1R is 

expressed in the three major cell types which are involved in the pathogenesis of 

atherosclerosis, namely, endothelial cells, macrophages, and SMCs. Biological effects of 

IGF-1 on cultured vascular endothelial cells, smooth muscle cells, and macrophages have 

long been described, and more recent in vivo studies have provided insights into the effects 

of IGF-1 on the pathogenesis of atherosclerosis.
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<Growth Factors and Atherosclerosis; Permissive or Preventative?>

Traditionally, the role of growth factors in atherosclerosis has been thought to be permissive, 

in particular, by stimulating vascular smooth muscle cell (SMC) migration and proliferation, 

thereby promoting neointima formation [38, 39]. Interestingly, recent reports suggest that 

some growth factors have atheroprotective effects in animal models of atherosclerosis. Tang 

et al. [40] tested potential roles of platelet derived growth factor (PDGF)-B on 

cardiovascular diseases by using a murine model of atherosclerosis, apolipoprotein E-null 

mice (Apoe-null mice). They transplanted fetal liver cells of Pdgfb/Apoe-dual knockout 

mice into irradiated Apoe-null mice, therefore the recipient animals lack PDGF-B in 

circulating cells (such as monocytes and platelets), which are the major source of PDGF in 

the pathogenesis of atherosclerosis [41]. These animals demonstrated a significant change in 

atherosclerotic lesion composition, represented by enhanced inflammatory cell infiltration 

[40]. The same group demonstrated that elimination of PDGF-B in circulating cells or 

blockade of PDGF receptors delayed but did not inhibit smooth muscle accumulation in 

lesions, and more importantly, did not influence atherosclerotic burden [42]. These reports 

suggest a modest contribution of PDGF to atheroprogression but a major inhibitory effect on 

inflammatory responses and on monocyte accumulation. Transforming growth factor-β 
(TGF-β) promotes vascular SMC proliferation and matrix protein production (reviewed in 

[43]). Apoe-null mice with cardiac-specific overexpression of active TGF-β1 develop 

elevated cardiac and circulating TGF-β levels, less aortic root atherosclerosis, and fewer 

lesions in the thoracic and abdominal aortae [44]. These plaques were characterized by 

fewer T lymphocytes, more collagen, less lipid, and lower expression of inflammatory 

cytokines [44]. We found that elevation of circulating IGF-1 levels (by continuous s.c. 

infusion, resulted in approximately 2.3-fold elevation of total IGF-1 levels) prevented 

atherogenesis in Apoe-null mice [45]. These findings suggest preventive or reparative 

function of certain growth factors, however precise underlying mechanisms are still obscure.

2. IGF-1 and Cardiovascular Disease – Clinical Implications

IGF-1 affects vascular function and atherosclerosis in many ways, including anti-

inflammatory and anti-apoptotic actions [46, 47] and stimulation of angiogenesis [48, 49]. It 

stimulates nitric oxide production in endothelial and vascular smooth muscle cells through 

activation of nitric oxide synthetase via Akt-catalyzed phosphorylation, thus also playing a 

role in improved cardiac contractility in exercise training [50]. There is also evidence 

suggesting that IGF-1 has indirect effects on the cardiovascular system by increasing Insulin 

sensitivity [51–54].

<Coronary Artery Disease (CAD)>

In healthy subjects a link between low levels of circulating IGF-1 and high prevalence of 

CAD has been suggested [55, 56]. Patients with acromegaly have a chronic excess of GH 

and IGF-1, which could lead to acromegalic cardiomyopathy, characterized by biventricular 

hypertrophy, diastolic and systolic dysfunction, and congestive heart failure[57]. Although 

Cansu et al. [58] suggested higher subclinical atherosclerosis and left ventricular diastolic 

dysfunction in a small cohort of patients with acromegaly, and Petrossians et al. [59] 

reported hypertension in 28.8% of 3173 patients with acromegaly in the LAS database, the 
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incidence of baseline serious cardiovascular disease was <5% in the same patients [59]. GH 

deficiency impairs flow-mediated arterial dilation, and thus endothelial NO-dependent 

vasodilation [60] and increases cardiovascular morbidity and mortality [61–64]. GH 

supplementation has been reported to improve cardiovascular risk [65]. On the other hand, a 

small-scale study indicated a lack of evidence of premature atherosclerosis in untreated 

severe GH deficiency due to a GH-releasing hormone receptor mutation [66], and also a 

study reported a lack of evidence of elevated mortality due to cardiovascular diseases in 

Laron syndrome subjects [67]. Of note, a recent meta-analysis failed to confirm a significant 

positive trend in cardiovascular risk after short and long-term GH supplementation therapy 

in adult GHD patients [68]. Potentially consistent with these clinical reports, twice-daily sc 

injection of GH releasing peptide-2 (20 μg/injection, a dose that significantly increases GH 

and IGF-1 levels [69]) failed to decrease atherosclerosis in Apoe-null mice, even though it 

successfully elevated serum IGF-1 levels, contradicting atheroprotective effects of IGF-1 

[70]. It was speculated that GH-dependent effects may blunt the effect of increased IGF-1 

[70].

In possibly the largest observational study on the relation of IGF-1 to CAD in 10,600 

coronary-disease free subjects in the PRIME study, Ruidavets et al. [71] found that baseline 

IGF-1 level was significantly lower in subjects developing an acute coronary syndrome, and 

that subjects in the highest quartile of IGF-1 distribution had a 55% reduction in the relative 

risk of developing myocardial infarction [71]. Similarly, De Leronzo et al. [72], in a small 

study on 36 patients, showed significantly lower IGF-1 level in patients with early-onset 

CAD [72].

<Stroke>

Johnson et al. [73] suggested a protective effect of IGF-1 against ischemic stroke in the 

observational Danish study [73]. In contrast, a case-cohort analysis in subjects >65 years old 

in the Cardiovascular Health Study observational study showed no effect of IGF-1 and IGF 

Binding Proteins (IGFBPs) on prediction of risk of cardiovascular events or stroke [74]. 

Saber et al. [75], using observational data from a predominantly Caucasian population of 

757 subjects in the Framingham Heart Study, found the lowest incidence of ischemic stroke 

in patients in the highest quartile of circulating total IGF-1 (232±41.04 ng/ml), especially in 

diabetics and in patients in the highest waist-hip ratio quartile. They proposed that low 

circulating IGF-1 level could be related to increased ischemic stroke risk in diabetics and 

obese individuals, possibly through higher insulin resistance. The study did not find a linear 

relationship between IGF-1 and stroke and did not measure free IGF-1 and IGFBPs [75].

There are multiple studies on the relationship between IGF-1 and common carotid intima-

media thickness (CC-IMT). In a recent study on morbidly obese individuals in a bariatric 

surgery program, Sirbu et al. [76] suggested that HOMA-IR (a measure of insulin resistance) 

and total IGF-1 z-score are associated with increased CC-IMT [76]. Similarly, Kawachi et 

al. [77] showed that IGF-1 levels were correlated with CC-IMT in non-obese individuals, 

and Splicke et al. [78] showed a positive correlation between serum IGF-1/IGFBP-3 ratio 

and CC-IMT [77, 78]. Ameri et al. [79] found an interesting negative association of IGF-1 

with CC-IMT only in patients in the lowest 25-hydroxyvitamin D quartile in the Baltimore 
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Longitudinal Study of Aging (BLSA) and the Microalbuminuria: A Genoa Investigation on 

Complications (MAGIC) study [79]. Abd El-Hafiz et al. [80], in a comparative study of 

metabolically healthy obese individuals with healthy controls, also suggested that IGF-1 is 

protective against CC-IMT in the presence of low serum vitamin D [80]. In view of the 

contradictory data for stroke and CC-IMT Sirbu et al. [76] have postulated that high IGF-1 

could stimulate smooth muscle hyperplasia in early atherosclerosis, but promote plaque 

stability in advanced disease [76, 81]. Muller et al. [82] have also suggested that the variable 

relation of IGF-1 to stroke and CC-IMT might be explained by the lack of standardization 

for IGF-1 assays utilized in various studies [82].

<Mortality>

The relation of IGF-1 and long term survival/ mortality has been the subject of much 

discussion, and seems to be modulated by age, race and gender. Wennberg et al. [83] 

followed IGF-1 levels in 1618 elderly individuals in the Mayo Study of Aging. Looking 

primarily at bioavailable IGF-1 (ratio of IGF-1 to IGFBP-3), they reported that males have 

more rapid age-related decline in IGF-1 compared to females [83]. Sanders et al. [84], in a 

study of 945 individuals >65 years old in the Cardiovascular Health Study followed over a 

mean of 11.3 years, found that baseline IGF-1 level <70 ng/ml and higher IGF-1 variability 

were associated with higher mortality [84]. Similarly, Nillson et al. found higher mortality in 

hemodialysis patients with lower serum IGF-1 level, modulated by serum albumin.

Schutte et al. [85] preformed a detailed longitudinal observational analysis as part of the 

PURE study in a high-risk population of black South Africans. They reported that higher 

IGF-1 levels predicted lower mortality over 5 years after adjustment for IGFBP-3 and was 

significantly related to maintenance of a normotensive status. Interestingly, they did not 

observe any association between IGF-1 and CC-IMT, which could be attributed to the 

different ethnicity of this population compared to previously reported studies [85]. It is also 

possible that the high risk behavior in the PURE study population, with higher alcohol use, 

smoking and obesity, could directly lead to lower IGF-1 levels [86].

Burgers et al. [87], in a meta-analysis of 12 studies with 14,906 participants, suggested a U-

shaped relationship of IGF-1 with mortality, with increased mortality in subjects with low or 

high IGF-1 levels compared to mid-centile reference categories [87].

<Peripheral Arterial Disease (PAD)>

There are limited studies on the association of IGF-1 with PAD. Urbaonavicience et al. [88] 

found higher IGF-1 and lower IGFBP-2 in obese individuals, and reported lower IGF-1 in 

patients with critical limb ischemia. In the same study, they did not find any improvement in 

prediction of cardiovascular mortality after adding IGF-1 to a conventional risk model [88]. 

In a cross-sectional study comparing PAD patients to healthy controls, Brevetti et al. [89] 

found lower levels of IGFBP-3 in the PAD group, especially in patient with an ankle/ 

brachial index lower than median. They also demonstrated that a high transfemoral gradient 

of CRP, a surrogate maker for inflammation, was independently associated with a low 

transfemoral gradient of IGF-1 and a high transfemoral gradient of IGFBP-3 [89].
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<Association of PAPP-A with cardiovascular disease>

Pregnancy-associated plasma protein A (PAPP-A) is a metalloproteinase regulator of 

insulin-like growth factor bioavailability through cleavage of IGFBP-4, thus releasing 

bioactive IGF [90]. Hjortbjerg et al. [91], in a longitudinal study of 330 Type I diabetic 

patients with and without nephropathy followed for >12 years, found higher cardiovascular 

mortality in patients with high values of the main cleavage products NT-IGFBP-4 and CT-

IGFBP-4, but not with PAPP-A [91]. There is active interest in exploring the role of 

stanniocalcin-2 (STC2), a potent PAPP-A inhibitor, in increasing IGF levels in patients [90, 

92].

3. Atheroprotective effects of IGF-1 in animal models of atherosclerosis

<Endocrine IGF-1 and atherosclerosis>

In 2007, we reported that systemic infusion of IGF-1, which doubled circulating IGF-1 

levels (665 ng/mL vs. 287 ng/mL in saline infused animals), attenuated atherosclerotic 

burden in Apoe-null mice [45]. Since this report, we and others have confirmed that 

systemic IGF-1 levels inversely correlate with atherosclerotic burden [45], consistent with 

atheroprotective effects of IGF-1. Sivasubramaniyam et al. [93] generated Apoe-null mice 

with hepatic Jak2 deficiency, which impairs the GH signaling pathway, therefore these mice 

have significantly lower circulating IGF-1 levels than hepatic Jak2-wild type mice [93]. 

These animals had significantly accelerated atherosclerosis and the causal relation between 

low IGF-1 and atherosclerosis was confirmed by supplementing IGF-1 by continuous 

infusion (at a dose that does not influence glucose tolerance or insulin sensitivity, however 

reverses GH levels down as low as Jak2-wild type mice [93]) or by overexpression of IGF-1 

(by crossbreeding to hepatic IGF-1 overexpression mice in which serum IGF-1 levels were 

2.5-fold higher than no-overexpression controls [94]) in hepatocytes of Jak2-deficient mice 

[93]. Svensson et al. [95] investigated diet-induced fatty streak formation in liver-specific 

IGF-1 inactivation mice (LI-IGF-1−/− mice), in which the serum IGF-1 level is lower than 

wild-type control mice by 80 % [95]. This animal model is on a C57Bl/6 background 

without alterations of genes related to lipid metabolism, thus it is normolipidemic and 

produces only early stage lesions (fatty streaks), making it a useful model to assess potential 

effects of endocrine IGF-1 on initiation of plaque development. Intriguingly, they observed 

that the deficiency of endocrine IGF-1 increased fatty streak formation only in female mice 

[95]. Increased fatty streak formation was associated with elevated serum cholesterol and 

signs of systemic inflammation, endothelial activation, and macrophage infiltration in the 

vascular wall, consistent with atheroprotective effects of endocrine IGF-1. It is noteworthy 

that the LI-IGF-1−/− mouse produces adult-onset IGF-1 deficiency (i.e. liver-specific Igf1 

gene deletion induced at 3 months of age), therefore, the observed atheroprotective effects of 

IGF-1 are independent of any known developmental effects of IGF-1.

Elevated IGF-1 levels in the circulation not only decreased plaque burden, but also induced 

phenotypic changes in plaques, represented by a decrease of macrophages, attenuated pro-

inflammatory cytokine expression, lowered oxidative stress, less frequent apoptosis, and 

increased presence of smooth muscle cells and collagen [45, 96, 97]. Vice versa, low levels 

of circulating IGF-1 in the 6T congenic mouse [98] and in the liver-specific IGF-1 knockout 
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mouse [93] was associated with enhanced inflammatory phenotype and increased 

atherosclerotic burden. These observations suggest that IGF-1 may reduce inflammation and 

promote a more stable plaque phenotype, underscoring IGF-1’s therapeutic potential to 

prevent clinical events caused by plaque vulnerability. For a more comprehensive 

understanding of potential IGF-1 effects on atherosclerosis, murine atherosclerosis models 

which carry cell-type specific modifications of the IGF-1 system have been used and 

provided mechanistic insights for the vascular effects of IGF-1.

<Smooth muscle cells>

In the classical view of mechanisms of atherosclerosis, SMCs were considered to play pro-

atherogenic roles. Phenotypic switching of contractile SMCs to synthetic SMCs, which 

migrate from the media to intima, proliferate, and deposit matrix proteins, was thought to 

cause plaque thickening [99, 100]. However In the past decade, it has become apparent that 

SMCs switch to more diverse phenotypes than merely being “synthetic” or “contractile” [15, 

101]. Likewise, potential effects of growth factors on SMCs (also on SMC-derived cells and 

SMC-marker positive cells of other origins) need to be redefined accordingly to an updated 

view of SMC biology within atherosclerotic lesions. Mechanically induced neointima 

models (e.g. wire or balloon catheter injury-induced neointima formation) had been used to 

investigate potential effects of growth factors on fibroproliferative SMCs. However the 

biology of the neointima (neointimal cells are almost exclusively “synthetic” SMCs without 

intact endothelial cells covering the lesions) is grossly different from atherosclerotic lesions 

in humans, as the former lacks involvement of endothelial cells or pro-inflammatory cells, 

which are essential components in the latter. Therefore, we have avoided inclusion of reports 

using animal models of injury-induced intimal hyperplasia, which are now considered to 

represent the pathophysiology of angioplasty-induced restenosis but not atherosclerosis.

IGF-1’s effects of promoting vascular SMC migration and proliferation have been proposed 

as a potential mechanism of restenosis, pulmonary hypertension, and vein graft failure, using 

animal models of intimal hyperplasia [102–104]. However, investigations on potential 

effects of IGF-1 on atheroma formation had been lacking. To address the effects of 

autocrine/paracrine IGF-1 produced by smooth muscle cells on the pathogenesis of 

atherosclerosis, transgenic mice which overexpress IGF-1 in smooth muscle were created on 

an Apoe-null background (SMP8-Igf1 mice) [105]. When compared with Apoe-null mice, 

the SMP8-Igf1 mice developed a comparable plaque burden after 12 weeks on a high fat 

diet, suggesting that the ability of endocrine IGF-1 to reduce plaque burden [45] was 

mediated in large part via non-SMC target cells. However, advanced plaques in SMP8-Igf1 

mice displayed features of increased plaque stability, including elevated SMC content, 

increased fibrous cap area, increased collagen levels, and reduced necrotic cores. Of note, 

the same promoter-driven IGF-1 overexpression in smooth muscle (SMP8-Igf1) 

substantially promoted neointima formation in an injury-induced arterial intimal hyperplasia 

model [106], consistent with a significant difference in pathology between arterial intimal 

hyperplasia and atherosclerosis. The observed consequence of IGF-1-overexpression in 

SMCs on atherosclerosis is consistent with the earlier studies demonstrating IGF-1 to 

positively support SMC differentiation [107–109] and elevate matrix protein production. We 

have subsequently shown that IGF-1 increases collagen synthesis by increasing LARP-6 
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expression [110]. In both IGF-1 infusion model (mentioned in “Endocrine IGF-1 and 
atherosclerosis” [45]) as well as a smooth muscle cell specific IGF-1 overexpression model, 

IGF-1 does not increase atherosclerotic burden. However, these studies were done at a 3-

month time point of high-fat diet feeding, so potential effects of IGF-1 on early 

atherosclerotic lesion stage were not determined.

We also evaluated a model of SMC-specific IGF1R loss of function. For this purpose, we 

cross-bred IGF1R floxed mice to SM22α -CreKI mice, which have Cre recombinase gene 

knocked-in downstream of the promoter region of SM22α gene, resulting in IGF1R 

deficiency in SMCs and also in fibroblasts (FB; SM22α-CreKI/IGF1R-flox mice) [111]. 

IGF1R deficiency caused SMC and FB hypotrophy and decreased expression of collagen. 

With high-fat diet feeding, SMC-IGF1R deficient mice had increased atherosclerotic burden 

and inflammatory responses. Also, the IGF1R deficiency decreased plaque SMC content, 

markedly depleted collagen and increased indices of vulnerability in the plaques [111].

These SMC-selective IGF-1 and IGF1R gain-of-function and loss-of-function models 

demonstrate that one of the major effects of IGF-1 on SMC is to promote plaque stability by 

increasing plaque SMC content (via pro-proliferative and anti-apoptotic mechanisms) and 

plaque collagen matrix. It is interesting to hypothesize that IGF-1 might suppress SMC 

phenotype switching in favor of preventing atheroprogression, given that IGF-1 supports 

SMC differentiation [107–109]. Furthermore, SMC-IGF1R deficiency enhanced cell death 

and inflammation and enlarged necrotic cores in lesions [111]. Blackstock et al. [110] 

described that IGF-1 positively regulates La ribonucleoprotein domain family member 6 

(LARP6), which is an essential regulator of collagen I and III synthesis and fiber assembly, 

in cultured aortic SMCs and in the aorta of Apoe-null mice, consistent with a novel 

mechanism whereby IGF-1 increases collagen fibrinogenesis and plaque stability [110].

<Macrophages>

Macrophages are in large part responsible for the development of the inflammatory milieu in 

plaques. Also, macrophages are major contributors to the accumulation of lipids and the 

degradation of extracellular matrix; consequently, all of these activities lead to a loss of the 

structural stability of plaques. Macrophages express IGF-1 and IGF-1R. IGF-1 production 

by macrophages is often described in the context of tissue regeneration, repair, and fibrosis 

in an inflamed tissue [112–114], where IGF-1 mediates a transition by enhancing 

mesenchymal/stromal cell proliferation/migration and matrix deposition. With regard to 

vascular inflammation, pro-atherogenic factors such as advanced glycosylation end products 

[115] and TNF-α [116] have been shown to increase IGF-1 synthesis in macrophages.

IGF-1 may act on surrounding cells in a paracrine manner or on macrophage themselves in 

an autocrine manner. Reports about potential IGF-1 effects on macrophages in the context of 

atherosclerosis have been conflicting. IGF-1’s potentially pro-atherogenic effects have been 

reported as enhancing chemotactic macrophage migration [117], stimulating tumor necrosis 

factor-α (TNFα) expression [118], or enhancing low-density lipoprotein (LDL) uptake and 

cholesterol esterification [119]. On the contrary, IGF-1 was reported to reduce lipid 

oxidation and foam cell formation by macrophages mediated by 12/15-lipoxygenase [120]. 

In fact, clinical investigations provide indirect evidence of IGF-1 exerting anti-inflammatory 
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effects: For instance, administration of the IGF-1 and IGFBP-3 complex attenuated 

proinflammatory acute phase response in severely burned patients [121, 122]. Of note, some 

of these in vitro studies used concentrations of IGF-1 well above the physiological range, 

making it challenging to interpret the results. Interpretation of experiments using IGF-1 on 

cultured macrophages is often difficult, since experiments are often performed in a serum-

containing medium, because of the high sensitivity of macrophages to serum deprivation. 

Due to serum-derived IGF-1, IGFBPs, insulin, and protein-degrading activity, it is difficult 

to estimate bioavailability of externally added IGF-1 or insulin. Careful examination of 

receptor usage (IGF-1R, insulin receptor, or IGF/insulin hybrid receptor) and signaling 

pathways may be helpful to unravel conflicting previous findings.

Recently, our group assessed a potential direct link between IGF-1 effects on macrophages 

and atherosclerosis [46] by creating myeloid-specific IGF1R-deficient mice on Apoe-null 

background (Lyz2-Cre/IGF1Rfl/fl/Apoe−/− mice). The loss of IGF-1 signaling caused an 

increase of atherosclerotic burden concomitant with elevated monocyte recruitment to the 

lesions; moreover, macrophage-IGF1R deficiency induced features of an unstable plaque 

phenotype [46]. Consistent with these in vivo observations, peritoneal macrophages isolated 

from this animal model demonstrated enhanced responses to pro-inflammatory stimuli such 

as interferon-gamma or lipopolysaccharide (i.e. enhanced M1 activation) as well as elevated 

matrix metalloproteinase production and reduced lipid efflux leading to elevated lipid 

accumulation [46]. Thus IGF-1 may have a fundamental role in macrophage activation and 

also modulate atherosclerosis by regulating MMPs expression levels and lipid metabolism.

The downstream signaling pathway from the IGF1R largely coincides with the insulin 

receptor signaling pathway; moreover, IGF1R and insulin receptor are structurally similar 

and form a heteromeric tetramer (α+β-subunits of IGF1R and α+β-subunits of insulin 

receptor; hybrid receptor). These hybrid receptors mediate IGF-1-dependent signaling but 

not insulin signaling, thus formation of hybrid receptors is inhibitory to insulin effects. 

Nullifying IGF1R expression could potentially enhance insulin-sensitivity via liberation of 

insulin receptor subunits to form holoreceptors. Our group investigated IGF1R and insulin 

receptor expression in mouse peritoneal macrophages and found that both receptors are 

expressed, however, insulin receptor is expressed predominantly, allowing insulin 

holoreceptor and IGF-insulin hybrid receptor expression but no IGF-1 holoreceptors [46]. 

Therefore, it is likely in macrophages that the hybrid receptor mediates IGF-1-dependent 

signaling, whereas insulin holoreceptor mediates insulin-dependent signaling. Consistently, 

we observed that the genetic deletion of IGF1R did not influence insulin-induced Akt 

phosphorylation in macrophages [46], making it unlikely that the elevated atherosclerotic 

burden is mediated indirectly by altered insulin signaling.

Of note, potential insulin effects on macrophages and atherosclerosis have been a subject of 

active investigation. In one report, myeloid-specific insulin receptor deletion in Apoe-null 

mice (Lyz2-Cre/Insrfl/fl/Apoe−/− mice) lowered atherosclerotic burden and this was 

associated with attenuated inflammatory response [123]. On the contrary, insulin receptor-

deficient bone marrow transplantation into LDL receptor-null mice caused elevated plaque 

burden, associated with increased necrotic core size and apoptotic cell numbers [124], 

mediated by enhanced ER stress and apoptosis of macrophages [124]. Reasons for these 
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divergence in findings are still obscure; it has been pointed out that the difference in the 

animal models (Lyz2-Cre mediated floxed-insulin receptor deletion vs. bone marrow 

transplantation from insulin receptor-deficient mice; Apoe-null vs. LDLR-null), or animal 

condition (high cholesterol diet vs. high cholesterol+ choline-supplemented diet that is more 

proinflammatory) may explain the difference [125, 126]. Insulin has been considered pro-

inflammatory in macrophages [127, 128] and has been reported to promote foam cell 

formation [129], in contrast to anti-inflammatory and anti-foam cell formation effects of 

IGF-1 [46, 120]. Some of above papers do not evaluate receptor usage, even when relatively 

high dose (100 nM) of insulin had been used. Further studies are necessary to differentiate 

signaling mechanisms and effects of IGF-1 and insulin on macrophages, in order to elucidate 

their pathophysiological roles in diseases where chronic inflammation plays a vital role, 

such as atherosclerosis and diabetes.

<Endothelial cells>

The endothelium is the master regulator of vascular functions such as vascular permeability, 

vasomotor activity, and pro-or anti-thrombotic activities. The endothelium also plays a 

leading role in new vessel formation (i.e. angiogenesis) and in establishment of 

inflammation by recruiting proinflammatory cells via expression of adhesion molecules or 

chemoattractant factors. Any of these endothelial functions are vital to the integrity of the 

vasculature, and are therefore important for the pathophysiology of atherosclerosis.

Vascular endothelial cells express IGF1R and thus the endothelium is a target organ of 

IGF-1[130]. Potential IGF-1 effects on the endothelium have been investigated extensively 

(reviewed in [130, 131]); however, some of these findings have been conflicting, hence the 

definite roles of IGF-1 in regulation of endothelial function are still elusive. Elevated 

vascular permeability is an integral part of the pathogenesis of atherosclerosis and has been 

recently proposed to be a marker of vulnerable atherosclerotic plaques [132]. It has been 

reported that IGF-1 supports the endothelial blood-brain barrier function in ischemic brain, 

reducing permeability and proinflammatory cell infiltration [133]. In a mouse model of renal 

fibrosis, IGF1R overexpression reduced renal capillary permeability and proinflammatory 

cell infiltration, vice versa, endothelial specific deficiency of IGF1R lowered endothelial 

barrier function as seen by increased inflammatory cell infiltration and vascular endothelial-

cadherin phosphorylation and increased the fibrosis of kidney disease [134]. On the contrary, 

IGF-1 was also reported to impair the blood-retinal barrier function by downregulating tight 

junction proteins via a GSK-3β/CREB dependent mechanism [135, 136]. It has been 

suggested that in the presence of hyperglycemia the IGF-I/IGF-1R axis stimulates retinal 

endothelial cell permeability [137]. Reasons for these apparently conflicting observations 

are not clear. One can speculate that different tissue-derived endothelial cells respond 

differently to IGF-1, or it is also possible that other factors (e.g. hormones, growth factors, 

or a specific metabolic condition such as high glucose) influence endothelial cells’ response 

to IGF-1. For instance, hyperglycemia induces the association of integrin-associated protein 

(IAP) with tyrosine phosphatase non-receptor type substrate-1 (SHPS-1), changing the 

endothelial cell response to IGF-1 and increasing permeability [138].
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Impaired endothelium-dependent vasodilation precedes atherosclerosis development [8, 139, 

140]. IGF-1 may promote vasodilation by upregulating eNOS activity in the endothelium 

and increasing nitric oxide production [141, 142]. In human subjects, low plasma IGF-1 

levels are associated with impaired endothelium-dependent vasodilation [143]. In contrast, it 

has been also shown that IGF1R inhibits insulin-induced eNOS activity, by forming a hybrid 

receptor (i.e. one combination of IGF-1 alpha-beta subunits complexed with one 

combination of insulin alpha-beta subunit) [144]. Therefore, a reduction in IGF1R 

expression levels improved insulin-dependent vasorelaxation [144]; and vice versa, 

overexpression of IGF1R decreased nitric oxide bioavailability and insulin sensitivity in the 

endothelium [145]. However there is no evidence as yet that the ability of IGF-1 to stimulate 

eNOS plays a role in its atheroprotective effects [96]. Of note, IGF1R overexpression 

promoted endothelial regeneration after denudation, consistent with IGF-1’s pro-repair 

activity in the endothelium [145].

Intriguingly, endothelium-selective overexpression of insulin receptor blunted shear stress 

induced eNOS activation and elevated superoxide production by NADPH-oxidase, and these 

two effects combined to decrease NO bioavailability [146], leading to impaired 

endothelium-dependent vascular relaxation and accelerated atherosclerosis [146]. It can be 

speculated that the overexpression of insulin receptor could lead to increased abundance of 

IGF-1/insulin hybrid receptors, thereby potentially enhancing IGF-1 sensitivity in the 

endothelium. Therefore, the observed consequences may have been caused by enhanced 

IGF-1-dependent signaling activity in the endothelium. Overall, IGF-1 and insulin signaling 

pathways are intricately related as are their potential effects on vascular tone.

IGF-1 promotes angiogenesis and nascent vessel formation [141, 147], and also increases 

endothelialization of denuded artery by promoting endothelial cell proliferation and 

migration [145]. Promoting re-endothelialization may be beneficial to inhibit restenosis after 

angioplasty procedures. However, it is unclear whether it also provides benefits in 

atherosclerosis, since the endothelium layer stays physically intact (however functionally 

compromised) on atherosclerotic plaques. Angiogenesis or neovascularization in 

atherosclerotic lesions, which are actually promoted by hypoxia within the lesion, is 

considered to promote plaque progression and destabilization [148–150]. Endothelial 

progenitor cells (EPCs) in the circulation or in the vascular wall may contribute to 

endothelial repair and prevent endothelial dysfunction [151, 152]. Potential effects of IGF-1 

on EPC-mediated endothelial repair are unclear. It has been reported that in healthy human 

subjects or in subjects with GH deficiency the GH/IGF-1 axis positively regulates circulating 

EPC levels [153–155]. Consistent with these observations in human subjects, IGF-1 

administration elevated circulating EPC levels in animal models [45, 153, 156]. More recent 

reports [157, 158] investigated acromegalic subjects, and interestingly, these two reports 

found contradictory results of increased [157] or reduced [158] levels of circulating EPCs 

compared to control subjects. Reasons for the discrepancy are unclear, however an 

interesting notion from these studies is that there seems to be an inverted U-shaped 

relationship between GH/IGF-1 and circulating EPC levels (i.e. these seems to be an optimal 

range of GH/IGF-1 for maintaining circulating EPC levels). Future investigations to explore 

mechanisms whereby IGF-1 can positively/negatively regulate EPC availability in vivo 

would be necessary to comprehend IGF-1’s effects on endothelial repair.
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There is evidence suggesting potential anti-oxidant effects of IGF-1 in vascular endothelial 

cells. IGF-1 promoted Nrf2-dependent antioxidant responses in cultured endothelial cells 

and low circulating IGF-1 levels impaired the Nrf2-dependent antioxidant response [159]. 

IGF-1 has been also shown to positively regulate expression levels of GPX1, a major anti-

oxidant enzyme, and attenuate oxidative stress-induced premature senescence of endothelial 

cells [160]. Oxidative stress and premature senescence of endothelial cells is considered 

integral to the mechanisms of endothelial dysfunction, and thus causally related to 

atherosclerosis [161, 162]. Therefore, potential anti-oxidant effects of IGF-1 in the 

endothelium may contribute to the atheroprotective activity of IGF-1. Further studies are 

needed to investigate a direct link between the potential antioxidant effects of IGF-1 and 

reduction of atherosclerotic burden.

4. Modifiers and effectors of IGF-1 on the vasculature

Pregnancy-associated plasma protein A (PAPP-A) is a metalloproteinase and its known 

substrates are IGFBP-4, IGFBP-2, and IGFBP-5 [163, 164]. Circulating PAPP-A has been 

recognized for its positive association with prevalence of cardiovascular diseases [165–168]. 

There has been debate whether elevated PAPP-A levels are related to cardiovascular diseases 

[169, 170], and recent findings in animal models suggest a causal role of PAPP-A in 

vascular complications, such as injury-induced stenosis [171] and atherosclerosis [172–174], 

and also in metabolic dysfunction induced by high-fat/high-sucrose diet [175]. SMC-

targeted overexpression of mutated PAPP-A, which is defective in IGFBP-4 proteolysis 

(Asp1499 to Ala) or both IGFBP-4 and −5 proteolysis (Glu483 to Ala), did not promote 

lesion formation, whilst an overexpression of wild-type (i.e. proteolysis-active) PAPP-A 

promoted lesion development, suggesting that proteolytic activity is essential for PAPP-A to 

promote atherosclerosis [176]. Since IGFBP-4 is considered inhibitory to IGF-1 action, 

proteolysis of IGFBP-4 should increase the bioavailability of IGF-1 to adjacent cells. In 

accordance with the notion, SMC-targeted overexpression of PAPP-A increased IGFBP-5 

mRNA expression (known to be positively regulated by IGF-1) in aorta [173]. Therefore, it 

has been speculated that PAPP-A promotes atherosclerosis by liberating IGF-1 from 

IGFBP-4, thereby enhancing IGF-1 bioavailability [173, 176]. This is in contradiction to 

other reports showing atheroprotective effects of IGF-1 [45, 93, 95–98, 105]. PAPP-A’s 

IGF-independent mechanisms of action remain a possibility. Of note, IGFBP-4 is known to 

have potent IGF-independent anti-angiogenic and anti-tumorigenic effects [177] and these 

effects are associated with anti-cathepsin B activity [178]. Pharmacological and gene 

therapy approaches have been attempted to test PAPP-A as a therapeutic target in animal 

models of atherosclerosis. Targeting of PAPP-A with a monoclonal antibody resulted in a 

70% reduction in atherosclerotic burden in Apoe-null mice [179]. Stanniocalcin-2 is a 

protein that binds and inhibits PAPP-A, and AAV8-mediated overexpression of 

stanniocalcin-2 in liver reduced atherosclerosis in Apoe-null mice [180]. There reports 

suggest that systemic inhibition of PAPP-A may be a promising approach for treating 

atherosclerosis.

Diabetic status is a significant risk factor for atherosclerosis, and it has been shown that in 

vascular smooth muscle cells hyperglycemia diverts the IGF-1 signaling pathway from its 

canonical IRS-1-dependent phosphorylation cascades to a SHPS-1 mediated pathway, 
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leading to enhanced proliferation, migration, and dedifferentiation [181, 182]. Detailed 

mechanisms have been described indicating that the shift of IGF-1/IGF-1R signaling 

pathway is mediated via SHPS-1, which requires ligation of integrin αVβ3 with its ligand 

such as thrombospondin, vitronectin and osteopontin [183]. SMC expression levels of these 

ligands are elevated under hyperglycemic condition, consistent with hyperglycemia induced 

shift of IGF-1 signaling. In fact, a monoclonal antibody against αVβ3 integrin inhibited 

development of atherosclerotic lesions in diabetic pigs [184]. It has been also shown that 

hyperglycemia downregulates IRS-1, which should also contribute to the shift to the 

SHPS-1-dependent signaling pathway [182]. Moreover, hyperglycemia enhances smooth 

muscle cells’ sensitivity to IGF-1 via p62/PKCζ-dependent NADPH-oxidase 4 upregulation 

[185], further promoting smooth muscle cell proliferation/migration. In light of the 

strikingly diverse phenotypes of SMC-derived cells within atherosclerotic plaques, it would 

be valuable to investigate potential consequences of the diversion of IGF-1R signaling 

pathways on phenotypic switching and pathologic intimal thickening.

Several miRNAs have been reported to regulate the IGF-1 system in cardiac tissue [186–

189] or in arteries [190, 191]. miR-133a increased IGF1R mRNA half-life and IGF1R 

expression levels in SMCs, thereby promoting proliferation [190]. miR-490–3p is expressed 

in aortic SMCs and negatively regulates PAPP-A [191]. Of note, miR-490–3p was found to 

be downregulated in atherosclerotic plaques with a concomitant increase in PAPP-A levels 

[191], potentially enhancing IGF’s effects.

Extracellular vesicles (EVs) are cell-derived spherical structures of various origins, 

including exosomes and microvesicles [192], which can transport proteins, mRNAs or non-

coding RNAs. It has been suggested that EVs can positively regulate the IGF-1 system, 

leading to beneficial outcomes, such as enhancing angiogenesis in ischemic skeletal muscle 

[193] and protecting myocardium from ischemic damage[194, 195]. However, EVs could 

also negatively regulate the IGF-1 system, thereby inhibiting angiogenesis in diabetic heart 

[196] or potentially promoting apoptosis of endothelial cells [197]. IGF-1 may also regulate 

release of EVs. For instance, IGF-1 has been reported to facilitate release of EVs by 

cardiomyocytes and exert cardioprotection [198]. The potential role of EVs in modulating 

the IGF-1 system in atherosclerosis is largely unexplored.

5. Future perspectives

There is now a solid body of evidence testing IGF-1’s effects in a cell-type specific manner 

using murine models of atherosclerosis. Thus far, outcomes of these investigations point to 

atheroprotective effects of IGF-1, and in particular the ability of IGF-1 to promote features 

of a more stable atherosclerotic plaque. Consistent with our observations, several clinical 

trials established a strong association between low IGF-1 (or high IGFBP levels) and 

increased risk of CVD. Yet, it should be noted that murine models of atherosclerosis have 

notable limitations [199], and outcomes in murine models cannot be directly inferred to the 

pathology of human disease. For instance rodents and humans have significant differences in 

mechanisms of lipid metabolism and in their immune systems, which play essential roles in 

the pathology of atherosclerosis [199]. Atherosclerotic plaques in mice rarely develop into 

atherothrombotic plaques [199], whereas in humans plaque erosion or rupture commonly 
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lead to acute ischemic events. Moreover, rodents do not seem to develop diffuse/adoptive 

intimal thickening, however large mammals such as pigs and horses are similar to humans 

[200–202]. Although there are no conventional animal models that develop spontaneous 

atherothrombotic events in a manner similar to human pathology, use of large animal models 

such as swine may in the future prove to be very informative [2, 199].
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Highlights

• Low circulating IGF-1 levels have been associated with cardiovascular 

diseases.

• Cell-type specific alterations of the IGF-1 system in animal models are 

consistent with atheroprotective effects of IGF-1.

• Evidence suggests beneficial roles of IGF-1 in the pathology of 

atherosclerosis.
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Figure. Cell-specific mechanisms underlying atheroprotective effect of IGF-1.
Cumulative reports of in vitro and in vivo investigations suggest that IGF-1 is suppressive to 

the recruitment of monocytes/macrophages to atherosclerotic plaques, production of 

proinflammatory cytokines, conversion of macrophages into lipid-laden foam cells, and 

extracellular matrix degradation. On the other hand, IGF-1 promotes smooth muscle cell 

(SMC) migration, proliferation and SMC-dependent matrix deposition. These cell-specific 

mechanisms may contribute to IGF-1-induced reduction in plaque burden and increase in 

plaque stability.
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