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Abstract

Configurationally stable, atropisomeric motifs are an important structural element in a number of 

molecules, including chiral ligands, catalysts, and molecular devices. Thus, understanding features 

that stabilize chiral axes is of fundamental interest throughout the chemical sciences. The 

following details the high rotational barriers about the Ar–C(O) bond of tropone amides, which 

significantly exceed those of analogous benzamides. These studies are supported by both 

experimental and computational rotational barrier measurements. We also report the resolution of 

an axially chiral α-hydroxytropolone amide into its individual atropisomers, and demonstrate its 

configurational stability at physiological pH and temperatures over 24 hours.

Graphical Absract:

Atropisomerism, a form of chirality arising from restricted rotation about an asymmetric 

axis, plays an important role in a number of functional molecules1 including chiral biaryl 

ligands and catalysts (e.g., 1,2 Figure 1A),3 as well as unidirectional molecular devices and 

switches.4 Single atropisomer therapeutics also exist, although they often have their roots in 
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natural products (e.g., 2,5 Figure 1A).6 However, given the critical importance of chirality in 

drug development, they are also becoming increasingly prevalent in de novo drug design 

(e.g., 3,7 Figure 1A).8 Compared to 5- and 6-membered aromatic rings commonly found in 

drugs, troponoids should have an increased likelihood of being atropisomeric due to their 

decreased external bond angles (Figure 1B). However, other features such as tropylium 

characteristics,9 ring puckering,10 and decreased aromaticity11 could influence the rotational 

barriers, as well. Only a few troponoids are known to exhibit atropisomerism, including 

colchicine (2, Figure 1A, ΔG‡
298 K = 22 kcal/mol)5 and bistropone homodimer 4 (Figure 1C, 

ΔG‡
298 K = 20.7 kcal/mol),12 both of which have relatively low rotational barriers. Given the 

growing interest in troponoid drug development,13 as well as the importance of 

atropisomerism throughout the chemical sciences, understanding how this motif influences 

atropisomerism compared to benzenoids would be helpful in designing new, functional 

atropisomeric molecules.

Our investigation began with DFT computations on a series of axially chiral tropolones and 

analogous benzenoids (Table 1).14 Troponoid substrates consistently exhibited higher 

rotational barriers than those of the corresponding benzenoids, with rotational energy barrier 

increases of up to 4.3 kcal/mol (Entry 4), and increases in half-lives to enantiomerization at 

room temperature of up to four orders of magnitude.

To confirm these energy barriers experimentally, we turned to α-hydroxytropolone 7 and 

benzamide 8 (Figure 2A, B), which were readily accessible from the corresponding 

carboxylic acids.15,16 1H NMR spectra of these molecules have diagnostic diastereotopic 

signals and observable E and Z amide isomers useful for probing the configurational 

stability of the Ar–C(O) and N–C(O) axes, respectively, through variable temperature NMR 

experiments (Figure 2A, B). Prior studies on hindered benzamides have established that, in 

addition to isolated Ar–C(O) and N–C(O) rotations, isomerization can also proceed through 

an often energetically intermediate, concerted Ar–C(O)/N–C(O) process (Figure 2C).17 

Consistent with this precedent, computational modeling on both 7 and 8 revealed that Ar–

C(O) rotational barriers were lower in energy than N–C(O) rotation, and the concerted Ar–

C(O)/N–C(O) rotation was the lowest energy pathway for effective N–C(O) amide 

isomerization (Figure 2C). These results were also validated by variable temperature NMR 

experiments. Heating a solution of 7 in DMSO-d6 led to coalescence of only the 

diastereotopic signals, which allowed us to measure the individual rotational energy barriers 

of the Ar–C(O) bonds of both E and Z isomers (ΔG‡
E = 16.7 kcal/mol, ΔG‡

Z =16.5 kcal/

mol). Conversely, cooling a sample of 8 revealed proton diastereotopicity, and allowed an 

experimental Ar–C(O) rotational barrier measurement (ΔG‡
E = 12.2 kcal/mol, ΔG‡

Z = 12.1 

kcal/mol, Figure 2B). Finally, while no coalescence of the amide rotamers of 7 was observed 

at higher temperatures, heating a solution of 8 in DMSO-d6 to 90 °C led to complete 

coalescence of its amide rotamers (Figure 2B). The increased stability of the N–C(O) axis of 

7 relative to 8 demonstrates the ancillary rigidity provided by the tropone.

In order to observe these rotational barrier differences in more configurationally stable 

systems, we modeled brominated variants of the compounds shown in Table 1 (Figure 3A).
7,14,18 Rotational barriers increased by upwards of 11 kcal/mol for the benzenoids and by 14 

kcal/mol for the troponoids. A corollary of this effect is observed in the half-life to 
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enantiomerization of 10c, which was computed to take place over centuries at room 

temperature (t½, 298 K = ~300 years), relative to hours for benzenoid 9c (t½, 298 K = ~10 

hours). Based on the classification system put forward by LaPlante and co-workers, these 

two molecules are considered to be class 3 (ΔG‡ > 28 kcal/mol) and class 2 (ΔG‡ ≈ 20–28 

kcal/mol) atropisomers, respectively (Figure 3B).19 Class 2 molecules fall into a category 

where the molecules are atropisomeric, but the rotational barriers might not be high enough 

to develop them as single atropisomers. Class 3 molecules are those with rotational barriers 

sufficiently high to confidently develop as single-atropisomer drugs.

To obtain the quantities of enantioenriched 10c necessary to confirm these high energy 

barriers experimentally, we turned our attention to a peptide-catalyzed dynamic kinetic 

atroposelective halogenation14,18,20 that had been established on structurally analogous 

benzamides (i.e. 11 vs. 6c, Figure 4A/B).20a Employing slightly modified conditions to 

those used previously on 11, we were able to obtain 10c in 75:25 er.21 We next monitored 

enantioerosion of a solution of enantioenriched 10c (93:7 er) in triglyme over 60 minutes at 

145 °C, and obtained an experimental energy barrier of 30.1 kcal/mol.16 A discrepancy 

between this value and that computed using DFT at the same temperature (ΔG‡
418 K = 32.7 

kcal/mol) may be due to the triglyme solvent.

Methoxytropolones, such as 10c, are known precursors to α-hydroxytropolones,22 which are 

promising dinuclear metalloenzyme-inhibiting fragments we have been leveraging in drug-

development pursuits for a number of different diseases.23 The high energy barriers we 

identified for 10c suggested that structurally analogous α-hydroxytropolones could be 

studied as single atropisomers. α-Hydroxytropolone 15 was thus synthesized through 

demethylation of 10c and resolved into individual enantiomers with a preparatory scale 

chiral stationary phase column.16 To test stability under physiological conditions, an 

enantiomerically enriched sample consisting of 93% (−)-15 and 7% (+)-15 was dissolved in 

phosphate buffer (pH = 7.4) and heated to 37 °C for 24 hours; no change was observed in the 

enantiomeric ratio over this time period (Figure 4E). This result is important for tropolone 

development as single atropisomers, since ionization states can change rotational barriers24 

and tropolones are likely to exist in an anionic state at physiological pH.25

In conclusion, computational and experimental rotational barrier measurements demonstrate 

that tropone-amide chiral axes are substantially higher than those of analogous benzamides. 

We also synthesized and resolved a configurationally stable, axially chiral α-

hydroxytropolone amide, and we found the enantiomers to be stable at physiological 

temperature and pH for over 24 hrs. Given the importance of configurationally stable 

atropisomeric molecules throughout the chemical sciences, these studies suggest that 

tropones could find a valuable role in atropisomeric molecule design.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Atropisomerism and troponoids.
(A) Examples of valuable molecules exhibiting atropisomerism. (B) External bond angle 

differences between 5, 6, and 7-membered aromatic rings, and their influence on proximity 

of ortho-substituents. (C) Bistropone homodimer 4 with an experimental rotational barrier 

measurement.

Hirsch et al. Page 6

Org Lett. Author manuscript; available in PMC 2020 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Variable temperature 1H-NMR spectra of (A) troponoid, 7 (DMSO-d6), and (B) benzamide, 

8 (CD2Cl2 and DMSO-d6) on an Agilent 500 MHz NMR spectrometer. The peaks assigned 

to the protons of the Z and E amide conformers are denoted by (*) and (**), respectively. 

Peak intensities normalized for clarity. (C) Proposed pathways to enantiomerization (Ar–

C(O) rotation) and amide isomerization (N–C(O) rotation) for differentially substituted 

thiazolidine systems with energy values (kcal/mol) indicated for ground states, as well as 

computed rotational barriers denoted in the subsequent table (calculated at the M06–2X-

D3/6–311++G(2d,3p) level of theory with using the Gaussian 09 suite). a Obtained from 

considering both isolated Ar-C(O) and concerted pathways.
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Figure 3. 
(A) Computed rotational energy barriers of brominated troponoids and benzenoids, with (B) 

comparison to non-brominated molecules. Class 2 = intermediate barrier and Class 3 = 

stable atropisomerism. Rotational barriers were computed at the M06–2X/6–311++G(2d,

3p)//B3LYP/6–31+G(d,p) level of theory at 298.15 K and 1 atm using the Gaussian 09 suite.
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Figure 4. 
(A) Atroposelective halogenation of close troponoid structural homolog 11 using peptide 13. 

(B) Peptide 14 was found to deliver enantioenriched 10c. (C) a-Hydroxytropolone 

atropisomers of 15. (D) Enantiomerically enriched (–)-15 before (blue) and after (red) 

incubation at 37 °C in phosphate buffer (pH = 7.4) as monitored by analytical HPLC 

(CHIRALPAK® IC, 250 mm, i.d. 4.6 mm, 30% acetonitrile in water with 0.1% TFA, 1.5 

mL/min). Peak intensities normalized for clarity.
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Table 1.
Computed rotational energy barriers of related troponoids and benzenoids.

Rotational barriers were computed at the M06–2X/6–311++G(2d,3p)//B3LYP/6–31+G(d,p) level of theory at 

298.15 K and 1 atm using the Gaussian 09 suite.

Benzenoids Troponoids

Entry R1 R2 No. t½
(s)

ΔG‡

(kcal/mol)
No. t½

(s)
ΔG‡

(kcal/mol)

1 Ph Me 5a 6 × 10–11 3.7 6a 1 × 10–8 6.9

2 N(CH2)5 H 5b 6 × 10–6 10.5 6b 1 × 10–4 12.3

3 N(CH2)5 Me 5c 4 × 10–4 13.0 6c 0.3 16.9

4 N(i-Pr)2 Me 5d 5 × 10–4 13.2 6d 0.7 17.5
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