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ABSTRACT The genetic architecture of complex human traits and diseases is affected by large number of
possibly interacting genes, but detecting epistatic interactions can be challenging. In the last decade,
several studies have alluded to problems that linkage disequilibrium can create when testing for epistatic
interactions between DNA markers. However, these problems have not been formalized nor have their
consequences been quantified in a precise manner. Here we use a conceptually simple three locus model
involving a causal locus and two markers to show that imperfect LD can generate the illusion of epistasis,
even when the underlying genetic architecture is purely additive. We describe necessary conditions for such
“phantom epistasis” to emerge and quantify its relevance using simulations. Our empirical results demon-
strate that phantom epistasis can be a very serious problem in GWAS studies (with rejection rates against
the additive model greater than 0.28 for nominal p-values of 0.05, even when the model is purely additive).
Some studies have sought to avoid this problem by only testing interactions between SNPs with R-sq. ,0.1.
We show that this threshold is not appropriate and demonstrate that the magnitude of the problem is even
greater with large sample size, intermediate allele frequencies, and when the causal locus explains a large
amount of phenotypic variance. We conclude that caution must be exercised when interpreting GWAS
results derived from very large data sets showing strong evidence in support of epistatic interactions
between markers.
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A big challenge in genetics is to understand how variation at the
DNA sequences translates into phenotypic variation. Genome-wide-
association (GWA) studies address part of this challenge by testing
for the association between phenotype (or a disease indicator) with
genotype, one locus at a time. In the last decade, many GWA studies
were conducted; these studies have reported thousands of SNPs (single
nucleotide polymorphism) associated to complex traits and diseases
(http://www.ebi.ac.uk/gwas).

Recently, several studies in model organisms (e.g., Mackay 2014),
humans (Strange, Ask, and Nielsen 2013) and agricultural species
(e.g., Huang, Xu, and Cai 2014), have used genotype data linked to
phenotypes to investigate the presence of epistatic interactions be-
tween loci. Cordell (2002, 2009) and Wei, Hemani, and Haley (2014)
provide comprehensive reviews of the methods commonly used to
detect epistatic interactions.

There are several issues associated with studies aimed at detecting
interactions, including matters of scale, the importance of the contri-
bution of epistasis at the level of the genotype effects or at the level of the
genotypic variance (e.g., Hill, Goddard, and Visscher 2008) and how an
interaction detected in a linear statistical model may be associated to
biological pathways that underlie a complex trait (e.g., Wang, Elston,
and Zhu 2010; Aschard 2016). The latter becomes particularly prob-
lematic when themarkers used to assess associations between SNPs and
phenotypes (or a disease indicator) are in imperfect linkage disequilib-
rium (LD) with the alleles at the causal loci (i.e., those responsible for
inter-individual genetic differences in a trait or disease phenotype).
Under those conditions, evidence supporting the existence of a
non-null interaction between markers does not necessarily provide
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definite evidence of epistasis at causal loci. Specifically, when the
SNPs used in association analyses are in imperfect LD with the
alleles at causal loci, linear regression on SNPs may lead to unac-
counted variance, or missing heritability (e.g., Manolio et al. 2009;
de Los Campos et al. 2015). When this unaccounted additive signal
is correlated with interaction contrasts, the “illusion” of epistasis is
created even for traits that are purely additive.

Several authors have expressed concerns about the role that LD
can have on the detection of epistasis (Wood et al. 2014; W.-H. Wei,
Hemani, and Haley 2014). However, these problems have not been
quantified nor have they been given a precise mathematical treat-
ment. In this study, we present a simple three locus model involving
a causal (unobserved) locus and two markers that makes explicit
how phantom epistasis may emerge even in systems that are strictly
additive. We use this model to derive a set of conditions that are
necessary for the occurrence of phantom epistasis, and quantify the
magnitude of the problem using simulations based on real human
genotypes from the UK-Biobank. The existence of phantom epista-
sis is also studied using extensions of the model that include dom-
inance and multiple loci. Our results indicate that imperfect LD can
lead to seriously inflated type-I error rates. We also show that the
rate of detection of phantom epistatic interactions increases with
sample size; this should be considered when testing for epistatic
interactions using big data sets such as the ones that are becoming
available.

MATERIALS AND METHODS
Webegin by considering a simplemodel with three biallelic loci. One
of them, denoted as zi, represents a causal locus (also referred as to
the ‘quantitative trait locus’, QTL) on observation i and has a direct
effect on the expression of the phenotype yi. The other two loci,
denoted as x1i and x2i, are markers that are possibly in LD with the
QTL but have no causal effect on the phenotype. For SNPs, a standard
practice is to code genotypes by counting at each of the loci the
number of copies of a reference allele carried by the ith individual.
Here, to facilitate the presentation we assume that genotypic codes
and phenotypes are expressed as deviations from their corresponding
means; therefore EðziÞ ¼ Eðx1iÞ ¼ Eðx2iÞ ¼ EðyiÞ ¼ 0. In this setting,
a single locus strictly additive model takes the form

yi ¼ zibþ di; [1]

where b is the additive effect of an allele substitution at locus z, and
di is an error term. Evidently, with only one causal locus there is no
epistasis. Next, suppose that an instrumental regression of the form

yi ¼ x1ib1 þ x2ib2 þ x1ix2ib12 þ ei [2]

is used to investigate the presence of epistasis. Here, the b’s are re-
gression coefficients that are functions of the QTL effect (b) and of the
(multilocus) LD involving the two markers and the QTL genotypes.
In the population, given the centered genotype codes, the regression
coefficients entering in the right-hand-side of [2] are
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If the random residual di in expression [1] is orthogonal to
the genotypes, then Eðyix1iÞ ¼ Eðzix1iÞb, Eðyix2iÞ ¼ Eðzix2iÞb and
Eðyix1ix2iÞ ¼ Eðzix1ix2iÞb. Thus, the population regression coeffi-
cients are defined by
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This indicates that the regression coefficients of the instrumental
model [2] are not only functions of the QTL effect (b) and of pair-
wise (1st order) LD but also of higher order LD, e.g., joint disequilib-
rium at three loci, Eðzix1ix2iÞ. The moments involved in the right
hand-side of [3] are diploid genotypic measurements of LD. Under
random mating these genotypic measures of LD are equal to twice
the standard haploid measures of LD (the D-coefficients for two and
three loci linkage disequilibrium; see section 1 of the Supplementary
Methods for further details).

In the population, the interaction effect b12 is given by a linear
combination involving two-loci LD between one of the markers and
the QTL, and three-loci LD involving the two markers and the QTL:
b12 ¼ ½t31Eðzix1iÞ þ t32Eðzix2iÞ þ t33Eðzix1ix2iÞ�b. Here, the t’s are the
entries of the third row of the inverse of the coefficient matrix

T21 ¼
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Required conditions for phantom epistasis
If the QTL is in LE with the two markers, then pðzi; x1i; x2iÞ ¼
pðziÞpðx1i; x2iÞ. Consequently, Eðzix1iÞ ¼ Eðx1iÞEðziÞ ¼ 0, Eðzix2iÞ ¼
Eðx2iÞEðziÞ ¼ 0, and Eðzix1ix2iÞ ¼ Eðx1ix2iÞEðziÞ ¼ 0. Therefore, all
elements of the right-hand-side of [3] are equal to zero and, thus
b1 ¼ b2 ¼ b12 ¼ 0. Therefore, for phantom epistasis to emerge a
first necessary condition is that the QTLmust be in LDwith at least one
of the SNPs. (This condition is a special case of a more general
condition that we discuss below.)

On the other extreme, if there is perfect LDbetween theQTL and the
marker pair ðx1ix2iÞ, then theQTL genotype can be expressed as a linear
function of the twomarker genotypes zi ¼ x1ib1 þ x2ib2. In this case, a
linear regression on the two markers captures fully the QTL variance
and therefore the interaction termwill be equal to zero. (A derivation of
this intuitive result is presented section 2 of the SupplementaryMethods.)
Therefore, perfect LD is a sufficient condition forb12 ¼ 0. Consequently,
a second necessary condition for phantom epistasis to emerge is imperfect
LD between the QTL and the marker pair. This guarantees that some
fraction of the QTL variance is not captured by linear regression on
the two marker genotypes. Furthermore, if the left-out QTL signal is
not orthogonal to the interaction contrast x1ix2i, then b12 6¼ 0:

Consider now an intermediate casewhere one of themarkers (say x2i)
is independent of the pair formed by the QTL and the other marker
ðzi; x1iÞ. This implies that pðzi; x1i; x2iÞ ¼ pðzi; x1iÞpðx2iÞ. Under this
condition, because the two markers are in LE, the coefficient matrix

and its inverse (T21) is diagonal; therefore, b12 ¼ Eðzix1ix2iÞ
Eðx21ix22iÞ2 Eðx1ix2iÞ2 b.

Moreover, Eðzix1ix2iÞ ¼ Eðzix1iÞEðx2iÞ ¼ 0, implying that b12 ¼ 0.
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Therefore, a third necessary condition for phantom epistasis to emerge is
that the three loci must be jointly in LD.

In conclusion, in the system discussed above, phantom epistasis can
emerge if the three loci are in mutual but imperfect LD. Unfortunately,
this condition cannot be assessed when the QTL genotype is unknown.
Empirically only LD between the two markers can be assessed.

Phantom epistasis in multi-locus models
In an additive multi-locus model expression [1] becomes

yi ¼
Pq
j¼1

zijbj þ di: When testing pairwise interactions between

markers the empirical model [2] remains unchanged; therefore,
if the two markers involved in the instrumental model are in LE the
matrix representing left-hand side of the OLS systems of equations
is diagonal. In this setting, phantom epistasis emerges when the
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If one of the markers is in LE with the other marker and with all the
QTL then Eðx1ix2izijÞ ¼ 0 " j, thus there will not be phantom
epistasis.

In the presence of dominance, the causal (single locus) model
becomes yi ¼ azi þ dz2i þ di where a and d are additive and domi-
nance values, respectively. If the empirical model of expression [2] is
used to test for epistatic interactions then the left-hand-side of expres-
sion [3] remains unchanged, but the right-hand-side becomes
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indicating that both dominance and additive effects can indeed
contribute to phantom epistasis. In this system, phantom epistasis
will emerge whenever Eðx1ix2iziÞaþ Eðx1ix2iz2i Þd 6¼ 0: The condi-
tions needed for phantom epistasis to emerge in a system involving
dominance are the same as the ones described for the additive model.
These include, first, imperfect LD between zi and z2i with the marker
pair ðx1i; x2iÞ such that either zi or z2i or both cannot be fully explained
by a linear combination of the two markers. Second, phantom epis-
tasis requires mutual LD at the three loci. If one of the markers
(say x2i) is independent of the other-marker-QTL pair, then,
Eðx1ix2iziÞaþ Eðx1ix2iz2i Þd ¼ Eðx2iÞ½Eðx1iziÞaþ Eðx1iz2i Þd� ¼ 0.

Simulation studies
The analytical results presented in the previous section indicate that
multi-locus LD plays an important role in determining whether phan-
tomepistasismayemerge.Toshed lighton thenatureand themagnitude
of theproblemweconductedMonteCarlo simulationsusingrealhuman
genotypes of distantly related white Caucasian individuals from the
UK-Biobank.

In a first set of simulation scenarios, we generated data according to
an additive model with a single causal locus (as in [1]) that explained
either 0.5 or 1% of the phenotypic variance. The position of the QTL
genotype zi was determined by randomly choosing a marker position
on human chromosome 1;marker x1i was always adjacent (“to the left”)
to theQTLwhereas the othermarker (x2i) was placed at increasing base
pair distance (“to the right”) of the QTL.

Weanalyzed the simulated phenotypes using an instrumentalmodel
such as the one in [2] extended with inclusion of an intercept and the
top 5 SNP-derived PCs to avoid confounding due to any substructure

thatmaybepresent (seesection3ofSupplementaryMethods fordetails).
The null hypothesis ðH0 : b12 ¼ 0Þ was rejected at a 0.05 significance
level; therefore, rejection rates over 0.05 were interpreted as indicative
of phantom epistasis. All analyses were done with R (Rcore develop-
ment team (2012) using the BGData R-package (Grueneberg and de los
Campos, 2019).

Since the power to detect a non-null interaction effect depends on
sample size we analyzed data using a sample sizes of n = 10K, 50K, 100K
and 250K (K = 1,000).

Alternative simulation scenarios

SNPs in different chromosomes: To assess the potential impact of
long-range LD, in a new analysis setting we maintained the QTL-
proximal-marker pair (x1i; zi) in chromosome 1 as in our main
simulation scenario but now positioned the distal marker (x2i) in a
randomly chosen position on chromosome 2. In this data set, we do
not expect high levels of LD between SNPs in different chromosomes;
however, at least in theory, this could happen if selection favors
combinations of alleles, thus inducing LD at physically unlinked loci
(Bulmer 1971).

Multi-locus models: To consider the problem of phantom epistasis
in multi-locus models we first assumed that the genetic architecture of
the trait was determined by a major QTL plus an infinitesimal effect
that was strictly additive. The trait heritability was 0.5, the main
QTL explained 1% of the variance and the infinitesimal component
the remaining 49% (see Section 3 of the Supplementary Methods
for further details).

Second, we simulated data using a model that contains three
marker-QTL pairs: ðx1i; z1iÞ, ðx2i; z2iÞ and ðx3i; z3iÞ. As before, the trait
was strictly additive with the genetic effect,

P3
j¼1

zijbj, explaining 1% of

the phenotypic variance (each QTL explained 1/3 of the total genetic
variance). The three pairs were in chromosome 1. Within a pair, the
marker was the SNP immediately adjacent to the QTL in the array. To
study the effects of LDwemoved pairs 1 and 3 further apart and always
maintained the 2nd pair in the middle point (based on base-pair dis-
tance). The empirical model used to test for interaction was as that in
expression [2] with x3i in place of x2i; that is we tested for phantom
epistasis between SNPs in the first and third pair. This scenario aimed
at describing problems that may emerge due to an unaccounted QTL
(z2i in this case) which may be in simultaneous LD between the two
SNPs involved in the interaction.

Data availability
The genotypes used in the simulation were from the UK Biobank. Data
were acquired under project identification number 15326. The data are
available for all bonafide researchers and can be obtained by applying at
http://www.ukbiobank.ac.uk/register-apply/. The Institutional Review
Board (IRB) of Michigan State University has approved this research
with the IRB number 15-745. Supplemental material available at
Figshare: https://doi.org/10.25387/g3.7848233.

RESULTS
We begin presenting results from our main simulation scenario which
involves a single-locus with two SNPs, one proximal (x1iÞ and one distal
(x2iÞ to the QTL.

Figure 1 shows measures of linkage disequilibrium between the three
loci ðzi; x1i; x2iÞ involved in the system. The average (across Monte
Carlo replicates) proportion of variance of the QTL (zi) explained by
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the most adjacent marker (x1i) was about 0.085; however, the distri-
bution of this statistic is highly skewed. When x1i and x2i were the two
flanking markers of the QTL, on average they jointly explained 15%
of the QTL variance. Therefore, on average there was a sizable rate
of “missing” heritability. The R-sq. between x2i and either the other
marker or the QTL, falls very quickly for lags between 0-0.5Mb and
reached near zero values at approximately 1 Mb (Figure 1).

Figure 2 displays empirical rates of rejection by BP-distance
between the QTL and the distal marker (x2i), by sample size and
by proportion of variance explained by the QTL. In absence of
phantom epistasis, the empirical rejection rate should be very close
to the significance level (0.05). For the largest sample size, the curve
relating empirical rejection rates with BP distance was clearly above
0.05 for distances of up to 2MB. In all the scenarios, the highest
rejection rates were observed when x2i and the QTL were at a distance
of about 0.15 MB; here the empirical rejection rate was �0.13 when
the QTL explained 0.5% of the phenotypic variance and as high as
0.17 when the QTL explained 1% of the variance. The latter (0.17) is
more than three times the nominal rate of rejection expected under
the absence of phantom epistasis (0.05). The curves relating empirical
rejection rates with physical distance reach the nominal rejection rate
of 0.05 at �1Mb for n = 10,000; however, for larger sample size the
curves stayed above 0.05 even for distances longer than 1Mb.

Figure 3 displays another way of viewing the simulation results
of Figure 2 where the average rejection rate is calculated within bins
of R-sq. between the two markers. When the two markers were un-
correlated, rejection rates were very close to 0.05 indicating absence of
phantom epistasis. However very small LD between the two markers
generates considerably higher rejection rates: an R2ðx1i; x2iÞ � 0:1
leads to rejection rates as high as 0.28 with the largest sample size
when the proportion of variance explained by the QTL was 1%. The
maximum rejection rates occur when the R-sq. between markers is
between 0.1 to 0.2. Beyond this value in the range (0.2-0.9) rejection
rates follow a linear decline.

Finally, Figure 4 shows the empirical rejection (for the scenario where
the QTL explained 1% of the phenotypic variance) rates by minor-allele
frequency and the R-squared between the two markers involved in the
interaction. For any given bin of minor-allele frequency, the rejection
rate was close to 0.05 when R-squared was close to zero, it increases
reaching a maximum for R-squared values of 0.1-0.3, and then shows a
decline reaching again values close to 0.05 when R-squared is larger
than 0.9. These patterns are the same as the ones displayed in Figure 3.
Interestingly, within a bin of R-squared, when phantom epistasis existed
(i.e., when R-squared was neither null nor perfect) rejection rates were
maximum for intermediate allele frequencies and decreased with ex-
treme allele frequencies. This is likely a consequence of the fact that
intermediate allele frequencies confer higher power to the test.

The results from themodel with SNPs in different chromosomes are
provided in Table S1. In all cases, the rejection rates were very close
to 0.05 suggesting that phantom epistasis between SNPs on different
chromosomes, if it exists, it occurs at a rate that does not induce an
inflation of rejection rates above the significance level.

Multi-locus models
Figure S1 summarizes the results from the simulation scenarios that
included an infinitesimal effect. The empirical rejection rates were
almost identical to those obtained, for the same sample size, with the
single-QTLmodel (compare Figure S1 with the curves for N = 50K and
250K in the left panel of Figure 2). This suggests that the interaction
contrasts were quasi orthogonal to the infinitesimal effect, which is
probably a consequence of the short span of LD in this population.

The results from a scenario involving three marker-QTL pairs are
summarized in Figure S2. The rates of rejection in this simulation
scenario were very similar to the ones observed in the single QTLmodel
(compare Figure S2 with curves corresponding toN-50K andN= 250K
in the left panel of Figure 2) with mildly elevated rejection rates when
the distance between pairs 1 and 3 was between 0.1-1Mb, due to the
non-zero term b2Eðx1ix3iz2iÞ of the right-hand-side of [3], that causes
b12 6¼ 0. However, as the distance between the markers involved in the
interaction (i.e., the 1st and 3rd marker) increased, the estimated rejec-
tion rates approached the nominal rejection rate. Specifically, when the
distance between the 1st and the 2nd pair is of 2Mb or larger the three
pairs become independent and phantom epistasis vanishes.

DISCUSSION
There is a substantial amount of literature reporting the presence of
epistasis affectingcomplex traits but results,when scrutinized,have been
controversial. Sometimes the controversy spawns from the suspicion
that epistatic interactions may be capturing additive signals that were
missed by the baseline additive model used to test interactions. For
instance, Hemani et al. (2014) identified 30 pairs of SNPs that in-
teract influencing gene expression and that were replicated across
two independent studies. In a subsequent study (Wood et al. 2014)
replicated many of the interactions reported by Hemani et al.; how-
ever, in each case, using sequence data, a single third variant could
explain all the apparent epistasis. This happened even after removal
of all pairs of SNPs with r2 , 0:1 which was suggested by Wei,
Hemani, and Haley (2014) as a means to minimize confounding
due to haplotype effects.

However, the problem of why and under what conditions additive
effects may generate “epistatic signals” has not be formalized. In this
work, we considered a simple three locus model to reveal conditions
that lead to phantom epistasis. We show that phantom epistasis
emerges in the presence of simultaneous but imperfect mutual LD
between the three loci (the QTL and the two markers involved in the

Figure 1 Average R-squared between pairs of loci and proportion
of variance of the QTL genotype explained by the two markers,
R2ðzi � x1i þ x2iÞ, vs. distance between the QTL (zi ) and the distal
marker (x2i ). Marker x1i was always adjacent to the QTL.

1432 | G. de los Campos, D. A. Sorensen, and M. A. Toro



interaction). This conceptually simple three loci model can be extended
to more complex settings (e.g., multiple QTL-marker pairs) without
affecting the underlying source of the principle: if additive QTL vari-
ance is imperfectly captured by linear regression on markers and the
unexplained variation is not orthogonal to interaction contrasts, then
phantom epistasis emerges.

We stress that simultaneous LD between the triplet ðx1i; x2i; ziÞ is
required for phantom epistasis to emerge. At least in theory, it is pos-
sible to have cases where the two SNPs involved in an interaction are in
LE yet, they are jointly in LD with an unobserved QTL. An example
featuring such patterns is discussed by Wei et al. (2013) who present a
model with dominance at a causal locus that generates phantom
epistasis between two flanking markers that are marginally indepen-
dent. In Wei’s example the two SNPs are jointly in LD with the QTL
and therefore, Eðx1ix2iziÞ and Eðx1ix2iz2i Þ are nonzero, explaining why
the model generates phantom epistasis. On the other hand, if one of
the markers, e.g., x1, is independent of the remaining pair ðx2i; ziÞ;
then Eðx1i x2iziÞ ¼ Eðx1iÞEðx2iziÞ ¼ 0 and phantom epistasis does
not not emerge.

Inferences Under imperfect LD
Several authors (M E Goddard 2009, de los Campos et al. 2013; de
Los Campos, Sorensen, and Gianola 2015; Gianola et al. 2015)
have studied the role of imperfect LD on related inferential prob-
lems, including missing heritability and whether imperfect LD can
lead to estimates of genomic correlations between traits that are
different than the underlying genetic correlations (Gianola et al.
2015). In all these cases, imperfect LD generates inferential dif-
ficulties; phantom epistasis is another inferential problem arising
when the markers used for inferences are in imperfect LD with
causal variants.

Testing interactions among weakly correlated SNPs only (e.g.,
considering only SNP-pairs with r2 , 0:1Þ is not a solution: indeed,

our simulation results show that weak LD between markers (e.g., R-sq.
between 0.05 and 0.1) can lead to large numbers of false discoveries
especially when sample size is large. However, our simulations
also show that near independence between the two SNPs (e.g.,
R-sq. ,0.01), a condition that in the data set used in this study was
achieved at distances of 1.5Mb-2Mb or longer, was enough in the scenar-
ios tested to guarantee rejection rates very close to the significance level.

Perils of Big Data
If phantom epistasis exists (i.e., if the population coefficient b12 6¼ 0)
whether it is detected or not depends on the power of the study which
increases with sample size. Our simulation results demonstrate this
clearly: pairwise R-sq. of 0.1 between markers and large sample size
(e.g., n . 100K) generates clear signs of phantom epistasis. How-
ever, rejection rates are not highly elevated over the significance
level when sample size was smaller (n = 10k) because at that R-sq.
the size of the interaction effect is small and therefore the power to
detect such small interaction effect with small sample size is low. Big
Data are a blessing for genomic analysis of complex traits; however,
in some cases, large sample size can make an inferential problem
even more problematic.

The proportion of variance explained by the QTL plays a
role similar to that of sample size
The larger the amount of variance explained by the QTL, the higher the
power todetectphantomepistasis due to imperfectLD.Toassess this,we
repeated our simulation with a QTL that explained 50% of the pheno-
typic variance. The results (see Figure S3) showed, as one would expect,
higher rejection rates than the one observed when the QTL explained a
small fraction of the phenotypic variance (compare Figure 2 with Figure
S3). Importantly, and in agreement with what our model predicts, the
rejection rate reaches the significance level when the two SNPs become
independent.

Figure 2 Empirical rejection rates vs. distance between the QTL and the distal marker, by proportion of variance explained by the QTL (left and
right panels) and sample size (curves). In the simulations, a single QTL (zi ) had an additive effect that explained either 1% (left) or 0.5% (right) of the
phenotypic variance. The empirical model considered two SNPs with no causal effect. One of them (x1i ) was adjacent to the QTL and the other
one (x2i ) was placed at increasing distance from the pair (x1i ; zi ). Rejection of the null hypothesis (no interaction between x1i and x2iÞ was
conducted at a 0.05 significance level. Empirical rejection rates above 0.05 are indicative of phantom epistasis.
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Phantom Epistasis in multi-locus models
The presence of a polygenic effect in our simulations did not lead to
notoriously inflated rejection rates compared with the ones detected
with the single locus model suggesting that the interaction contrasts
were quasi orthogonal to the infinitesimal effect. This is probably
because LD in this population spans over very short distances and
therefore it is highly unlikely to find a pair of markers that are
strongly correlated with infinitesimal effects emerging from large
numbers of loci distributed over the genome. On the other hand,
local polygenicity (i.e., the accumulation of many small-effect loci
in a region with moderate or high LD) may lead to more serious
apparent epistasis.

Local epistasis? Several studies have reported results highlighting
the importance of ‘local’ epistatic interactions (e.g., Wei, Hemani, and
Haley 2014; He et al. 2017). From a biological perspective, it is plausible
that multiple mutations in a gene may have collectively a larger impact
than the simple sum of the effects of each mutation individually.
And this could manifest itself as “haplotype effects” (e.g., Haig 2011).
However, phantom epistasis provides an alternative explanation for
why epistatic interactions detected in GWAS occur between loci that
are physically close. Indeed, we show analytically and empirically that
LD between SNPs is required for phantom epistasis to appear, thus,
phantom epistasis is expected to be predominantly a ‘local’ phenomena.

Inflation of rejection rates due to incorrect statistical assumptions?
Based on an earlier version of this manuscript Dr. P. Visscher (personal
communication) commented that under imperfect LD the distribution
of the error terms of the empirical model is not normal. Indeed, because
the QTL genotype has three levels, under imperfect LD the distribution
of the error terms would be amixture of three normal distributionswith

different means. This could certainly explain the inflation of rejection
rates in small samples because the conditions for the test statistic to
follow a t distribution are not met. However, in large samples, the
test statistic follows a normal distribution even if errors are not
Gaussian (this is simply an application of the Central Limit Theo-
rem). Therefore, with the size of samples used in standard GWA
studies, lack of normality of the error term should not be a cause for
inflated rejection rates.

A secondpossible cause for inflated rejection rate of thenull hypothesis
can be underestimation of the error variance of the empirical model.
However, it can be shown that the estimator of the error variance of the
empiricalmodel used in the simulations is unbiasedwith respect to the
marginal distribution of the data. Therefore, phantom epistasis cannot
be attributed to underestimation of the error variance.

The additive-non-additive conundrum
Quantitative genetics studies properties of complex traits using re-
gression analysis. In the field a careful distinction is made between
observable and causal features of complex traits. For instance, it is well
established that the linear regression of a phenotype on allele content
yields estimates of the average effect of allele substitution and that both
truly additive as well as dominance and epistatic effects can contribute
to allele substitution effects. Furthermore, theoretical and empirical
researchhas demonstrated thathighlynon-linear systems cangenerate
signals that can often be explained almost completely with a linear
model (Hill, Goddard, and Visscher 2008). For this reason, in general,
one cannot make causal statements about gene action from observa-
tional variance component analyses (e.g., W. Huang and T. F. C. Mackay
2016). Complicating matters even further we show in this study that
the opposite can happen: under a purely additive model, imperfect LD
can generate non-additive signals!

Figure 3 Empirical rejection rates vs. R-squared between the proximal and distal marker, by proportion of variance explained by the QTL (left and
right panels) and sample size (curves). The simulation setting here was the same as that in Figure 2: a single QTL (zi ) had an additive effect that
explained either 1% (left) or 0.5% (right) of the phenotypic variance. The empirical model considered two SNPs with no causal effect. One of them
(x1i ) was adjacent to the QTL and the other one (x2i ) was placed at increasing distance from the pair (x1i ; zi ). Rejection of the null hypothesis
(no interaction between x1i and x2iÞ was conducted at a 0.05 significance level. Empirical rejection rates above 0.05 are indicative of phantom
epistasis.
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The recognition that phantom epistasis may be an important phe-
nomenon does not negate the relevance of gene-gene interactions at
the causal level. It simply stresses the difficulties that one faces when
trying to learn about causal features of a system using observational
data and inputs (markers) which are proxies for the underlying vari-
ants that may have causal effects on traits.

Phantom epistasis: an opportunity to improve predictive performance?
In this work, we have stressed that imperfect LD can limit the possibility
to learn about causal effects. However, linear and non-linear genomic
regressions can be very powerful predictive machines, and it is well
established that the model that is best for inferences is not necessarily
the best predictive tool. Phantom epistasis creates inferential prob-
lems but also opens opportunities for improving prediction models.
Indeed, by capturing signals that are missed by an additive model,
non-linear models using interactions between markers may increase
the amount of genetic variance captured and improve prediction
accuracy. This may explain, for instancewhy some non-linearmodels
such as kernel regressions have shown better predictive performance
than additive models, especially in breeding populations with long-
span LD and low marker density (de los Campos et al. 2010).
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