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ABSTRACT Multiple-trait experiments with mixed phenotypes (binary, ordinal and continuous) are not rare
in animal and plant breeding programs. However, there is a lack of statistical models that can exploit the
correlation between traits with mixed phenotypes in order to improve prediction accuracy in the context of
genomic selection (GS). For this reason, when breeders have mixed phenotypes, they usually analyze them
using univariate models, and thus are not able to exploit the correlation between traits, which many times
helps improve prediction accuracy. In this paper we propose applying deep learning for analyzing multiple
traits with mixed phenotype data in terms of prediction accuracy. The prediction performance of multiple-
trait deep learning with mixed phenotypes (MTDLMP) models was compared to the performance of
univariate deep learning (UDL) models. Both models were evaluated using predictors with and without the
genotype x environment (GXE) interaction term (I and WI, respectively). The metric used for evaluating
prediction accuracy was Pearson'’s correlation for continuous traits and the percentage of cases correctly
classified (PCCC) for binary and ordinal traits. We found that a modest gain in prediction accuracy was
obtained only in the continuous trait under the MTDLMP model compared to the UDL model, whereas for
the other traits (1 binary and 2 ordinal) we did not find any difference between the two models. In both
models we observed that the prediction performance was better for WI than for I. The MTDLMP model is
a good alternative for performing simultaneous predictions of mixed phenotypes (binary, ordinal and
continuous) in the context of GS.

GENOMIC PREDICTION

KEYWORDS
deep learning
multiple-trait
mixed
phenotypes
(binary ordinal
and continuous)
genomic
selection
plant breeding
Genomic
Prediction
GenPred
Shared Data
Resources

Many times a breeder wishes to genetically improve more than one trait
but with mixed phenotypes. For example, grain yield (GY) measured on
a continuous scale, presence or absence of a certain disease or level of
infection of a certain disease (non-infected, low level of infection, middle
level of infection, high level of infection and totally infected). However,
when breeders wish to analyze the data with mixed phenotypes, (a) they
usually analyze the data using univariate statistical models; (b) they
subject the discrete variables (binary and ordinal) to some numerical
score (using transformations), so that all variables can be treated as
continuous, and then they apply conventional multivariate analysis; and
(c) the continuous variables are discretized through some grouping
criteria, which allows all variables to be treated as discrete and then
analyzed under a multivariate model for discrete responses. However,
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these three approaches involve some level of subjectivity since the first
approach does not take into account the correlation between traits, the
second method introduces a high level of subjectivity in the numerical
scoring scheme and the third solution produces considerable loss of
information due to the discretization process of the continuous variables
(Krzanowski 1983). Although there are multivariate techniques for
regression analysis for association studies and prediction modeling
(Montesinos-Lopez et al., 2016), versatile regression models for mixed
outcomes are lacking, since conventional multivariate statistical tools
generally rely on the assumption that the data, or suitable transforma-
tions of them, follow a normal distribution.

Plant breeders have a long tradition using multivariate models for
association studies and prediction modeling; however, with the new
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paradigm called genomic selection (GS) proposed by Meuwissen et al.
(2001), there is renewed interest in multivariate modeling to exploit the
correlation between traits to improve parameter estimates or prediction
accuracy. Jia and Jannink (2012) provided evidence that multivariate
analyses outperform univariate analysis when there is at least moderate
correlation between traits. Jiang et al. (2015) and Montesinos-Lopez
et al. (2016) came to the same conclusion in favor of multivariate
analysis. He ef al. (2016) and Schulthess et al. (2017) also found that,
compared to single-trait analysis, multivariate analysis could improve
prediction accuracy for correlated traits. However, the application of
traditional multivariate models in the context of GS is not straightfor-
ward due to the problem of the large amount of independent variables
(marker information and environmental information) and few obser-
vations (lines), a problem commonly known as “large p and small n”.
For this reason, in recent years, intensive research has been conducted
to develop statistical models (or adapt conventional models) for the
context of genome-wide association analysis and genome-enabled pre-
diction (GP). In the context of univariate and multivariate models with
continuous phenotypes for GP, Bayesian models have proved to be
more efficient than models based on maximum likelihood or re-
stricted maximum likelihood because they are better suited for deal-
ing with data sets with large p and small n. As evidence of this, the
term “Bayesian alphabet” was coined; it refers to the growing number
of letters of the alphabet used to denote various Bayesian linear re-
gressions used in GP that differ in the priors adopted, while shar-
ing the same sampling model (Gianola 2013). Gianola (2013) also
pointed out that the Bayesian alphabet is of paramount importance in
whole-genome prediction of phenotypes, but has somewhat doubtful
inferential value, at least when the sample size is such that n < p.

However, to date there are no Bayesian regression models for
GP for mixed phenotypes due to the difficulty of developing efficient
analytic Gibbs samplers to perform a Markov Chain Monte Carlo
(MCMC) algorithm for approximating a specific multivariate prob-
ability distribution, when direct sampling is difficult. But nowadays
there are computationally efficient methodologies for predicting
multiple-trait (called multiple-output) response variables (phenotypes)
in deep learning (DL), which is a part of a broader family of machine
learning methods based on learning data representations, as opposed to
task-specific algorithms. In general terms, machine learning is devoted
to developing and using algorithms that learn from raw data in order to
make predictions (Wiley 2016).

Inspiration for DL models is rooted in the functioning of biological
nervous systems. These models are not new because their roots trace
back to the introduction of the McCulloch-Pitts (MCP) model, which
is considered the ancestor of the artificial neural model (McCulloch
and Pitts 1943) that has now gone mainstream thanks to its practical
applications and availability in terms of consumable technology and
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Figure 1 Example of a feedforward neural network with 8 input
variables (x1,...,x8), four output variables (y1, y2, y3, y4), and two
hidden layers with three neurons each.

affordable hardware. An artificial neural network (ANN) models the
relationship between a set of input signals and an output signal using a
model derived from our understanding of how a biological brain
responds to stimuli from sensory inputs. Similar to how the brain
uses a network of neurons (interconnected cells or units) to create a
massive parallel processor, ANN uses a network of artificial neurons
to solve learning problems (Lantz 2015). For this reason, an ANN is
described as a directed graph whose nodes correspond to neurons
and whose edges correspond to links between them. Each neuron
receives as input a weighted sum of the outputs of the neurons
connected to its incoming edges (Figure 1). Feedforward networks
(Figure 1) are those in which the underlying graph does not contain
cycles (Shalev-Shwartz and Ben-David 2014). Thanks to major inno-
vations in the field of neural networks, a technique that is known as
deep learning has emerged. The term deep refers to the fact that we
can now train different ANN configurations with more than a single
hidden layer, such as the conventional multilayer perceptron, which
has shown to have better generalization capabilities (Goodfellow
et al., 2016). The adjective “deep” applies not in itself to the knowl-
edge acquired, but to the way in which knowledge is acquired (Lewis
2016). In other words, DL is a subfield of machine learning that
generalizes conventional neural networks to work with more than
two hidden layers and more neurons; it is devoted to building pre-
diction algorithms that explain and learn a high and low level of
abstraction (Gibson and Patterson 2017).

For this reason, DL models have been implemented in many areas
of knowledge: prediction of time series (Dingli and Fournier 2017);
language processing (Goldberg 2016); self-driving cars (Liu et al.,
2017); predicting breast, brain (Cole et al., 2017) or skin cancer
using personalized medicine based on Biobank-data, voice search
and voice-activated intelligent assistants (LeCun et al., 2015); au-
tomatically adding sound to silent movies; automatic translation
of text and images (LeCun ef al., 2015); automatic text generation;
automatic handwriting generation (LeCun et al., 2015); image
recognition (LeCun et al., 2015); automatic image captioning (that
is, given an image, the system must generate a caption that de-
scribes the content of the image); automatic colorization; adver-
tising; predicting earthquakes (Rouet-Leduc et al., 2017); energy
market price forecasting (Weron 2014); and genomic prediction
(Montesinos-Lépez et al., 2018a, b).

There are also many applications of DL and machine learning for
the biological sciences. For example, Fox et al. (2018) applied DL for
predicting blood glucose trajectories, Menden et al. (2013) predicted
cancer cell sensitivity to drugs with machine learning, Alipanahi et al.
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(2015) used DL for predicting the sequence specificities of DNA- and
RNA-binding proteins, and Tavanaei et al. (2017) applied DL for predicting
tumor suppressor genes and oncogenes. Recently, Montesinos-Lépez
et al. (2018a, b) have shown how to apply DL methods with densely
connected network architecture and several hyperparameter combi-
nations to extensive plant breeding data involving different traits and
environments. Compared with the standard genomic model and ig-
noring genotype X environment interaction (GxE), the DL method
was better than the conventional genomic models in terms of predic-
tion accuracy. The previously mentioned authors also developed
DL models and methods for multiple traits (all continuous traits)
and compared their prediction accuracy with a Bayesian multiple-
trait multiple-environment model. Among models without geno-
type X environment interaction, the multiple-trait DL model was
the best, while among models with genotype X environment interac-
tion, the Bayesian multiple-trait multiple-environment model was
superior. However, no models or methods have been developed for
genomic selection and prediction in animal and plant breeding that
can incorporate together binary, ordinal and continuous traits and
their GXE when collected in different environments.

For the reasons outlined above, we applied DL methods for predicting
multiple traits with mixed phenotypes (binary, ordinal and continuous
traits). We also compared their performance with that of univariate
deep learning models where a model was individually trained for each
trait. To evaluate the performance of both models (multiple-trait and
univariate-trait deep learning), we used seven wheat data sets from the
Global Wheat Breeding Program of the International Maize and
Wheat Improvement Center (CIMMYT). The performance of both
models in terms of prediction accuracy was evaluated using cross-
validation in terms of average Pearson’s correlation (APC) for con-
tinuous traits and in terms of the percentage of cases correctly
classified (PCCC) for binary and ordinal traits.

MATERIALS AND METHODS

Multiple-trait deep learning with mixed

phenotypes (MTDLMP) model

While there are different DL architectures (densely connected networks,
convolutional networks, recurrent networks, etc.), in this paper we focus
on a standard densely connected network. Details of each type of
network, its assumptions and input characteristics can be found in
Gulli and Sujit (2017), Angermueller et al. (2016) and Chollet and
Allaire (2017). A densely connected network does not assume a spe-
cific structure in the input features. In general, the basic structure of a
densely connected network consists of an input layer, L output layers
(for multiple-trait modeling) and multiple hidden layers between the
input and output layers. This type of neural network is also known as
a feedforward neural network (see Figure 1).

In this paper we implemented the architecture shown in Figure 1 for
the seven data sets used in this study with 1, 2 and 3 hidden layers and
number of neurons (from 10 to 500 with increases of 20). As input
variables (X = {xj}, 1= 1,2,..,0; P = 1,2,.., Ny) for the proposed deep
learning model, we included predictor variables as illustrated in Figure 1,
since we used as input information for each line the resulting covariates
of concatenating information on environments, information on markers
through the Cholesky decomposition of the genomic relationship matrix
and information on the genotype x environment (G x E) interaction.
This meant that first we built the design matrices of environments
(Zg), genotypes (Zg) and G X E (Zgg); then we obtained the Cholesky
decomposition of the genomic relationship matrix (G). Then we post-
multiplied the design matrix of genotypes by the transpose of the upper
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triangular factor of the Cholesky decomposition (QT), Z; = Z:Q7,
and finally the G X E term was obtained as the product of the design
matrix of the Gx E term post-multiplied by the Kronecker product of
the identity matrix of order equal to the number of environments
and Q7 that is, Zip =Ze(Ii® Qn). Finally, the matrix with input
covariates used for implementing both deep learning models was
equal to X = [Zg, Z,, Z{;]. The input variables (x;,) are connected
to the neurons in the first hidden layer via weights. The input vari-
ables simply pass the information to the units in the first hidden layer.
The net 1nput into the jth hidden unit in the first hidden layer is

hIJ—Zw Xp +b

; is the weight of input unit p to hidden unit j 1n the first hidden
layer, x;, is the value of the pth input variable and bJ is a bias specific
to neuron (unit) j in layer 1. Then the jth hidden unit in the first
hidden layer applies an activation function to its net input and outputs
Vij = gi(hy) for j=1,..., N,. Similarly, Neuron k in the second

hidden layer receives a net input hy = Zwkj Vi + bk , where

N, is the total number of input neurons that come from hidden
layer 1 to neuron k, W;( ) is the weight from unit j of layer 1 that goes
to unit k 1n hidden layer 2, V; is the value of the output of unit j in layer
1 and b is a bias specific term to neuron k in layer 2. Then the kth
hidden unit in the second hidden layer applies an activation func-
tion to its net input and outputs Vo, = g (hy) for k=1,..., M.
Similarly, output unit ¢ with ¢t = 1,2, .., L, receives a net input of

, where N; is the total number of input variables,

M
hyy =3 Wfi) Vo + b£3>, where M is the number of hidden units

k=1
from hidden layer 2, wﬁz) represents the weight from hidden unit

k in layer 2 to output ¢. Finally, the prediction of an individual in
trait ¢ is obtained as: §, = g;(hs;). It is important to point out that in
the output layer (g3 ), the sigmoid, softmax and rectified linear units
(ReLU) activation functions were used for binary, ordinal and con-
tinuous traits, respectively.

Successful implementation of most DL models requires an ap-
propriate hyperparameter tuning process. However, implementing a
feedforward neural network is challenging because it requires a tuning
process of the following hyperparameters: number of units (U), number
of layers, number of epochs (E), type of regularization method and type
of activation function. Based on the literature review, we decided to use
the ReLU, sigmoid and softmax activation functions for the continuous,
binary and ordinal response (output) variables, respectively, while for
the hidden layers, we used the ReLU activation function. As for the type
of regularization, we chose dropout regularization for training the
models (Gulli and Sujit 2017; Chollet and Allaire 2017; Srivastava
et al., 2014), and for the hidden layers we used 1, 2 and 3 hidden layers.

Concerning the number of epochs and number of units in the hidden
layers, we performed a grid search. The grid search was done with
number of epochs from 1 to 100 and number of units between 10 to
500 with increases of 20. For more details on model selection in DL
models, we suggest reading the papers of Montesinos-Lopez et al.
(2018a, b), where the authors evaluate the prediction performance of
univariate and multivariate DL models for continuous response vari-
ables. It is important to point out that we also implemented the uni-
variate counterpart of the MTDLMP model described at the beginning
of this section, where each trait was implemented using a univariate
deep learning (UDL) model with exactly the same architecture given in
Figure 1, except that it only had one output variable. When the output
variable was continuous, ReLU activation was used, whereas the sig-
moid and softmax activation functions were used for the binary and
ordinal response (output) variables, respectively. Both the MTDLMP
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and UDL models were implemented in the keras package (Chollet and
Allaire 2017) in the open-source software R (R Core Team 2018).

Evaluating prediction performance with cross-validation
The prediction accuracy of both models (MTDLMP and UDL) was
evaluated with an outer CV while an inner CV was used for tuning the
hyperparameters. The outer CV consisted of a fivefold CV, where the
original data sets were partitioned into five subsamples of equal size and
each time four of them were used for training (TRN) and the remaining
one for testing (TST). In our outer CV, one observation cannot appear in
more than one fold. In the design, some lines can be evaluated in some,
but not all, target environments, which mimics a prediction problem
faced by breeders in incomplete field trials. For this reason, our cross-
validation strategy is exactly the same as the strategy denoted as CV2 that
was proposed and implemented by Jarquin et al. (2017), where a certain
portion of test lines (genotypes) in a certain portion of test environ-
ments are predicted since some test lines that were evaluated in some
test environments are assumed to be missing in others.

The metric used to measure the prediction accuracy of both models
was Pearson’s correlation for continuous traits and the percentage of
cases correctly classified (PCCC) for the binary and ordinal variables.
They were calculated from each trait-environment combination for
each of the testing sets and the average of all folds was reported as a
measure of prediction performance. It is important to point out that, to
avoid biased results, the tuning step was done in each fold using only
the training set.

For the tuning process we implemented the inner CV with the
proposed grid for the number of epochs and units, and 20% of each
training set was used as a validation set (validation-inner). Due to the
amount of data and the complexity of the MTDLMP and UDL models,
the training process requires a lot of time for the tuning process; for this
reason, the training was performed using the internal capabilities of keras,
where we set the validation_split argument on the fit() function to 20%
of the size of each of our training data sets. This automatic validation
procedure of keras implemented the inner CV and evaluated the per-
formance of the model on the validation data set for each epoch and
avoided implementing manual k-fold cross-validation for the inner CV,
which requires more computational resources (Chollet and Allaire 2017).

Experimental data sets: In this study we used the data set used by
Juliana et al. (2018). The data used belong to four elite yield trial (EYT)
nurseries from the Global Wheat Program of the International Maize
and Wheat Improvement Center (CIMMYT). The EYT nurseries
were planted in mid-November because that is the best time to plant
CIMMYT’s yield trials. Bed and flat planting systems in optimally
irrigated environments received 500 mm of water at the Norman
E. Borlaug Research Station, Ciudad Obregon, Sonora, Mexico. The
nurseries were sown in 39 trials, each comprising 28 lines and two
high-yielding checks (Kachu and Borlaug) that were arranged in an
alpha lattice design with three replications and six blocks. The nurs-
eries were evaluated for the following traits: number of days from
germination to 50% spike emergence (days to heading, DTHD), num-
ber of days from germination to 50% physiological maturity (days to
maturity, DTMT), grain yield (GY, tons per hectare) and plant height
(Height, centimeters). All these nurseries were evaluated during four
seasons 2013-2014 (EYT 13-14; here called data set 1), 2014-2015
(EYT 14-15; called data set 2), 2015-2016 (EYT 15-16; called data set
3) and 2016-2017 (EYT 16-17; called data set 4).

Data set 1 included 767 lines, data set 2 had 775 lines, data set
3 comprised 964, and data set 4 had 980 lines (Juliana et al., 2018). In
addition, in each season we studied six environments resulting from the
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level of irrigation (IR) and planting system (bed or flat) which we called:
Bed2IR, Bed5IR, Flat5IR, FlatDrip, EHT and LHT. However, all these
environments were not evaluated in all seasons (data sets). In data set 1,
only environments Bed5IR, EHT, Flat5IR and LHT were evaluated. In
data set 2, the evaluated environments were: Bed2IR, Bed5IR, EHT,
Flat5IR and LHT. In data set 3, the evaluated environments were:
Bed2IR, Bed5IR, Flat5IR and FlatDrip, where 5IR and 2IR refer to
5 and 2 irrigation levels, EHT denotes early heat, LHT is late heat,
and bed and flat are two different planting systems. In data set 4, the
evaluated environments were: Bed5IR, EHT, Flat5IR and FlatDrip.

It is important to point out that here we used the BLUEs of each of the
lines obtained (as suggested by Juliana et al, 2018) adjusted for trials,
blocks and replications in each data set. Three of the four traits were
discretized because the original data sets are continuous, only to illustrate
the MTDLMP model. Traits DTHD and DTMT were discretized at
quantiles 33.33% and 66.67% (in data sets 1 and 2) to obtain three
categories, while trait Height was discretized at quantile 50% to obtain
2 categories (in data sets 1, 2, 3 and 4) the discretization process was done
in each environment of each data set. For data sets 3 and 4, traits DTHD
and DTMT were discretized at quantiles 20%, 45%, 70% and 90%.

Data set 5 is part of data set 3; for this reason, the phenotypic
information and genomic information were obtained in the same
way as in data set 3; however, only 964 lines had complete data of
the total 980 lines under study in data set 3. But now the traits mea-
sured in data set 5 were grain color (GC) (1 = yes, 2 = no), leaf rust
(ordinal scale with 5 points), stripe rust (ordinal scale with 3 points) and
GY, which is a continuous trait. Data set 6 and data set 7 are part of the
wheat yield trial (YT) nurseries from CIMMYT’s Global Wheat Breed-
ing Program. For data set 6, the number of lines used was 945, and for
data set 7, 1145 wheat lines were used. A continuous trait (grain yield,
GY) and an ordinal trait (lodging; ordinal scale of 5 points) were
measured on both data sets.

Genotypic data: All 4368 lines evaluated in the four seasons
(nurseries) comprising the EYT of data sets 1, 2, 3, and 4 were
genotyped using genotyping-by-sequencing (GBS) (Elshire et al,
2011; Poland et al., 2012) at Kansas State University, using an Illumina
HiSeq2500 for obtaining genome-wide markers. Marker polymor-
phisms were called across all lines using the TASSEL (Trait Analysis
by Association Evolution and Linkage) GBS pipeline (Glaubitz et al.,
2014) and anchored to the International Wheat Genome Sequencing
Consortium’s (IWGSC) first version of the reference sequence (RefSeq
v1.0) assembly of the bread wheat variety Chinese Spring. Markers with
more than 60% missing data, less than 5% minor allele frequency and
percent heterozygosity greater than 10% were removed and we obtained
2,038 markers. Missing marker data were imputed using LinkImpute
(Money et al, 2015) implemented in TASSEL (Bradbury et al., 2007),
version 5. The lines were also filtered for more than 50% missing data,
found in 3,485 lines (767 lines from data set 1, 775 lines from data set 2,
964 lines from data set 3 and 980 lines from data set 4) (Juliana et al.,
2018). The lines used in data sets 5, 6, and 7 were genotyped with the
same marker system that was used for the other data sets.

Data availability

All seven data sets (Data Sets 1-7) including phenotypic and genotypic
data plus the Supplementary Material with the 14 figures (Figure D1_SA,
D1_SB-D7_Sa, D7_SB) can be downloaded from the following link:
http://hdLhandle.net/11529/10548140.

RESULTS
The results are given in seven main sections. Each section describes the
results of one data set. Each section is divided into two subsections, one
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thatincludesa descriptive analysis and another that reports the genomic-
enabled prediction accuracy of the proposed models.

Data set 1
This data set had four traits (one binary, two ordinal and one contin-
uous). Across environments, the binary trait (Height) had 53.6% of cases
for category 2 and 46.4% for category 1 (Figure 2). Traits DTHD and
DTMT had similar distributions of individuals between categories. The
average GY was around 6 ton/ha for three environments (Bed5IR, EHT
and Flat5IR) and around 3 ton/ha in environment LHT (Figure 2).
There were no major prediction accuracy differences in this wheat
data set between the MTDLMP and UDL models using 1 layer when
G X E interaction was taken into account (I) in any of the traits under
study (Figure 3a). However, when G x E interaction was ignored (WI),
we found statistical differences in trait GY, with better performance
under the MTDLMP model (Figure 3a), and in average Pearson’s cor-
relation (APC), the MTDLMP was superior to the UDL in prediction
accuracy by 22.44%. With two layers, we only found statistical differ-
ences between the MTDLMP and UDL models in trait GY, where the
MTDLMP was again superior (Figure D1_SA; Supplementary material,
hdl:11529/10548140); however, with three layers, we did not find any
statistical differences between the two models (Figure D1_SB; Supple-
mentary material, hdl:11529/10548140). The PCCC using 1 layer for
the binary and ordinal traits (DTHD, DTMT and Height) ranged from
0.5697 to 0.6815, while the APC for the GY trait ranged from 0.3593 to
0.4633 (Figure 3a). Also, when comparing the prediction accuracy

LHT

using different numbers of layers (1, 2, and 3) under the MTDLMP
model (Figure 3b) and under the UDL model (Figure 3c), we did not
find statistical differences in terms of prediction performance between
using 1, 2, or 3 layers with the G X E interaction term (I) and only found
statistical differences between using 1, 2 and 3 layers in trait GY without
the G X E interaction term (WTI).

Data set 2

Trait Height (binary trait) across environments had 52.8% of cases in
category 2and 47.2% in category 1. Traits DTHD and DTMT had similar
distribution of individuals in each of the 3 categories. In trait GY, the
average GY was 6 ton/ha for three environments (Bed5IR, EHT and
Flat5IR), around 3 ton/ha in environment LHT and around 4.3 tons/ha
in environment Bed2IR (Figure 4).

The pattern of genomic-enabled prediction accuracy is similar to that
found in data set 1. For GY with (I) and without (WT) G X E interaction,
the best prediction was provided by the MTDLMP model, which out-
performed the UDL model by 19.21% with interaction (I) and
by 40.02% without interaction (WI) (Figure 5a). However, for trait
GY with 2 layers, there were significant differences in favor of the
MTDLMP model with the interaction term (I) (Figure D2_SA;
Supplementary material, hdl:11529/10548140), while with 3 layers,
no significant differences were observed between the MTDLMP and
the UDL models for GY (Figure D2_SB; Supplementary material,
hdl:11529/10548140). The PCCC ranged from 0.6071 to 0.7124 using
1 layer for the binary and ordinal traits (DTHD, DTMT and Height),

A
8 g‘g Mlode\ Figure 3 Prediction accuracy of data set 1 in terms of
g 021 I' I. .. I .I .- IUDTLDLW percentage of cases correctly classified (PCCC) for
oy OTHD DTMT Height OTHD DTMT Height traits days to heading (DTHD), days to maturity
(DTMT) and Height and in terms of average Pearson’s
B correlation for trait grain yield (GY). (A) Prediction ac-
laes  curacy of MTDLMP and UDL models with the GxE
Sgs B term (l) and without the GXE term (WI) for each trait
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Figure 4 Percentage of each ordinal response for data
set 2 across environment for traits days to heading
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(DTHD), days to maturity (DTMT) and Height. Boxplot
of trait grain yield (GY) for each environment.
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and from 0.3301 to 0.5504 for trait GY in terms of APC (Figure 5a).
Also, when comparing the prediction accuracy using different num-
bers of layers (1, 2, and 3) under the MTDLMP model (Figure 5b), we
only found statistical differences in terms of prediction performance
when using 1, 2 or 3 layers in both models with (I) and without (WI)
interaction term in trait GY; the worst prediction was observed with
3 layers, and the best when using 1 layer. Also under the UDL model
(Figure 5c¢), we only found statistical differences when using 1, 2 or
3 layers in trait GY with (I) and without (WTI) the interaction term,
and the best predictions were observed using 3 layers with the inter-
action term (I) and with 2 and 3 layers without the interaction
term (WI).

Data set 3

This data set also had four traits; the trait Height (binary trait) had 46.2%
and 53.8.2% of observations in categories 1 and 2, respectively, across
environments. The distribution pattern across the individuals in the
five categories of ordinal variables DTHD and DTMT was similar. The
average GY was above 6 ton/ha in environments Bed5IR and Flat5IR,
around 4 ton/ha in environment Bed2IR and less than 3 tons/ha in
environments FlatDrip and LHT (Figure 6).

The genomic-enabled prediction accuracy for GY with 1 and 2 layers
under MTDLMP and UDL was significantly different with (I) and
without (WI) the GXE interaction term; the best predictions were
observed under the MTDLMP model, which outperformed the UDL
model by 52.92% (with 1 layer), by 1.97% (with 2 layers) and by 22.21%
(with 3 layers) with the interaction term (I), and by 67.27% (with
1 layer), by 13.34% (with 2 layers) and by 15.16% (with 3 layers)

FlatSIR LHT

without the interaction term (WI) (Figure 7a; Figures D3_SA and
D3_SB, Supplementary material, hdl:11529/10548140). The PCCC
ranged from 0.4259 to 0.6746 using 1 layer for the binary and ordinal
traits (DTHD, DTMT and Height), while it ranged from 0.1484 to
0.4535 for GY in terms of APC (Figure 7a). Also, when comparing
the prediction accuracy using different numbers of layers (1, 2, and 3)
under the MTDLMP model (Figure 7b), we found no statistical differ-
ences in terms of prediction performance between using 1, 2 or 3 layers
in the four traits with (I) and without (WI) the G X E interaction term.
Under the UDL model (Figure 7c) we only found statistical differences
between using 1, 2 or 3 layers in trait GY with (I) and without the
interaction term (WI).

Data set 4

In trait Height (binary trait), the first category across environments had
47.6% of cases, while category 2 had 52.4% of cases. As in the previous
data sets, the distribution of individuals for both ordinal traits DTHD
and DTMT in each category was similar. The average GY (continuous
trait) was 6 ton/ha in three environments (Bed5IR, EHT and Flat5IR)
and less than 3 ton/ha in environment FlatDrip (Figure 8).

In this data set, in terms of prediction performance using 1 layer
when the G X E interaction was taken into account (I), there were only
significant differences between the MTDLMP and UDL models in trait
GY, and the UDL model outperformed the MTDLMP model by
13.51% (Figure 9a). However, when the G x E interaction was ignored
(WI), statistical differences were found in two (DTHD and GY) out of
four traits, with a better performance under the UDL model (Figure 9a).
In terms of prediction accuracy, the UDL model outperformed the

Figure 5 Prediction accuracy of data set 2 in terms
of percentage of cases correctly classified (PCCC)
for traits days to heading (DTHD), days to maturity
(DTMT) and Height and in terms of average Pearson’s
correlation for trait grain yield (GY). (A) Prediction ac-
curacy of MTDLMP and UDL models with the GXE
term (I) and without (WI) for each trait with 1 layer;
(B) prediction accuracy with different numbers of
layers (1, 2 and 3) across environments with the
MTDLMP model with the GXE term (I) and without
the GxE term (WI); and (C) prediction accuracy
obtained with different numbers of layers (1, 2 and
3) with the UDL model with the GXE term (l) and with-
out the GxE term (WI).
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MTDLMP model by 6.24% and 14.39% for traits DTHD and GY, re-
spectively. With 2 layers, we found statistical differences between the
MTDLMP and UDL models in trait GY with the interaction term (I),
while the UDL model was 18.81% better than the MTDLMP; without
the interaction term, we only found differences in trait Height where
the MTDLMP model outperformed the UDL model by 15.71%
(Figure D4_SA; Supplementary material, hdl:11529/10548140). With
3 layers and the interaction term (I), we found statistical differences
between the two models in trait GY, for the UDL model outperformed
the MTDLMP model by 17.71%, (Figure D4_SA; Supplementary ma-
terial, hdl:11529/10548140). Without the interaction term (WI) in two
traits (DTMT and Height), we found statistical differences between the
two models and in both traits: the MTDLMP model outperformed the
UDL model by 15.93% in trait DTMT and by 19.18% in trait Height
(Figure D4_SB; Supplementary material, hdl:11529/10548140). The
PCCC using 1 layer for the binary and ordinal traits (DTHD, DTMT
and Height) ranged from 0.3974 to 0.6197, while the APC for the GY
trait ranged from 0.4346 to 0.5105 (Figure 9a). When comparing the
prediction accuracy using different number of layers (1, 2, and 3) under
the MTDLMP model (Figure 9b), no statistical differences in terms of
prediction performance were found between using one, two or three

FlatDrip

layers with the GX E interaction term (I), but without the interaction
term (WI) statistical differences were found between using 1, 2, and
3 layers in traits DTHD, DTMT and GY with lower predictions with
1 layer. However, under the UDL model (Figure 9c), there were no
statistical differences between using one, two and three layers.

Data set 5
This data set had four traits with mixed phenotypes. In binary trait GC,
the first category had 79.7% of the cases, while category 2 had 20.3% of
cases. For ordinal trait Leaf Rust, the first category had 9.2% of the cases,
category 2 had 4.6% of the cases, category 3, 11.7% of the cases, and
category 4, 10.0% of the cases. The most numerous category was category
5, with 64.5% of the cases. On the other hand, the first category of trait
Stripe Rusthad 90.4% of the cases, whereas category 2 and category 3 had
0.90% and 8.7% of individuals, respectively. The average of the contin-
uous trait GY was around 4.4 ton/ha (Figure 10).

In this data set, in terms of prediction performance using 1 and
2 layers, no significant differences were found in any trait between the
MTDLMP and UDL models (Figure 11a; Figure D5_SA; Supplemen-
tary material, hdl:11529/10548140). With 3 layers, there were statistical
differences between the two models only for trait GY, where the UDL
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Figure 8 Percentage of each ordinal response for data
set 4 across environments for traits days to heading

(DTHD), days to maturity (DTMT) and Height. Boxplot
of trait grain yield (GY) for each environment.
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model outperformed the MTDLMP model by 23.40%, (Figure D5_SB;
Supplementary material, hdl:11529/10548140). The PCCC using 1 layer
for the binary and ordinal traits (GC, Leaf Rust, Stripe Rust) ranged
from 0.6442 to 0.9035, while the APC for the GY trait ranged from
0.4574 to 0.4920 (Figure 10a). When comparing the prediction accu-
racy using different numbers of layers (1, 2 and 3) under the MTDLMP
model (Figure 11b) and the UDL model (Figure 11C), there were no
statistical differences in terms of prediction performance between using
one, two or three layers.

Data set 6
This data set had two traits (one ordinal and one continuous). The
ordinal trait (Lodging) had 12.2% of cases in category 1,7.8% in category
2,9.4% in category 3, 38.2% in category 3 and 32.4% in category 5. For
continuous trait GY, the average was around 6.7 ton/ha (Figure 12).
In terms of prediction performance, in data set 6 when using 1 and
2 layers, there were no significant differences in any trait between the
MTDLMP and UDL models (Figure 13a; Figure D6_SA Supplemen-
tary material, hdl:11529/10548140). With 3 layers, there were statistical
differences between the two models only in GY, where the MTDLMP
model outperformed the UDL model by 29.78% (Figure D6_SB, Sup-
plementary material, hdl:11529/10548140). The PCCC using 1 layer for
the ordinal trait (Lodging) ranged from 0.4392 to 0.4603, while the APC
for the GY trait ranged from 0.3491 to 0.3896 (Figure 13a). Also,
comparing the prediction accuracy using different numbers of layers
(1, 2, and 3) under the MTDLMP (Figure 13b) and UDL (Figure 13C)
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models, there were no statistical differences in terms of prediction
performance using 1, 2 or 3 layers.

Data set 7

This real data set had two traits (one ordinal and one continuous). The
ordinal trait (Lodging) had 50.6%, 14.1%, 16.4%, 10.9% and 8.0% of
individuals in categories 1,2, 3,4 and 5, respectively. The continuous trait
GY had an average of around 5.75 ton/ha (Figure 14).

There were statistical differences in terms of genome-enabled pre-
diction accuracy between models MTDLMP and UDL only for trait GY
(Figure 15a; Figures D7_SA, and Figure D7_SB, Supplementary mate-
rial, hdl:11529/10548140). Model MTDLMP outperformed model
UDL by 25.14%, 30.46% and 32.83% when using 1, 2 and 3 layers,
respectively. The PCCC using 1 layer for the ordinal trait (Lodging)
ranged from 0.5082 to 0.5117, while the APC for the GY trait ranged
from 0.2914 to 0.3893 (Figure 15a). When comparing the prediction
accuracy using different numbers of layers (1, 2 and 3) under the
MTDLMP (Figure 15b) and UDL (Figure 15c) models, no statistical
differences were found in genomic-enabled prediction performance ac-
curacy using 1, 2 and 3 layers.

DISCUSSION

In genomic prediction, various approaches have been developed for
increasing prediction accuracy mainly of continuous traits (for example,
all models under the Bayesian alphabet). However, few approaches have
been developed for non-normal phenotypes and multivariate prediction

Model Figure 9 Prediction accuracy of data set 4 in terms of
percentage of cases correctly classified (PCCC) for traits
days to heading (DTHD), days to maturity (DTMT) and
Height and in terms of average Pearson’s correla-
tion for grain yield (GY) trait. (A) Prediction accuracy
tyes  of MTDLMP and UDL models with the GxE term (l)
and without the GXE term (WI) for each trait with
1 layer; (B) prediction accuracy with different numbers
Height of layers (1, 2 and 3) across environments with the
MTDLMP model with the GxE term (I) and without the
GxE term (WI); and (C) prediction accuracy obtained
with different numbers of layers (1, 2 and 3) with the
UDL model with the GXE term (I) and without the GXE
Heght term (WI).
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Figure 10 Percentage of each ordinal response for
data set 5 for traits grain color (GC), Leaf Rust and Stripe
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of mixed phenotypes: binary, ordinal and continuous. In the context of
mixed phenotypes, the most common approach used is to perform a
separate univariate analysis for each trait; this ignores the correlations
among multiple traits. For this reason, in this paper we propose using
multiple-trait deep learning for the prediction of mixed phenotypes:
binary, ordinal and continuous. We compare the prediction performance
of the MTDLMP model with those of the UDL model using fivefold cross-
validation in seven data sets using the PCCC (for binary and ordinal
phenotypes) and Pearson’s correlation (for continuous phenotypes) as
metrics for measuring the prediction performance. In four data sets, we
discretized some continuous traits to make them ordinal and binary, while
in the other three data sets, discretization was not necessary since these
three data sets naturally contain binary, ordinal and continuous traits.

Our results using seven data sets showed that using multiple-trait
deep learning is a practical approach for simultaneously predicting
multiple traits with mixed phenotypes (binary, ordinal and continuous),
given that the predictions obtained under the MTDLMP model are not
low. The gain in terms of prediction performance of the MTDLMP over
the UDL model was intermediate, given that when the G X E interaction
term was taken into account, the MTDLMP was better than the UDL
model in 4 out of the 7 data sets, while when the G X E interaction term
was ignored, the MTDLMP was better in 5 out of the 7 data sets.

It is also important to point out that the observed gain in terms of
prediction performance of the MTDLMP over the UDL model was
observed only in the continuous trait GY, while in the remaining traits no
statistical differences were observed between the two deep learning
models. Part of these results can be attributed in part to the fact that the
phenotypic correlations between traits are not high since for data set
1 the minimum, average and maximum values were 0.103, 0.237 and
0.794, respectively, for data set 2 the minimum, average, and maximum
values were -0.044, 0.166 and 0.782, respectively, for data set 3 the minimum,
average, and maximum values were -0.219, 0.058 and 0.719, respectively,
for data set 4 the minimum, average, and maximum values were -0.079,
0.179 and 0.803, respectively, for data set 5 the minimum, average, and
maximum values were -0.245, -0.041 and 0.051, and for data set 6 and 7 the
correlations between the two traits under study were -0.517 and -0.4056,
respectively. Also, two of the weakness of our study is that the number of
markers used in the 7 data sets is substantially low which may be affecting the
prediction accuracy. For this reason, we are aware that more empirical
evaluations are needed to have a better picture of the predictive power of the
MTDLMP model. We also found that, in general, in these data sets
increasing the number of hidden layers did not help to significantly increase
the prediction accuracy, since in most situations that we evaluated, the best
predictions were obtained with only one hidden layer.
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Figure 11 Prediction accuracy of data set 5 in terms of
percentage of cases correctly classified (PCCC) for traits
grain color (GC), Leaf Rust and Stripe Rust and in terms
of average Pearson’s correlation for trait grain yield
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for data set 6 and boxplot of grain yield (GY).
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To successfully implement the MTDLMP, the following issues need
to be taken into account. The continuous traits need to be standardized
(subtracting the mean and dividing by the standard deviation) in each
training set when the response variable is not close to mean zero and the
variance is equal to 1. Since it is necessary to specify different activation
functions for continuous, binary and ordinal data, we used the ReLU
activation function for continuous traits and the sigmoid and softmax
activation functions for binary and ordinal traits. Different metrics must
be used to measure the prediction performance for continuous and
ordinal (and binary) traits, i.e., Pearson’s correlation for continuous
traits and percentage of cases correctly classified (PCCC) for ordinal
and binary traits. The process for choosing the optimal (or near opti-
mal) hyperparameters must be tuned in order to increase the chances of
prediction.

Itis not possible to do a formal comparison of the results of this study
with those of Montesinos-Lopez et al. (2018a, b). However, it should be
noted that the prediction accuracies of the DL method with genotype x
environment interaction for single traits such as grain yield,
plant height, days to heading and days to maturity obtained by
Montesinos-Lopez et al. (2018a) are higher than the prediction accu-
racies found in this study. The prediction accuracies reported by
Montesinos-Lopez et al. (2018b) for the multiple-trait DL (MTDL) are
similar to those reported in this study for ordinal data. Furthermore, the
results where the MTDL without including genotype X environments is

slightly superior in prediction accuracy to the Bayesian multiple-
trait multiple-environment and vice versa (when the genotype x
environments is ignored) agree with the results obtained in this study.
It should be noted that the proposed method for the simultaneous
prediction of mixed phenotypes (binary, ordinal and continuous) under
the deep learning (a type of machine learning method) framework is
novel, since nowadays in plant breeding there are no statistical models
available that are able to simultaneously predict mixed phenotypes, given
that multiple-trait (multivariate) models have only been developed for
continuous traits. It is important to point out that multivariate models
for mixed response variables (traits) are available in the statistical
literature under classic (maximum likelihood) and Bayesian methods.
However, these available models are not appropriate for dealing with
large data sets nor with the problem of large p and small # in genomic-
enabled prediction, since those Bayesian models were not built with an
analytical Gibbs sampler, due to the complexity of the likelihood func-
tion, which is a mixture of normal and other types of distributions.
Finally, this application of deep learning for the simultaneous
prediction of mixed phenotypes (binary, ordinal and continuous) is
important due to the fact that there is a lack of multivariate models
for simultaneously predicting mixed phenotypes (binary, ordinal and
continuous) in plant breeding and because we found that this model can
be implemented using the open-source R statistical software with the
keras package. Also, this package is easy to implement and does not
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require that its users have a strong computational and mathematical
background. It is efficient in terms of the computing resources required
and allows the implementation of other types of DL architectures, such
as convolutional networks, recurrent networks, etc., that can help
improve prediction accuracy in some circumstances.

CONCLUSIONS

In this paper we propose applying deep learning for simultaneously
predicting multiple traits with mixed phenotypes (binary, ordinal
and continuous). This application is novel in GS since, to the best of
our knowledge, nowadays there are no multiple-trait models avail-
able for the simultaneous prediction of mixed phenotypes. When
comparing the prediction performance of the MTDLMP model with
that of the UDL model, gains in terms of prediction accuracy were
only obtained in trait grain yield, and no differences were detected in
binary and ordinal traits. In general, the deep learning model for
simultaneously predicting mixed phenotypes is an attractive alter-
native for breeders due to the lack of models for the simultaneous
prediction of mixed phenotypes; the existence of friendly open-
source software for its implementation is also an important advan-
tage. For this reason, we believe deep learning models should be

included in the toolkit of scientific breeders, since there is empirical
evidence that there is no universally best prediction model for
genomic-enabled prediction.
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