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ABSTRACT Improving the end-use quality traits is one of the primary objectives in wheat breeding
programs. In the current study, a population of 127 recombinant inbred lines (RILs) derived from a cross
between Glenn (PI-639273) and Traverse (PI-642780) was developed and used to identify quantitative trait
loci (QTL) for 16 end-use quality traits in wheat. The phenotyping of these 16 traits was performed in nine
environments in North Dakota, USA. The genotyping for the RIL population was conducted using the wheat
lllumina iSelect 90K SNP assay. A high-density genetic linkage map consisting of 7,963 SNP markers
identified a total of 76 additive QTL (A-QTL) and 73 digenic epistatic QTL (DE-QTL) associated with these
traits. Overall, 12 stable major A-QTL and three stable DE-QTL were identified for these traits, suggesting
that both A-QTL and DE-QTL played an important role in controlling end-use quality traits in wheat. The
most significant A-QTL (AQ.MMLPT.ndsu.1B) was detected on chromosome 1B for mixograph middle line
peak time. The AQ.MMLPT.ndsu.1B A-QTL was located very close to the position of the Glu-B1 gene
encoding for a subunit of high molecular weight glutenin and explained up to 24.43% of phenotypic
variation for mixograph MID line peak time. A total of 23 co-localized QTL loci were detected, suggesting
the possibility of the simultaneous improvement of the end-use quality traits through selection procedures
in wheat breeding programs. Overall, the information provided in this study could be used in marker-
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assisted selection to increase selection efficiency and to improve the end-use quality in wheat.

Wheat (Triticum aestivum L.) produced in the Northern Great Plains of
the USA is known around the world due to its high protein content and
outstanding end-use quality traits (Vachal and Benson 2010). In wheat
breeding programs, the end-use quality traits are not usually evaluated
until late (starting from primarily yield trials onwards) in the breeding
program. This is because the end-use quality evaluations are expensive
and a large amount of grain is needed to conduct the evaluations.
Performing these evaluations at a late stage in the breeding program
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often results in ostensibly promising wheat lines with high yield
and resistance to diseases that cannot be released due to poor end-
use quality traits, such as a weak performance for milling parameters
and baking properties. To address these challenges, many studies have
been conducted to identify quantitative trait loci (QTL) and associated
markers for end-use quality traits, with the aim to use such markers
in marker-assisted selection (MAS) to improve quality traits in early
generations of the breeding program (Campbell et al. 2001; Prasad
et al. 2003; Breseghello et al. 2005; Kulwal et al. 2005; Arbelbide and
Bernardo 2006; Breseghello and Sorrells 2006; Huang et al. 2006;
Kuchel et al. 2006; Kunert et al. 2007; Mann et al. 2009; Tsilo et al.
2010; Zhao et al. 2010; Carter et al. 2012; Li et al. 2012b; Simons
et al. 2012; El-Feki et al. 2015; Deng et al. 2015; Echeverry-Solarte
et al. 2015; Tiwari et al. 2016; Jin et al. 2016). It should be mentioned
that MAS for end-use quality traits would be commenced from Fs
generation onwards if a single seed decent (SSD) method is used to
develop wheat cultivars.

Kernel characteristics, grain protein content; flour, dough, milling,
and bread baking characteristics differentiate the end-use quality traits
of wheat (Triticum aestivum L.) (Souza et al. 2002). These traits are
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complex traits influenced by a combination of environmental condi-
tions and genetic factors (Rousset et al. 1992; Peterson et al. 1998).
Grain protein content has received special attention among end-use
quality traits because it is an indication of the quality performance of
wheat products such as bread, cake, noodles, and pasta (Zhao et al.
2010). Moreover, wheat markets are determined based on the amount
of protein in the grain (Regional Quality Report 2011). Several studies
reported the existence of genes associated with grain protein content
across all wheat chromosomes (Galande et al. 2001; Prasad et al. 2003;
Kulwal et al. 2005; Huang et al. 2006; Kunert et al. 2007; Mann et al.
2009; Tsilo et al. 2010; Zhao et al. 2010; Li et al. 2012a and b; Carter
et al. 2012). Recently, Tiwari et al. (2016) reported a major QTL on
chromosome 1A associated with grain protein content that account for
16.2-17.7% of the PV across environments using a doubled-haploid
population comprised of 138 segregants from a cross between Berkut
and Krichauff cultivars. In another study, Boehm et al. (2017) identified
three major QTL for grain protein content on chromosomes 1A, 7B,
and 7B using 132 F6:8 recombinant inbred lines (RILs) population
derived from a cross between Butte86 and ND2603. In some of these
studies, molecular markers associated with genes regulating gluten pro-
teins have also been reported. Gluten is the coherent mass formed when
glutenin and gliadin (storage protein) bind after water is added to flour
(Stone and Savin 1999). Glutenins are responsible for dough strength
and are composed by subunits of high molecular weight (HMW) and
subunits of low molecular weight (LMW). The major genes controlling
HMW Glutenins are Glu-1, Glu-Al, Glu-Bl, and Glu-D1, whereas
the major genes controlling LMW Glutenins are Glu-A3, Glu-B3,
and Glu-D3 (Payne 1987).

Mixograph-related properties determine the performance of wheat
flour dough during mechanical treatment (Alamri 2009a, b). Mann et al.
(2009) reported major dough rheology QTL associated with the Glu-B1
and Glu-D1 loci in a double haploid population derived from a cross
of Kukri x Jans. The same study also identified a major QTL for
unextractable polymeric protein (UPP). Unextractable polymeric pro-
teins were located on chromosomes 1B and 2B and were suggested as a
predictor of dough strength (Gras et al. 2001). Mann et al. (2009) also
showed time to peak dough development (TPDD) was associated with
the Glu-B1, Glu-B3, and Glu-D1 loci, while peak resistance (PR) was
influenced by two QTL detected on chromosome 1A. Several studies
have shown the existence of genes associated with flour extraction
across all wheat chromosomes except chromosome 1D (Kunert et al.
2007; Tsilo et al. 2011; Simons et al. 2012). Campbell et al. (2001)
reported several QTL on chromosomes 1B, 3B, 5A, 5B, 5D in a pop-
ulation consisted of 78 F,.s RILs derived from the NY18/CC cross using
370 molecular markers to create a genetic linkage map including re-
striction fragment length polymorphisms (RFLP), microsatellites, and
markers derived from known function genes in wheat. In another study,
Echeverry-Solarte et al. (2015) identified four stable QTL on chromo-
somes 1A, 1B, 3D, and 6A for flour extraction in a RIL population
derived from a crossing between an elite wheat line (WCB414) and
an exotic genotype with supernumerary spikelet. In this study,
939 Diversity Arrays Technology (DArT) markers were used to as-
semble 38 genetic linkage groups covering 3,114.2 cM with an average
distance of 4.6 cM between two markers.

Kuchel et al. (2006) identified a major QTL for dough development
time on chromosome 1A and several QTL for dough stability time on
chromosomes 1A and 1B using two advanced backcross populations
named as B22 (Batis X Syn022) and Z86 (Zentos X Syn086). The same
study identified QTL for water absorption on chromosomes 1A and 2D
(Kuchel et al. 2006). Recently, a major QTL for water absorption was
detected on the short arm of chromosome 5D using compositions of
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390 landraces and 225 released varieties from the wheat germplasm
bank of Shandong Academy of Agricultural Science (Li et al. 2009).
In another study, Li et al. (2009) detected a major QTL for water
absorption associated with the puroindoline loci on the short arm of
chromosome 5D. Further Li et al. (2012a) identified a main effect QTL
for water absorption on chromosome 5B in two populations derived
from crosses among three Chinese wheat cultivars: Weimai8, Jimai20,
and Yannongl9. Arbelbide and Bernardo (2006) identified four QTL
for dough strength on chromosomes 1A, 1B, 1D, and 5B using 80 pa-
rental and 373 advanced breeding lines.

Limited information appears to be available on the genetic control of
baking properties. Mann et al. (2009) found a QTL associated with
sponge and dough baking on chromosome 5D in a population of
doubled haploid lines derived from a cross between two Australian
cultivars Kukri and Janz. In another study, Zanetti et al. (2001) detected
10 QTL for dough strength on chromosomes 1B, 5A, 5B, and 5D.
Kunert et al. (2007) reported two major QTL for loaf volume trait in
the BC,F; population of B22 (Batis X Syn022). Simons et al. (2012)
identified a QTL on the long arm of chromosome 1D for bake-mixing
time and water absorption traits in a population derived from a cross
between BR34 x Grandin. In the same study, Simons et al. (2012) found
no significant QTL for flour brightness and bake-mixing water ab-
sorption, suggesting that these characteristics may be controlled by
small effect QTL.

Although several studies were conducted in the past to dissect the
genetics of wheat end-use quality traits, almost all of these studies were
based on low-density genetic linkage maps containing only several
hundred molecular markers. Recently, Boehm et al. (2017) conducted
a high-density genetic linkage map study that identified 79 QTL asso-
ciated with end-use quality traits in a wheat RIL population derived
from a cross between Butte86 and ND2603 using 607 genotyping-by-
sequencing SNP markers, 81 microsatellite markers, and seven HMW
and LMW markers. In this study, a total of 35 linkage groups were also
assembled with a total map size of 1813.4 cM, an average genetic
distance of 2.9 cM between any two markers, and coverage on all wheat
chromosomes except chromosome 4D. In another study, Jin et al.
2016 performed a high-density linkage map study to detect 119 additive
QTL associated with milling quality traits in a RIL population derived
from a cross between Gaocheng 8901 and Zhoumai 16. In this study, a
total of 46.961 SNP markers based on the wheat Illumina 90K and 660K
iSelect SNP assays were used to construct a linkage map with the
average density of 0.09 cM per marker.

Alow-density genetic linkage map limits the successful application of
associated markers in breeding programs. In the current study, the wheat
Mumina 90K iSelect assay (Wang et al. 2014) was used to detect marker-
trait associations for end-use quality traits in wheat. Kumar et al. (2016)
reported using the wheat Illumina 90K iSelect assay to create a genetic
linkage map, indicating that it had a much higher resolution compared
to most of the previous genetic linkage maps for the dissection of grain
shape and size traits. Thus, the aims of this study were to: (1) construct
a high-density linkage map using the wheat Illumina 90K iSelect assay,
(2) provide comprehensive insight into the genetic control of end-use
quality traits, and (3) identify SNP markers closely linked to QTL
associated with end-use quality traits to enhance molecular breeding
strategies.

MATERIAL AND METHODS

Plant materials

A population of 127 RILs derived from a cross between Glenn
(PI-639273; Mergoum et al. 2006) and Traverse (PI-642780; resealed
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by Karl in 2006) was used in this study. Glenn and Traverse are both
hard red spring wheat (HRSW) cultivars. Glenn was developed and
released in 2005 by the Hard Red Spring Wheat Breeding Program at
North Dakota State University (NDSU) in Fargo, ND, USA. It is well-
known in domestic and export markets due to its high level of re-
sistance to Fusarium head blight (FHB), high grain protein content,
and excellent end-use quality characteristics (http://ndsuresearchfoun-
dation.org/glenn). Traverse was developed and released by the South
Dakota Agricultural Experiment Station in 2006. It is a high yielding,
FHB-tolerant cultivar with marginal grain protein content and end-
use quality. The RIL population was advanced by single seed descent
(SSD) method from the F2 through F10 generations.

Field Experiment Design

The RILs, parental lines, and check varieties were grown under field
conditions at three locations in ND for three years from 2012 to
2014 (Table 1). In 2012, the three sites were Prosper, Carrington, and
Casselton; whereas in 2013 and 2014 the Casselton site was replaced
with the Minot site. A detailed description of the environments is
given in Table 1. In 2012, lines were grown in a randomized complete
block design (RCBD) with two replicates; however, in 2013 and 2014, a
12 x 12 partially balanced square lattice design with two replicates
(simple lattice design) was used to reduce experimental error and in-
crease the experiment precision. In 2012 and 2013, each plot was 2.44 m
long and 1.22 m wide; whereas in 2014 the plots were 2.44 m long and
1.42 m wide. All plots consisted of seven rows. Sowing rate was 113 kg
ha-1 in all environments.

Phenotypic Data Collection

The grain samples harvested from the field experiments were cleaned in
two steps before evaluating quality traits. First, the samples were cleaned
using a clipper grain cleaner machine. Second, the samples were cleaned
using a carter dockage tester machine. One replicate was used to create a
200-g grain sample per line in each location for evaluating 16 end-use
quality characteristics. Quality characteristics analyzed in this study
were: grain protein content, flour extraction, eight mixograph-related
parameters, and six baking-related properties.

Grain protein content (%) was measured based on 12% moisture
using the Near-Infrared Reflectance (NIR) method for protein deter-
mination in small grains and following the American Association of
Cereal Chemists International (AACCI)-approved method 39-10-01
(AACC International 1999b). Flour extraction (%) was determined
using 150 g of thoroughly cleaned wheat grain per sample tempered
to 16.0% moisture, using the Brabender Quadrumat Jr. Mill and fol-
lowing the AACCI-approved method 26-50-01 (AACC International
1999d).

Mixograph parameters include the mixograph envelope left
slope, mixograph envelope right slope, mixograph MID line peak time,
mixograph MID line peak value, mixograph MID line time * value,
mixograph MID line peak width, mixograph MID line peak inte-
gral, and general mixograph pattern. Mixograph measurements were
obtained from 10 g of flour per sample on a 14% moisture basis using
the National Manufacturing Mixograph (National Manufacturing,
TMCO Division, Lincoln, NE) and following the AACCI-approved
method 54-40-02 (AACC International 1999c). Mixsmart software
was used to collect data of mixograph envelope left slope (%/min),
mixograph envelope right slope (%/min), mixograph MID line peak
time (min), mixograph MID line peak value (%), mixograph MID
line peak width (%), mixograph MID line peak integral (%/min), and
mixograph MID line time * value (%). The general mixograph pattern
was based on a 0 to 9 scale (0 = weakest and 9 = strongest) according
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to USDA/ARS-Western Wheat Quality Laboratory mixogram reference
chart (http://wwql.wsu.edu/wp-content/uploads/2017/03/Appendix-
6-Mixogram-Chart.pdf).

Baking properties include bake-mixing time, baking absorption,
dough character, bread loaf volume, crumb color and crust color, Baking
parameters were determined from 100 g of flour per sample on a 14%
moisture basis according to the AACCI-approved method 10-09-01
with a little modification in baking ingredients (AACC International
1999a). The baking ingredients were modified as follows: (1) malt dry
powder was replaced with fungal amylase (15 SKB); (2) compressed
yeast was replaced with instant dry yeast; (3) ammonium phosphate was
increased from 0.1 to 5 ppm; (4) two percent shortening was added. Bake
mixing time (minutes) was determined as time to full dough develop-
ment. Baking absorption was evaluated as a percent of flour weight on a
14% moisture basis for the amount of water required for optimum dough
baking performance. Dough character was assessed for handling con-
version at panning based on a scale of 1 to 10, with higher scores
preferred. Bread loaf volume (cubic centimeters) was measured by
rapeseed (Brassica napus L.) displacement 30 min after the bread was
removed from the oven. Crumb color and crust color were valued
according to visual comparison with a standard by using a constant
illumination source based on a 1 to 10 scale, with higher scores preferred.

Phenotypic Data Analysis

Because the evaluations of end-use quality are expensive and a large
amount of grain is needed, seeds from the two replicates of each
environment was bulked and used to analyze phenotypic data. The
experimental design employed was a randomized complete block design
(RCBD). End-use quality traits analyzed were generated from a bulk
sample combining two replicates in each environment, thus data from
each environment was considered as a replicate. Variance components
were estimated using restricted maximum likelihood (REML) in the
MIXED procedure of SAS software Version 9.3 (SAS Institute, Inc., Cary,
NC, USA). Blocks (environments) and genotypes were considered
random effects. Best linear unbiased predictor (BLUP) values were
estimated using the solution option of the random statement of the Proc
Mixed procedure in SAS. Broad-sense heritability and genetic correla-
tions were calculated using the Proc Mixed procedure in SAS (Holland
et al., 2003; Holland 2006). Broad-sense heritability was estimated as

)
H = S
(% + %+ 02)
re €
where G is the estimate of genotypic variance, 6%y, is the estimate of
genotype X environment interaction variance, c}g is the estimate of
error variance, r is the number of replications per environment, and
e is the number of environments. It should be mentioned that, in this
study r = 1 for the end-use quality traits evaluated on bulked sam-
ples. Broad-sense heritability coefficients were classified according to
Hallauer and Miranda (1988): VH = very high = H? > 0.70, HI = high
=0.50 < H2 < 0.70, M = medium = 0.30 < H2 < 0.50, and L = low =
H? < 0.30. Pearson correlations between quality traits were evaluated
using BLUP values across all environments. The CORR procedure in
SAS was used to calculate Pearson correlations. Trait values collected
from the first replicate of each environment and BLUP values were

used for the QTL mapping analysis.

Genotyping and Genetic Linkage Map Construction
Lyophilized young leaves were used to isolate genomic DNA for RILs
and parental lines following a modified Doyle and Doyle (1987)
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Table 1 Description of the environments and planting date to evaluate spring wheat end-use quality traits in a recombinant inbred lines
(RIL) population derived from a cross between Glenn and Traverse (NDAWN, 2000-2016)

Location Year LAT=2 LNGP ALT (m)c Planting date TGS (°C)d PGS (mm)e
Prosper 2012 46°57'46.90"N 97°1"11.31"W 275 05.15.2012 21 148.8
Carrington 2012 47°27'11.56"N 99°9'15.15"W 491 04.23.2012 19 225.0
Casselton 2012 46°51'18.26"N 97°12'39.83"W 283 05.10.2012 21 144.0
Prosper 2013 46°57'46.90"N 97°1"11.31"W 275 05.30.2013 20 318.0
Carrington 2013 47°27'11.56"N 99°9'15.15"W 491 04.30.2013 18 83.2
Minot 2013 48°13'58.68"N 101°17'32.25"W 514 05.14.2013 19 425.0
Prosper 2014 46°57'46.90"N 97°1"11.31"W 275 05.24.2014 19 216.9
Carrington 2014 47°27'11.56"N 99°9'15.15"W 491 05.02.2014 17 203.2
Minot 2014 48°13'58.68"N 101°17'32.25"W 514 05.22.2014 17 347.7

% atitude in degrees and minutes.
cLc»ngitude in degrees and minutes.

Altitude in meters.

Mean temperature during growing season in degrees Celsius (May-October).
®Mean precipitation in growing season in millimeters.

protocol described by Diversity Arrays Technology Pty., Ltd. (https://
ordering.diversityarrays.com/files/DArT_DNA_isolation.pdf). DNA
quality was checked via visual observation on 0.8% agarose gel.
DNA concentrations were determined with a NanoDrop 1000 spec-
trophotometer (NanoDrop Technologies, Inc., Wilmington, DE, USA).
DNA samples were diluted to the concentration of 50 ng/.l, and 20 pl
of the diluted samples were sent to the USDA Small Grains Genotyping
Lab in Fargo, ND, for SNP analysis using the wheat Illumina 90K iSelect
SNP assay (Wang et al. 2014). SNP markers were called as described by
Wang et al. (2014) using Genome Studio Polyploid Clustering Module
v1.0 software (www.illumina.com).

Out of a total 81,587 SNP markers from the wheat Illumina 90K
iSelect assay (Wang et al. 2014), 8,553 polymorphic SNP markers be-
tween parents after excluding poor quality markers were identified.
Markers with a high number of missing values (= 15%), inconsistent
results in three replicates of each parental genotype, or significant seg-
regation distortion (x2 goodness-of-fit statistic, p < 0.001) were ex-
cluded from the following map construction. Linkage analysis for 8,553
SNP markers was performed using a combination of MAPMARKER/
EXP software version 3.0 (Lander et al., 1987) and MSTmap software
(Wu et al., 2008). In the first step, a high-density SNP consensus map
was used (Wang et al., 2014) as a reference to select 210 anchor SNP
markers for all 21 wheat chromosomes. For each chromosome, 10 SNP
markers that covered the whole length of each chromosome were se-
lected. By using MAPMARKER/EXP software version 3.0 (Lander et al.
1987) and the 210 anchor SNP markers, 7,963 out of 8,553 SNP
markers were placed into the 21 wheat chromosomes based on
a minimum LOD score of 5.0 and a maximum distance of 40 centi-
morgans (cM). In the second step, the marker orders and genetic
distances of each linkage group were estimated using MSTmap soft-
ware (Wu et al. 2008), with a cut-off at P < 0.000001, the maximum
distance of 15 cM between markers, grouping LOD criteria of 5.0, and
a minimum linkage group size of 2 cM. Genetic distances between
markers were calculated using Kosambi’s genetic mapping function
(Kosambi 1944). To check the accuracy of the marker orders, the
genetic linkage groups were compared by inspection with the high-
density SNP consensus map of Wang et al. (2014). The final genetic
linkage maps and corresponding graphs were drawn using Mapchart
software version 2.2 program (Voorrips 2002).

Quantitative Trait Loci Mapping
Inclusive composite interval mapping with additive effects (ICIM-ADD)
was implemented to identify additive QTL (A-QTL) for each trait within
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each of the nine environments, as well as across all environments, using
QTL IciMapping software version 4.1 (Wang et al. 2012). In QTL
IciMapping, stepwise regression (p << 0.001) with simultaneous con-
sideration of all marker information was used. The step size chosen for
all A-QTL was kept at the default value, 1.0 cM. Left and right confi-
dence intervals were calculated by one-LOD drop off from the esti-
mated A-QTL (Wang et al. 2016). The LOD threshold values to detect
significant A-QTL were calculated by performing a permutation test
with a set of 1,000 iterations at a Type I error of 0.05; all A-QTL
identified above the LOD threshold value were reported in this study.
In addition, those A-QTL detected in more than two environments or
associated with at least two traits were reported. Furthermore, an
A-QTL with an average LOD value above the LOD threshold value
and an average phenotypic variation (PV) contribution over 10% was
considered a major A-QTL. Moreover, A-QTL which were identified
in at least three environments were defined as stable QTL.

Inclusive composite interval mapping of epistatic QTL (ICIM-EPI)
method, available in QTL IciMapping software version 4.1 (Wang et al.
2012), was employed to identify additive-by-additive epistatic interac-
tions or digenic epistatic QTL (DE-QTL) for each of the end-use quality
characteristics within each environment, as well as across all environ-
ments. For the convenience of illustration, the digenic epistatic QTL
were named as DE-QTL. The step size chosen for DE-QTL was 5.0 cM.
The probability used in stepwise regression for DE-QTL was 0.0001. To
detect DE-QTL, the LOD threshold values were kept at the default
value of 5.0. Additionally, the LOD value of 3.0 was also used as an-
other threshold to declare the presence of a putative DE-QTL. Those
DE-QTL that were identified in at least two environments were report-
ed in this study. Furthermore, a DE-QTL detected in at least three
environments was defined as a stable DE-QTL. It should be noted that
in order to represent the most relevant data, only the highest values
observed across environments for LOD score, additive effect, epistatic
effect, and PV were reported in this study.

Data Availability

There are two files (Excel files) in the Supplemental Material, File S1 and
File S2. File S1 contains three supplementary tables. Supplementary
Table 1 includes complete genetic maps developed using Glenn * Tra-
verse RIL population. Supplementary Table 2 shows information re-
lated to the complete list of additive QTL (A-QTL) detected for end-use
quality traits in a wheat (Triticum aestivum L.) RIL population derived
from a cross between Glenn (PI-639273) and Traverse (PI-642780).
Supplementary Material File S1 shows the complete list of digenic
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epistatic QTL (DE-QTL) detected for end-use quality traits in a wheat
(Triticum aestivum L.) RIL population derived from a cross between
Glenn and Traverse. File S2 contains genotyping data, linkage groups,
and phenotyping data. Supplemental material available at Figshare:
https://doi.org/10.25387/g3.6933068.

RESULTS

Phenotypic Variation, Heritability, and Genetic and
Pearson Correlations

The RIL population showed variation for all end-use quality character-
istics studied (Figure 1; Table 2 and Supplementary Material File S2).
The parental lines showed significantly different values for grain pro-
tein content, bake-mixing time, baking absorption, bread loaf volume,
general mixograph pattern, mixograph envelope left slope, mixograph
MID line peak time, mixograph MID line time * value, mixograph MID
line peak width, and mixograph MID line peak integral. The values
differed slightly but not significantly for crumb color, crust color, flour
extraction, mixograph envelope right slope, mixograph MID line peak
value, and dough character across all environments (Table 2). All traits
showed approximately normal distributions (Figure 1), demonstrating
the complex (polygenic) nature and quantitative inheritance of these
traits (Fatokun et al. 1992). Transgressive segregation in both directions
was observed for grain protein content, baking absorption, bread loaf
volume, crumb color, flour extraction, mixograph envelope left slope,
mixograph envelope right slope, mixograph MID line peak time, and
mixograph MID line peak value across all environments, indicating
positive alleles were present in both parents. Transgressive segregation
for crust color, mixograph MID line time * value, and dough character
was observed in the direction of the better parent (Glenn cultivar);
several RILs showed better performance than Glenn cultivar for these
traits. For flour extraction and mixograph envelope left slope, trans-
gressive segregation in the direction of Traverse was observed, with
several RILs showing higher values than the Traverse cultivar for these
characteristics (Table 2).

The broad-sense heritability coefficients varied substantially for
different traits. The highest estimated broad-sense heritability was for
mixograph MID line peak time (0.77), and the lowest for crust color
(0.05) (Table 2). Among baking properties, bake-mixing time and bak-
ing absorption showed high and moderate broad-sense heritability
(0.65 and 0.40, respectively); while bread loaf volume, crumb color,
crust color, and dough character showed low broad-sense heritability
(0.26,0.11, 0.05, and 0.22, respectively). Among milling and mixograph
traits, flour extraction, general mixograph pattern, mixograph envelope
left slope, mixograph envelope right slope, mixograph MID line peak
time, mixograph MID line peak value, mixograph MID line time *
value, and mixograph MID line peak integral showed moderate to high
broad-sense heritability (0.55, 0.42, 0.38, 0.50, 0.77, 0.31, 0.41, and 0.43,
respectively), but mixograph MID line peak width had low broad-sense
heritability (0.23). High to very high broad-sense heritability coeffi-
cients for bake-mixing time, flour extraction, mixograph MID line peak
time, and mixograph MID line peak value indicated stability of these
traits, and the PV of these characteristics was mainly due to genetic
effects (Table 2).

The genetic and Pearson correlation analyses showed most of the
quality traits were associated with each other (Table 3). Highly positive
significant genetic and phenotypic correlations (correlation coefficient
value lies between + 0.50 and + 0.97) were observed between grain
protein content and bread loaf volume; grain protein content and
envelope left slope; grain protein content and mixograph MID line peak
value; bake-mixing time and general mixograph pattern; bake-mixing
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time and mixograph envelope right slope; bake-mixing time and
mixograph MID line peak time; bake-mixing time and mixograph
MID line peak integral; baking absorption and mixograph MID
line peak value; bread loaf volume and mixograph envelope left
slope; general mixograph pattern and mixograph MID line time *
value; general mixograph pattern and mixograph MID line peak
width; general mixograph pattern and mixograph MID line peak in-
tegral; mixograph envelope right slope and mixograph MID line peak
time; mixograph MID line peak time and mixograph MID line peak
integral; and mixograph MID line peak integral; mixograph MID line
time * value and mixograph MID line peak width; and mixograph
MID line time * value and mixograph MID line peak integral. In
contrast, high negative significant genetic and phenotypic correla-
tions (correlation coefficient value lies between - 0.50 and - 0.87)
were found between bake-mixing time and mixograph envelope left
slope; mixograph envelope left slope and mixograph MID line peak
time; and mixograph envelope right slope and mixograph MID line
peak value. Moderate positive significant genetic and phenotypic
correlations, where correlation coefficient value lies between + 0.30
and + 0.50 and is significant at P < 0.01, were identified between grain
protein content and mixograph MID line time * value; grain protein
content and mixograph MID line peak width; bake-mixing time and
mixograph MID line time * value; bake-mixing time and mixograph
MID line peak width; baking absorption and mixograph envelope left
slope; bread loaf volume and crust color; NLV and general mixograph
pattern; bread loaf volume and mixograph MID line peak value; crust
color and general mixograph pattern; crust color and mixograph
MID line peak value; crust color and mixograph MID line time *
value; crust color and mixograph MID line peak width ; general
mixograph pattern and mixograph MID line peak time; general
mixograph pattern and mixograph MID line peak value; mixograph
envelope right slope and mixograph MID line peak integral;
mixograph MID line peak time and mixograph MID line time * value;
and mixograph MID line peak width and mixograph MID line peak
integral. However, moderate negative but highly significant genetic
and phenotypic correlations (correlation coefficient value lies be-
tween - 0.30 and - 0.50) were detected between grain protein content
and mixograph envelope right slope; grain protein content and
mixograph MID line peak time; bake-mixing time and mixograph
envelope left slope; baking absorption and mixograph MID line peak
time; mixograph MID line peak time and mixograph MID line peak
value. In other pairs of traits genetic and phenotypic correlations were
either low or not statistically significant at P < 0.05. Correlations
between the end-use quality traits are shown in more detail in Table 3.
Differences between genetic and phenotypic correlation coefficients
(Table 3) could be due to low heritability values; Hill and Thompson
(1978) suggested higher heritability values could result in the accu-
racy of genetic correlation estimates and greater similarity of genetic
and phenotypic correlation coefficients. The overall level of genetic
correlation was greater than phenotypic correlation, but the magni-
tude and pattern of genetic and phenotypic correlations were similar,
suggesting phenotypic correlations would likely be fair estimates of
their genetic correlations in end-use quality traits (Table 3).

Genetic Linkage Map

Out of a total of 8,553 SNP markers, 7,963 markers were selected for
genetic linkage mapping according to criteria described in the materials
and methods section (Supplementary Material File S2). These markers
were mapped onto 41 linkage groups covering all 21 wheat chromo-
somes (Table 4 and Supplementary Material File S1 and File S2). The
linkage maps covered a total genetic length of 2,644.82 cM, with an
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Table 2 Phenotypic performance of Glenn, Traverse and their recombinant inbred lines (RILs) based on average / BLUP values and
broad-sense heritability (H?) for end-use quality traits across all environments

RIL population

Trait? Glenn Traverse Mean S.D.c Ranged Q,° H2f Class of trait H?9
GPC 15.76 /0.51%b 14.49 /-0.76 15.25 /0.00 0.50 —1.12 to 1.52 —0.02 0.29 L
BMT 4.08 /0.98* 2.68 /-0.42 3.10/-0.03 0.26 —0.5310 0.76 —0.01 0.65 HI
BA 62.44 /1.42¢ 60.33 /—0.69 61.02 /-0.02 0.75 —1.44 t0 2.93 —0.09 0.4 M
BLV 200.83 /6.37* 185.86 /—8.6 194.46 /—0.13 4.67 —10.56 to 17.77 —0.26 0.26 L
CBCL 7.68 /—0.01 7.65/-0.04 7.69 /0.01 0.12 —0.40 to 0.28 0.02 0.1 L
CTCL 9.63 /-0.01 9.53/-0.11 9.64 /0.00 0.04 —0.11 to 0.06 0.01 0.05 L
FE 53.51/0.87 54.07 /1.43 52.64 /—0.01 1.21 —2.91 to 2.89 0.07 0.55 HI
MIXOPA 6.22 /2.93* 219 /=11 3.29 /-0.04 0.39 —1.19 to0 0.82 —0.05 0.42 M
MELS 23.68 /—0.40* 23.70/-0.38 24.08 /0.19 2.40 —4.64t07.18 -0.25 0.38 M
MERS —10.07 /0.24 —12.44 /-2.13 —10.31/-0.08 1.21 —3.45to 2.35 0.01 0.5 HI
MMLPT 5.68 /1.53* 3.10 /—1.05 4.15/-0.05 0.70 —1.53 to 2.08 —0.09 0.77 VH
MMLPV 60.45 /1.73 55.94 /-2.78 58.72 /0.05 1.85 —6.82 to 5.50 0.16 0.31 M
MMLTV 56.72 /4.23* 45.63 /—6.86 52.49 /—0.06 2.38 —6.52 to 6.48 —0.47 0.41 M
MMLPW 20.79 /2.81* 15.93 /-2.05 17.98 /—0.01 0.96 —2.18 to 2.19 -0.12 0.23 L
MMLPI 185.17 /43.41~ 114.29 /—27.47 141.76 /-0.61 13.7 —30.86 to 35.98 -0.77 0.43 M
DO 8.88 /-0.35 8.71/-0.52 9.23 /0.01 0.16 —0.44 t0 0.27 0.01 0.22 L

aGpPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crumb color, CTCL: crust color, FE: flour extraction rate,
MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope right slope, MMLPT: mixograph MID line peak time,
MMLPV: mixograph MID line peak value, MMLTV: mixograph MID line time * value, MMLPW: mixograph MID line peak width, MMLPI: mixograph MID line peak

integral; DO: dough character.
b significant difference between parental lines at P < 0.05.
Standard deviation.

Range is estimated based on BLUP values.
e ) .

The second quartile or median.

broad-sense heritability coefficient according to Holland (2003).

9Class of broad-sense heritability according to Hallauer and Miranda (1988), VH = very high = H2 > 0.70, HI = high = 0.50 < H? < 0.70, M = medium = 0.30 < H? <

0.50, L = low = H2 <0.30.

average distance of 0.33 cM between any two markers (Table 4 and
Supplementary Material File S1). The linkage map consisted of 1,427
loci (~18%), with an average genetic distance of 1.85 cM between any
two loci. Altogether, the B-genome contained considerably more
markers (4,807) than the A-genome (2,549); notably fewer markers
were mapped on the D-genome (607). The number of markers on
individual linkage groups varied from 10 (1B2) to 770 (3B1). Further-
more, the number of loci in a linkage group ranged from 2 (3D1) to
113 (7A1) (Table 4). The map position of each chromosome of Glenn/
Traverse map was compared with the high-density SNP consensus
map of Wang et al. (2014). The results showed that the marker orders
were fairly consistent with the average Spearman’s rank-order corre-
lation coefficient of 0.83.

Quantitative Trait Loci Analysis

A total of 76 A-QTL and 73 DE-QTL were identified for the 16 end-use
quality traits evaluated in this study (Table 5; Table 6 and Supplemen-
tary Material File S1). These A-QTL and DE-QTL were distributed
across all wheat chromosomes except chromosomes 3D and 6A for
A-QTL, and 3D for DE-QTL. In terms of the genome-wide distribution
of QTL, the B-genome had the highest number of A-QTL (36), while
the A-genome had the most DE-QTL (46). This was followed by the
A-genome with 25 A-QTL, the D-genome with 15 A-QTL, the
B-genome with 23 DE-, and the D-genome with four DE-QTL (Table
5and Table 6). All of the A-QTL and DE-QTL were identified in at least
two environments and/or were associated with at least two different
end-use quality traits (Table 5 and Table 6). Out of the 76 A-QTL, a
total of 43 A-QTL (~57%) explained more than 10% of PV and were
considered major A-QTL, while the remaining 32 A-QTL explained
less than 10% of PV and were considered minor QTL (Table 5).

-=.G3:Genes| Genomes | Genetics

Volume 9 May 2019 |

Furthermore, a total of 12 A-QTL and three DE-QTL were identified
in at least three environments and were considered stable QTL.

Quantitative Trait Loci for Grain Protein Content

A total of 11 A-QTL and 18 DE-QTL were detected for grain protein
content (Table 5; Table 6; Figure 2). The 11 A-QTL were located on
chromosomes /linkage groups 1A1, 1B1, 2A1, 2B2, 3A2, 3B1, 4B, 5B,
and 7A2. No A-QTL was found on the D-genome for grain protein
content in this study. Five A-QTL individually explained over 10% of
PV and were considered major A-QTL. The major A-QTL were located
on chromosomes/linkage groups 1A1, 2A1, 3B1, 4B, and 5B (Table 5;
Figure 2). Three A-QTL were detected in more than three environ-
ments and were considered stable A-QTL. Two of these stable A-QTL,
AQ.GPC.ndsu.1A and AQ.GPC.ndsu.5B, explained up t013.69% and
20.18% of PV for grain protein content, respectively, and were also
considered major QTL. For this trait, both parental genotypes contrib-
uted positive alleles, although the majority of the alleles (including the
three stable A-QTL) were contributed by the cultivar Glenn (Table 5;
Figure 2). The QTL AQ.GPCndsu.7A showed sequence similarity
with wheat HMGB1 mRNA for high mobility globular protein.
Christov et al. (2007) suggested the wheat HMGBI1 protein may have
a specific function as a general regulator of gene expression during
cold acclimation in wheat.

The results of digenic epistatic effects for grain protein content are
shown in Table 6. The accumulated contribution of these nine epistatic
interactions for grain protein content was ~16.38%. These DE-QTL
were located on pairs of linkage groups 1A1/7D3, 1A1/7D3, 2B2/5B1,
3B1/2D2,4A1/7B1,4A1/6D2, 5A3/2B2, 5B/6D1, and 6B1/2D2. Unlike
A-QTL, DE-QTL for grain protein content were identified on the
D-genome. The majority of these DE-QTL showed negative values

The Genetics of Quality Traits in Wheat | 1411
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Table 4 Distribution of markers and marker density across linkage groups in the bread wheat (Triticum aestivum L.) genetic map
developed by using the recombinant inbred line (RIL) population of a cross between Glenn (PI-639273) and Traverse (PI-642780)

Linkage group No. of markers No. of loci Map distance (cM) Map density (cM/marker) Map density (cM/locus)
1A1 345 70 131.08 0.38 1.87
1A2 108 24 30.79 0.29 1.28
2A1 215 74 142.28 0.66 1.92
2A2 52 11 14.30 0.28 1.30
3A1 221 41 87.52 0.40 2.13
3A2 91 18 60.99 0.67 3.39
4A1 278 57 150.56 0.54 2.64
5A1 78 21 80.58 1.03 3.84
5A2 197 42 59.79 0.30 1.42
5A3 29 14 32.84 1.13 2.35
6A1 173 33 72.94 0.42 2.21
6A2 173 23 16.24 0.09 0.71
7A1 525 113 196.80 0.37 1.74
7A2 64 18 17.14 0.27 0.95
1B1 529 58 68.48 0.13 1.18
1B2 10 5 19.69 1.97 3.94
1B3 43 10 11.10 0.26 1.1
2B1 461 54 40.33 0.09 0.75
2B2 614 106 181.12 0.29 1.71
3B1 770 70 77.38 0.10 1.1
3B2 78 21 31.31 0.40 1.49
3B3 27 9 16.27 0.60 1.81
3B4 103 29 18.45 0.18 0.64
4B1 273 58 111.08 0.41 1.92
5B1 395 88 241.74 0.61 2.75
6B1 794 103 144.16 0.18 1.40
6B2 104 22 73.09 0.70 3.32
7B1 555 88 134.67 0.24 1.53
7B2 51 14 11.12 0.22 0.79
1D1 111 24 78.26 0.71 3.26
2D1 131 7 13.48 0.10 1.93
2D2 47 16 14.09 0.30 0.88
2D3 11 10 22.03 2.00 2.20
3D1 33 2 9.62 0.29 4.81
4D1 17 7 6.21 0.37 0.89
5D1 118 12 21.32 0.18 1.78
6D1 40 14 73.50 1.84 5.25
6D2 31 10 10.75 0.35 1.08
7D1 31 14 35.44 1.14 2.53
7D2 22 5 9.89 0.45 1.98
7D3 15 12 76.40 5.09 6.37
A genome 2549 559 1093.86 0.43 1.96
B genome 4807 735 1179.99 0.25 1.61
D genome 607 133 370.97 0.61 2.79
Whole genome 7963 1427 2644.82 0.33 1.85

for digenic epistatic effects indicating the positive effects of recombinant
genotypic combinations on grain protein content. The AQ.GPC.ndsu.5B
had the most important main effect on grain protein content, and the
AQ.BA.ndsu.6D had a significant main effect on BA; the epistatic inter-
action between these A-QTL had a positive effect on grain protein con-
tent. The parental genotypic combinations increased grain protein
content through this interaction (Table 6).

Quantitative Trait Loci for Flour Extraction and
Mixograph-related Parameters

A total of 32 A-QTL and 51 DE-QTL were identified for flour extraction
and mixograph-related parameters (Table 5; Table 6; Figure 2). These
32 A-QTL were located across all 21 wheat chromosomes except chro-
mosomes 1D, 2B, 3D, 54, 6A, and 6D. A total of 19 A-QTL individually
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explained more than 10% of PV and were considered major A-QTL.
Out of these A-QTL, five stable A-QTL were found for these traits, one
stable A-QTL for flour extraction (AQ.FE.ndsu.3B) and four stable
A-QTL for mixograph MID line peak time (AQMMLPT.ndsu.1B,
AQ.MMLPT.ndsu.5D, AQ MMLPT.ndsu.3B.2, and AQ.MMLPT.
ndsu.2D). For all of these stable A-QTL, except the AQ MMLPT.
ndsu.1B, the alleles were contributed through the Traverse cultivar.
The AQ MMLPT.ndsu.1B A-QTL was identified in six out of nine
environments and explained up to 24.35% of PV for MMPLT. This
A-QTL was considered the most stable A-QTL, which had the highest
effect on MMLPT (Table 5).

The results of DE-QTL for flour extraction and mixograph-related
parameters are shown in Table 6. A total of 49 DE-QTL were detected
on all wheat chromosomes expect chromosome 3D. The individual

The Genetics of Quiality Traits in Wheat | 1413
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Figure 2 Additive and additive co-localized QTL for end-use quality traits in the Glenn x Traverse RIL population. QTL confidence intervals are

indicated by vertical bars and bold and italic scripts.

epistatic interactions explained ~0.77% to ~8.15% of PV for flour
extraction and mixograph parameters. Three stable digenic epistatic
interactions were found for these traits: one DE-QTL (DEQ.FE.
ndsu.5A1/1D1) for flour extraction and two DE-QTL (DEQ.MMLPT.
ndsu.2A2/4B1 and DEQ.MMLPT.ndsu.4A1/5A1) for mixograph MID
line peak time. The DEQ.FE.ndsu.5A1/1D1 DE-QTL explained only up
to 3.84% of PV for flour extraction. The parental genotypic combinations
of this DE-QTL had a positive effect on the increase of flour extraction.
The DEQMMLPT.ndsu.2A2/4B1 and DEQ.MMLPT.ndsu.4A1/5A1
DE-QTL explained only up to 2.19% and 1.66% of PV for mixograph
MID line peak time, respectively. The parental genotypic combinations
increased MMPLT through the DEQMMLPT.ndsu.4A1/5A1 stable
DE-QTL, whereas recombinant genotypic combinations increased
MMPLT through the DEQMMLPT.ndsu.2A2/4B1 stable DE-QTL.
Overall, both parental and recombinant genotypic combinations almost
equally contributed to the increase of flour extraction and improvement
of the mixograph-related parameters (Table 6).

Quantitative Trait Loci for Baking Properties

A total of 31 A-QTL and 15 DE-QTL were detected for baking-related
properties in this study (Table 5; Table 6; Figure 2). These 31 A-QTL
individually explained ~2.14% to ~28.06% of PV for the associated
traits. These A-QTL were located on 17 wheat chromosomes excluding
1A, 2B, 3D, and 6A. A total of 19 major A-QTL with PV values over
10% were found for the baking-related properties. Three stable A-QTL
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were identifled in this study: two A-QTL for baking absorption (AQ.
BA.ndsu.4D.1 and AQ.BA.ndsu.1B) and one A-QTL (AQ.BMT.ndsu.5D)
for bake-mixing time. Although the Glenn cultivar contributed over 60%
of the desirable alleles for the baking-related properties in this study, the
cultivar Traverse contributed the desirable alleles for these three stable
A-QTL. The AQ.BA.ndsu4D.1 stable A-QTL associated with baking
absorption had the highest PV (~28.06%) for end-use quality traits in
this study (Table 5).

The results of digenic epistatic interactions for the baking-related
properties are presented in Table 6. Out of the six baking-related prop-
erties evaluated in this study, digenic epistatic effects were only identi-
fied for baking absorption, bread loaf volume, and bake-mixing time
traits with one, one, and 13 digenic epistatic interactions, respectively.
The DE-QTL, DEQ.BA.ndsu.1A1/1A1 and DEQ.BLV.ndsu.6D1/7D3,
explained ~6.94% and ~3.37% of PV for baking absorption and bread
loaf volume, respectively. The accumulated contribution of the 13 DE-QTL
for bake-mixing time was ~26.29%. Both parental and recombinant ge-
notypic combinations contributed to the increase of bake-mixing time,
whereas only the parental genotypic combinations had positive effects
on baking absorption and BLV (Table 6).

Co-Localized Quantitative Trait Loci

A total of 19 additive co-localized (closely linked or pleiotropic) QTL,
and four epistatic co-localized QTL were found in this study (Table 5;
Table 6; Figure 2). These 19 additive co-localized QTL were mainly
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Figure 2 Continued.

located on the A- and B-genomes (Table 5; Figure 2). Positive pleiot-
ropy was shown in 14 out of 19 additive co-localized QTL, where the
additive effects of a locus on multiple traits were of the same sign. In
contrast, negative pleiotropic effects were observed for five co-localized
QTL on chromosomes/linkage groups 1Al, 2A1, 2A1, 4A, and 4D
harboring major A-QTL, respectively, for grain protein content and
flour extraction; grain protein content and bake-mixing time; grain
protein content and mixograph MID line peak time; flour extraction,
mixograph MID line time * value, and baking absorption; and mixo-
graph envelope left slope, mixograph envelope right slope, and baking
absorption. Overall, approximately 63% of A-QTL with close linkage or
pleiotropic effects on the integrated set of traits (Table 5; Figure 2) were
considered major A-QTL. Additive co-localized QTL for the end-use
quality traits are shown in more detail in Table 5.

In addition to additive co-localized QTL, four epistatic co-localized
QTL (“epistatic pleiotropy,” Wolf et al, 2005) were identified in this
study (Table 6). These epistatic co-localized QTL were located on pairs
of linkage groups 1A1/7A1, 5A1/7D3, 1A1/7D3, and 1B1/7B1 associ-
ated with general mixograph pattern and mixograph MID line time *
value; mixograph MID line peak time, mixograph MID line peak inte-
gral, and mixograph MID line time * value; grain protein content and
mixograph envelope right slope; and mixograph MID line peak value
and mixograph MID line time * value, respectively (Table 6). All epi-
static co-localized QTL except one (1A1/7D3 for the integrated set of
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grain protein content and mixograph envelope right slope traits)
showed positive pleiotropic effects (Table 6).

DISCUSSION

Phenotypic Evaluation
It is well documented that end-use quality traits in wheat are complex
and are influenced by a combination of environmental conditions and
genetic factors (Rousset et al. 1992; Peterson et al. 1998; Tsilo et al. 2011;
Simons et al. 2012). The power and accuracy of QTL detection are
highly dependent on choosing the parental lines (Jansen et al. 2001).
In other words, power of accuracy depend on allelic polymorphism and
phenotypic variation between parental lines. In the current study, the
RIL population was developed from a cross between Glenn (PI1639273)
and Traverse (PI 642780). Glenn has excellent end-use quality charac-
teristics. By comparison, Traverse has a high grain yield but poor end-
use quality characteristics. As expected, our results showed significantly
different values between the parental lines for most of the end-use
quality traits. The RIL population showed continuous variation and
transgressive segregation for all the end-use quality characteristics,
suggesting the polygenetic inheritance and contribution, particularly
of positive alleles for the end-use quality traits by both parental lines.
Our results showed a wide range of broad-sense heritability (0.23 -
0.77) for mixograph-related parameters, suggesting environmental

-=.G3:Genes| Genomes | Genetics
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Figure 2 Continued.

effects had a wide range of influences on the phenotypic values of the
mixograph-related parameters. These results were in agreement with
those of Patil et al. (2009), who also reported a wide heritability range of
0.17 to 0.96 for mixograph-relative parameters. In contrast to our
results, Tsilo et al. (2011) and Prashant et al (2015) found high
broad-sense heritability for most of the end-use quality traits in wheat.
Similarly, the current study, Echeverry-Solarte et al. (2015) reported
very high broad-sense heritability for flour extraction and MMLPT.

The genetic and Pearson correlation analyses revealed most of the
end-use quality traits were associated with each other. Several previous
studies have also reported similar results (Patil et al. 2009; Tsilo et al.
2011; Prashant et al. 2015; Echeverry-Solarte et al. 2015). Our results
showed differences between genetic and phenotypic correlation coeffi-
cients for end-use quality traits. These differences could be due to low
heritability values for these traits as was reported by Hill and Thompson
(1978). Notably, although there were differences between the genetic
and phenotypic correlation coefficients, the pattern and magnitude of
these coefficients were similar. These similarities suggest the pheno-
typic correlation could be a fair estimate of the genetic correlation for
end-use quality traits in wheat.

High-Density Linkage Map

Genetic linkage maps have played important roles in detecting QTL,
MAS, cloning genes, and genome structure analysis (Maccaferri et al.
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2014; Jin et al. 2016). In the present study, the wheat Illumina 90K
iSelect assay was used to genotype Glenn and Traverse and all 127 RILs
derived from these two parents. Our study resulted in a much higher
genome coverage and resolution compared to the most of the previous
genetic linkage maps for the genetic dissection of end-use quality traits
in wheat (Groos et al. 2003; Echeverry-Solarte et al. 2015; Boehm et al.
2017). Marker density of 0.33 cM between any two markers indicated a
significant improvement over earlier genetic maps developed with ei-
ther microsatellite markers (Tsilo et al. 2010; Simons et al. 2012), DArT
markers (Echeverry-Solarte et al. 2015), or SNP makers (Boehm ef al.
2017). The genetic map length of 2,644.82 cM improved significantly
the genome coverage compared to the other developed map for the ge-
netic analysis of end-use quality traits in wheat using the wheat Illumina
90K iSelect assay (Boehm et al. 2017), where the map size was 1813.4 cM.

Several large genetic gaps, in the framework of our linkage map, led us
to split most of the chromosomes into more than one linkage group.
These genetic gaps could be due to the following reasons: First, the
genotyping for the RIL population was based solely on SNP markers
derived from the transcribed portion of the genome. In other words,
these SNP markers represented genic regions which occupy only a small
portion, compared to the repetitive DNA which represent >80% of the
wheat genome. The genetic gaps between linkage groups may represent
genomic regions with a significant amount of repeat elements. Similar
observations have been made in other studies using the same wheat
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Nlumina iSelect 90K SNP assay (Kumar et al. 2016; Wen et al. 2017; Liu
et al. 2018). Second, the RIL population used in this study was derived from
a cross between two elite cultivars which were developed for the Midwest
region of the United States, meaning there is only limited genetic variation
between them and thus low level of polymorphism markers.

Genetics of Grain Protein Content

Improving grain protein content is one of the principal objectives of most
wheat breeding programs. Previous studies have reported few major and
several minor QTL for grain protein content, suggesting the polygenic
nature and quantitative inheritance of this trait (Johnson et al. 1978;
Bogard et al. 2013; Echeverry-Solarte et al. 2015; Li et al. 2016). The
most significant A-QTL in this study, AQ.GPC.ndsu.5B, identified on
chromosome 5B, was also involved in a digenic epistatic interaction.
Previous studies have reported an A-QTL associated with grain protein
content on the long arm of chromosome 5B (Kulwal et al. 2005; Bordes
et al. 2013; Echeverry-Solarte et al. 2015). However, unlike previous
studies, this study identified the AQ.GPC.ndsu.5B A-QTL on the short
arm of chromosome 5B, suggesting the novelty of this major A-QTL.
Similar to our results, Prasad et al. (2003) and Groos et al. (2003)
reported an A-QTL for grain protein content on chromosome 7A
(Table 5). It is worthwhile to note that the minor stable A-QTL, AQ.
GPC.ndsu.7A, showed nucleotide sequence similarity with the wheat
HMGBI protein. Christov et al. (2007) reported the wheat HMGB1
protein may play a major role in controlling general aspects of gene
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expression through chromatin structure modification. In addition to
this significant role, Christov et al. (2007) also mentioned this protein
possibly has a specific function as a general regulator of gene expression
during cold stresses. Further studies are needed to elucidate the simi-
larity between the AQ.GPC.ndsu.7A A-QTL and the wheat HMGB1
protein. As it was expected, most of the alleles for increased grain
protein content were contributed by the cultivar Glenn.

Genetics of Flour Extraction Rate and Mixograph-

related Parameters

Flour extraction rate and mixograph-related parameters are important
end-use quality traits for the milling industries. Both flour extraction and
mixograph-related parameters are quantitative traits controlled by
multiple genes (Campbell et al. 2001; Breseghello et al. 2005;
Breseghello and Sorrells 2006; Simons et al. 2012; Echeverry-Solarte
et al. 2015). This study found one stable A-QTL (AQ.FE.ndsu.3B) on
chromosome 3B for flour extraction. Similarly, Carter et al. (2012)
and Ishikawa et al. (2014) also reported a stable A-QTL with a minor
effect on chromosome 3B for flour extraction (Table 5). Besides the
A-QTL, this study also identified a stable DE-QTL (DEQ.FE.
ndsu.5A1/1D1) for flour extraction. In addition, the AQ.BLV.ndsu.5A
A-QTL, which showed a significant main effect for bread loaf volume,
was involved in the epistatic interaction of the DEQ.FE.ndsu.5A1/1D1
DE-QTL. Xing et al. (2014) indicated epistatic interactions
could play an important role in the genetic basis of complex traits.
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Xing et al. (2002) and Yu et al. (1997) also mentioned epistatic effects
should be much more sensitive to environmental effects than to main
effects, making the detection of a stable QTL with an epistatic effect
more difficult. This study is likely the first to report that a stable QTL
with an epistatic effect for flour extraction. The majority of the positive
alleles for flour extraction were contributed from the Traverse cultivar.

Previous studies have shown the effects of HMW-GS and LMW-GS
on mixograph-related parameters (Payne et al. 1981; Brett et al. 1993;
Gupta and MacRitchie 1994; Ruiz and Carrillo 1995; Maucher et al.
2009; Zhang et al. 2009; Branlard et al. 2001; He et al. 2005; Liu et al.
2005; Mann et al. 2009; Jin et al. 2013; Echeverry-Solarte et al. 2015; Jin
et al. 2016). In the current study, a stable A-QTL (AQ.MMLPT.ndsu.1B)
with a major effect on mixograph MID line peak time was detected on
chromosome 1B, close to the location of the Glu-B1 gene encoding for
HMW-GS. Similarly, a recent study reported a major stable A-QTL for
mixograph MID line peak time in the same region close to the Glu-B1
gene (Jin et al. 2016). The favorable alleles for this A-QTL were con-
tributed through the Glenn cultivar. The three stable A-QTL (AQ.
MMLPT.ndsu.2D, AQ.MMLPT.ndsu.3B.2, and AQ.MMLPT.ndsu.5D)
for mixograph MID line peak time on chromosomes 2D, 3B, and 5D,
respectively, seem to be novel, with Traverse contributing the desirable
alleles. In addition to the A-QTL, this study identified two novel stable
epistatic DE-QTL (DEQ.MMLPT.ndsu.2A2/4B1 and DEQ.MMLPT.
ndsu.4A1/5A1) for mixograph MID line peak time on pairs of linkage
groups 2A2/4B1 and 4A1/5A1, respectively. In another study, El-
Feki et al. (2015) identified a significant epistatic interaction between
the Glu-B1 locus on chromosome Bl and a QTL region near the
microsatellite marker Xwmc76 on chromosome 7B for mixograph
MID line peak time in a doubled haploid hard winter wheat population.

Genetics of Baking Properties

Baking quality evaluations are the final assessments to allow breeders to
determine the appropriateness of a new wheat line to be released and
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accepted by the end users. Despite the importance of baking quality,
limited information is available on the genetic control of baking
properties. Previous studies have indicated the effects of HMW-GS
on baking properties (Campbell et al. 2001; Rousset et al. 2001; Huang
et al. 2006; Mann et al. 2009; Tsilo et al. 2010). In the current study, the
locations of two major A-QTL (AQ.BMT.ndsu.1B and AQ.BMT.
ndsu.1B.2) for bake-mixing time were found to be close to the location
of the Glu-B1 gene. Besides these two A-QTL, three stable A-QTL were
detected for baking properties, AQ.BA.ndsu.4D.1, AQ.BA.ndsu.1B, and
AQ.BMT.ndsu.3A. Similar to the AQ.BMT.ndsu.1B and AQ.BMT.
ndsu.1B.2 A-QTL for bake-mixing time, the favorable allele for the
AQ.BMT.ndsu.3A A-QTL was contributed by Glenn cultivar. Con-
versely, the favorable alleles for the AQ.BA.ndsu.4D.1 and AQ.BA.
ndsu.1B A-QTL were contributed by Traverse cultivar. Similar results
were reported by Kuchel et al. (2006) and Tsilo et al. (2011) who found
A-QTL for baking absorption on chromosome 1B (Table 5). The pre-
vious studies reported A-QTL for bread loaf volume on every wheat
chromosome except chromosomes 3D, 4A, 5A, and 6A (Mann et al.
2009; Simons et al. 2012; Tsilo et al. 2011). Unlike these reports, our
study found a major A-QTL (AQ.BLV.ndsu.5A) for bread loaf vol-
ume on chromosome 5A. This study found one A-QTL with minor
effect (AQ.CBCL.ndsu.6B) on chromosome 6B for crumb color. This
A-QTL was located very close to the position of the A-QTL
(gwm193) that Groos et al. (2007) reported for crumb grain score.
In the current study, for the first time, a stable A-QTL (AQ.BMT.
ndsu.5D) was identified on chromosome 5D for bake-mixing time.
Two novel major A-QTL (AQ.CTCL.ndsu.6B.1 and AQ.CTCL.
ndsu.7A) on chromosomes 6B and 7A were detected for crust color.
To our knowledge, there is no previous works reporting the digenic
epistatic interaction effects for baking properties. Our study
showed a total of 15 DE-QTL were identified addressing this issue
confirming the complex nature of inheritance of the baking properties
of wheat flour.
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Closely Linked or Pleiotropic Effects

Pleiotropic QTL could be valuable in the simultaneous improvement
of several traits. Our results showed most of the end-use quality traits
were associated with each other. Thus, it was expected to be able to
identify co-localized (closely linked or pleiotropic) QTL controlling
these traits. A total of 19 additive co-localized QTL were identified for the
end-use quality traits in the current study. This is results is in agreement
with previous studies (Cheverud 2000; Leamy et al. 2002; Wolf et al.
2006) who reported that most of these additive co-localized QTL
(~74%) showed positive pleiotropy. The loci controlling functionally
integrated groups of traits are known to show positive pleiotropy
(Cheverud 2000; Leamy et al. 2002; Wolf et al. 2006). However, five
additive pleiotropic loci showed negative pleiotropy in the current
study. These five additive co-localized QTL harbored A-QTL for grain
protein content and flour extracion; grain protein content and bake-
mixing time; MMPLT and grain protein content; flour extraction, bak-
ing absorption, and mixograph MID line time * value; and baking
absorption, mixograph envelope right slope, and mixograph envelope
left slope on chromosomes 1A, 1B, 2A, 4A, and 4D, respectively. Similar
results were reported by Echeverry-Solarte et al. (2015) who found a
co-localized QTL with negative pleiotropy on chromosome 5B for three
integrated sets of traits (grain protein content, mixograph envelope
peak time, and mixograph MID line peak time, where alleles from
the exotic parent (WCB617) increased grain protein content, but de-
creased mixograph envelope peak time and mixograph MID line peak
time. In the current study, the most important co-localized QTL
was identified on chromosome 1B, which harbored two major
A-QTL (AQ.BMT.ndsu.1B.2 and AQ.MMLPT.ndsu.1B) for bake-mix-
ing time and mixograph MID line peak time, respectively. Moreover,
this co-localized QTL was located very close to the location of the
Glu-B1 gene. Furthermore, this showed positive pleiotropy, where the
desirable alleles were contributed through the Glenn cultivar. This
positive pleiotropy indicated that a simultaneous improvement of
bake-mixing time and MMPLT would be possible through selection.
Besides the additive co-localized QTL, four epistatic co-localized
QTL were identified in the current study. It is generally accepted that
additive pleiotropic effects are more common than epistatic pleiotro-
pic effects (Wolf et al. 2005 and 2006). Thus, as expected, the fre-
quency of epistatic co-localized QTL was less than the frequency of
additive co-localized QTL. The current study appears to be the first
to report for epistatic co-localized QTL for end-use quality traits in
wheat. Furthermore, all epistatic showed positive pleiotropy effect ex-
cept one, which harbored A-QTL on pairs of linkage group 1A1/7D3
for grain protein content and mixograph envelope right slope. This
negative pleiotropy is in contrast with previous findings; Wolf et al.
(2005) suggested positive pleiotropy might be generally expected in
epistatic pleiotropic analyses of integrated sets of traits.

Conclusion

The current study suggests that flour extraction, mixograph envelope
right slope, mixograph MID line peak time, and bake-mixing time can be
used for the evaluation of the end-use quality traits in wheat breeding
programs due to their high broad-sense heritability values. Overall, both
parentallines (Glenn and Traverse) contributed desirable alleles that had
positive effects on the end-use quality traits, suggesting both parental
lines could be excellent resources to improve end-use quality traits in
wheat breeding programs.

In the current study, a much improved high-density SNP-based
linkage map was constructed and used to identify QTL for end-use
quality traits in wheat. It is worthwhile to note the use of the wheat
Illumina 90K iSelect assay resulted in a better improvement in genome
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coverage, marker density, and identification of QTL compared to pre-
vious studies for end-use quality traits in wheat.

This study identified 12 stable major main effect QTL and three stable
digenic epistatic interactions for the end-use quality traits in wheat. This
suggests that both additive and digenic epistatic effects should be
considered for these traits in molecular wheat breeding programs, such
as MAS. Furthermore, a total of 23 closely-linked or pleiotropic loci were
identified in this study. The co-localized QTL could be valuable to
simultaneously improve the end-use quality traits via selection proce-
dures in wheat breeding programs. The information provided in the
current study could be used in molecular wheat breeding programs to
enhance selection efficiency and to improve the end-use quality traits
in wheat.
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