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In group-living species with parental care, the accurate recognition of one’s

own young is critical to fitness. Because discriminating offspring within a

large colonial group may be challenging, progeny of colonial breeders

often display familial or individual identity signals to elicit and receive

parental provisions from their own parents. For instance, the common

murre (or common guillemot: Uria aalge) is a colonially breeding seabird

that does not build a nest and lays and incubates an egg with an individually

unique appearance. How the shell’s physical and chemical properties gener-

ate this individual variability in coloration and maculation has not been

studied in detail. Here, we quantified two characteristics of the avian-visible

appearance of murre eggshells collected from the wild: background color-

ation spectra and maculation density. As predicted by the individual

identity hypothesis, there was no statistical relationship between avian-per-

ceivable shell background coloration and maculation density within the

same eggs. In turn, variation in both sets of traits was statistically related

to some of their physico-chemical properties, including shell thickness and

concentrations of the eggshell pigments biliverdin and protoporphyrin IX.

These results illustrate how individually unique eggshell appearances, suit-

able for identity signalling, can be generated by a small number of structural

mechanisms.
1. Introduction
Caring for dependent young often incurs energetic and temporal costs for the

parents [1]. Recognition mechanisms that enable the delivery of parental care

to genetically related young, therefore, are favoured by natural selection [2].

In many parental species, identifying one’s own progeny reliably can be

achieved indirectly through the recognition of the site at which young are

housed and developing (e.g. hive, nest or den) [3]. However, in colonially

breeding species, especially those without fixed dens or nests, or with mobile

offspring, the direct recognition of own offspring is necessary for accurate par-

ental investment [4]. In birds, individually unique coloration and maculation of

eggs provides a potential mechanism for direct offspring recognition [5].
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Figure 1. Common murres at their breeding colony off Gotland, Sweden.
Inset: Representative human-visible shape, colour, and pattern variation
between eggs, collected from different individual common murres in Iceland.
Photo credits: M. Hauber and B. Stauffer. (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190115

2
Avian eggs are often highly variable in appearance, both

among and within species [6,7]. This variation includes diver-

sity in size, shape, background coloration and, when present,

maculation [8,9]. Several adaptive functions may explain

intraspecific variability of avian eggshell appearance [10,11],

including direct individual egg recognition by parents in

species without nests [12]. A notable textbook (e.g. [13])

exemplar of this is the highly variable egg of the common

murre (or common guillemot: Uria aalge, hereafter: murre)

(figure 1 inset). Murres are seabirds that breed in dense cliff

colonies, and do not build a nest but instead individually

recognize and retrieve their own egg when faced with a

choice between it and the unattended egg of a neighbour or

other conspecific [14] (figure 1).

Traits that subserve individual recognition have a

characteristic set of qualities that discriminate them from

display trait sets that function in different recognition con-

text, such as kinship or Fisherian attractiveness [5].

Specifically, individual recognition traits would show a

high level of variability, multimodal distribution, lack of

correlation between component traits, and strong degree of

genetic determination [15]. Murre eggs appear to conform

to these trait qualities, in that they show multimodality

and lack of correlation between their shell background col-

ours’ hue and saturation [16], and high variability between

individuals with strong high putative genetic control

within individuals (sensu [17]) for egg shape [18], coloration

and maculation: [19,20], and size [20].

Here, we address the structural basis of individual recog-

nition signalling in egg coloration and maculation in murres.

Chemically, avian eggshell colour variation is under the influ-

ence of just two known pigments: the blue-green biliverdin and

the rusty-black protoporphyrin IX [21], and their interaction

with the white calcite of the eggshell matrix [8]. These two pig-

ments are ubiquitous across the avian radiation [22], and had

originated once in non-avian dinosaurs [23], and so our

study is relevant to understanding the structural bases in vari-

ation of avian and reptilian eggshell coloration and maculation

more generally. Additional structural and environmental

constituents of eggshells can contribute to variation in avian

egg appearance, including a vaterite layer covering the shell

background [24], or dirt accumulating during incubation [25].

However, these mechanisms do not explain the structural

origin of individually consistent but interindividually variable

murre egg phenotypes [20].

Here we quantified the relationship between

avian-perceivable visual components of murre eggshells

(background coloration and maculation density) with

two of the shells’ structural elements known to be related to

coloration and maculation (pigment concentrations: [8], and

thickness: [26]). These analyses tested two predictions related

to the eggshell identity signal hypothesis:

Prediction A: shell background colour and maculation

density contributing to avian-perceivable egg appearance

are statistically uncorrelated within the same eggs, and

Prediction B: variation in the physico-chemical structure of the

shell generates avian-visible diversity across murre eggs.

This work, thus, complements our recent report of

intraindividual repeatability of eggshell phenotypes laid by

known females across different years [20]. Specifically, this

new study helps to uncover the structural bases underlying
uniquely high phenotypic variability to yield a signal that

facilitates individual recognition [5].
2. Methods
2.1. Murre eggshell collection
We collected murre eggs (n ¼ 50) from Gull Island, Witless Bay,

Newfoundland & Labrador, Canada. Sympatric gulls, notably

the American herring gull Larus (argentatus) smithsonianus and

the great black-backed gull L. marinus, depredate murre eggs reg-

ularly at this site [27]. We collected only recently depredated eggs

(within the last week) from gull territories because depredated

eggs show human-visible signs of weathering/fading after a

few weeks of exposure (G.J.R., personal observation, 2013). The

depredated murre eggs might not represent a random subset of

the population of breeding birds at the site because disproportio-

nately more eggs may be from younger/inexperienced murres,

relegated to nesting at the margins of the colony [28]. However,

our sample of collected eggshells did display the full range of

human-visible egg coloration present in the colony as a whole

(G.J.R., personal observation, 2013), and, thus, were deemed suit-

able for representative pigment analyses. After collecting the

eggs, we washed off any surface debris and fouling from each

egg with seawater and then packaged them in a box for shipment

to New York City, NY, USA for laboratory analysis at Hunter

College. Upon delivery, the eggshells were stored in a dark con-

tainer at 48C until processing.

2.2. Eggshell measurements
For each egg, we broke the shell into two approximately 1 cm2

fragments/egg from different parts of the egg. We washed the

fragments with double distilled water, measured each fragment’s
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Figure 2. Avian-visible reflectance spectra of eggshell fragments used for
pigment extractions in this study. For illustrative purpose we plotted spectra
to reflect the human-visible appearance of the eggs as calculated from each
shell’s average reflectance spectrum. (Online version in colour.)
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thickness to an accuracy of 0.01 mm with a point micrometer

(Series 112 Mitutoyo), and then weighed each fragment to an

accuracy of 1 mg (XS403S Mettler Toledo). We then took digital

photos of the fragments that included a size scale.

We collected avian-visible spectral (300–700 nm) reflectance

data using an Ocean Optics USB2000 spectrometer, illuminated

by a DT mini-lamp (Ocean Optics, Inc., Dunedin, FL, USA).

All measurements were taken at a 908 angle (following [29]).

Spectral reflectance measurements were taken in triplicate from

an average of two fragments from their shell background (N ¼
50 eggs), excluding areas with maculation. We did not analyse

spot coloration as this trait is not statistically repeatable across

eggs laid by the same female in different years [20].

Averaged reflectance spectra for the separate fragments of

each egg (figure 2) were transformed into avian tetrahedral

colour space coordinates [30] using the tcspace function from

the pavo package v. 1.3.1 in R 3.5.0 [31]. We then calculated

the repeatability (R) of r.achieved (a measure of avian-perceived

‘colourfulness’), hue.theta and hue.phi (colour hue angles), using

the rpt function from the rptR v. 0.9.21 package in R. For all

repeatabilities, we performed significance tests against a null

distribution of N ¼ 2000 permuted samples and estimated the

95% confidence interval of R with N ¼ 2000 bootstrap samples.

Because repeatabilities of modelled avian-perceived within-egg

fragment colours were all significant (all p , 0.001) and highly

repeatable (all R . 0.83; data not shown), we took the mean of

the two egg fragments’ background reflectance spectra for each

egg to obtain a ‘whole egg’ background reflectance spectrum

for each egg.

We used a receptor-noise limited visual model to model

avian perceived colour discriminability between all collected

murre eggs’ background spectral reflectance [32]. Visual

models were run using the coldist function from the pavo pack-

age in R. Because no published data of murre visual physiology

exist, we constructed a general avian visual model using avail-

able knowledge of predicted species-specific vision. Murres

likely possess a violet sensitive (VS vision) rather than ultra-

violet sensitive (UVS vision) visual system, based on predicted

amino acid spectral tuning sites using SWS1 opsin gene frag-

ments for closest relatives in the order Charadriiformes [33].

Therefore, we used an average avian VS visual system for sub-

sequent perceptual modelling (avg.v, peak cone sensitivities ¼

416 nm, 478 nm, 542 nm, 607 nm), but with photoreceptor

densities of the red-billed leiothrix (Leiothrix lutea) ([34]; VS-
cone ¼ 1, SWS-cone ¼ 2, MWS-cone ¼ 2, LWS-cone ¼ 4), a

receptor noise Weber fraction of 0.1 with the long-wave sensi-

tive cone (LWS) as the reference cone, and excluded any effect

of light transmission through ocular media (ideal transmission).

The visual model also assumed that murre eggs were illumi-

nated by full sunlight (D65) and perceived colour differences

were independent of the viewing background appearance

(ideal background). Quantum cone catch values for all murre

egg colours were transformed into chromatic perceivable differ-

ences from one another (chromatic just noticeable differences,

hereafter: JNDs). These chromatic JND values were then

mapped into perceptually-corrected Cartesian coordinates

using the jndxyz function in pavo, with the mean murre egg

colour in our sample set as the central origin point in 3D-space

and Euclidean distances from the origin equal to JNDs from the

mean egg colour for each egg. For each egg background colour,

we obtained X, Y and Z coordinates in 3D JND space.

We quantified eggshell maculation density by visualizing the

shell fragments in Image J (v. 1.51; [35]) and dividing the total

number of unconnected human-visible marks (i.e. spots and/or

lines) by the surface area of each shell fragment. Repeatability

was high between fragments sourced from the same shell (R ¼
0.87), and so we used the mean value per egg in the statistical

analyses.
2.3. Eggshell pigment concentrations
We washed the fragments with 70% ethanol and then, after

drying, manually pulverized them. We used an ethylenediamine-

tetraacetic acid (EDTA) protocol [21] to extract pigments from

the eggshell fragments, resulting in 1 ml of dissolved sample in

acetonitrile–acetic acid (4:1 v/v). Samples were run in a Cary

300 UV–Vis spectrophotometer for UV absorbance, with biliver-

din and protoporphyrin absorbance observed at 377 nm and

405 nm, respectively [22].

We performed ultra-high performance liquid chromato-

graphy (UHPLC) using the same method as described in

similar avian eggshell extraction studies from our laboratory

(e.g. [24,36]). Briefly, samples were run at a flow rate of

0.4 ml min21 using as solvents A and B water with 0.01 M

formic acid or acetonitrile with 0.1 M formic acid, respectively.

The linear gradient was set to 2% A and 98% B at 6.5 min. Bili-

verdin eluted at approximately 3.5 min and protoporphyrin IX

at approximately 5.6 min. We calculated relative proportions of

the two pigments using Beer–Lambert’s law (A ¼ 1lc) (following

[24]). Additionally, pigment presence or absence was indepen-

dently confirmed through mass spectrometry (following [36]).

Samples were standardized by dividing the amount of pigment

(in moles) with the mass of the initial eggshell sample (M/g)

(following [24]). Repeatability of pigment concentrations was

moderately high between fragments sourced from the same

shell (Rbiliverdin ¼ 0.65 and Rprotoporphyrin ¼ 0.61), and we used

the mean value per egg in our analyses.

2.4. Statistical tests
Murre eggshell thickness, as well as patterning, varies among

different shell regions [20,28]. We did not keep track of which

eggshell fragment yielded which spectral and maculation

versus thickness and pigment concentration data point, and

therefore we averaged each set of data types per egg in the

subsequent statistical analyses.

A statistical inspection of the correlations between the X, Y and

Z coordinates revealed strong covariations (all pairwise jRj � 0.48,

all p � 0.0004) and visual inspection of the eggshell JND space cov-

erage indicated a planar distribution (sensu [37]). Nevertheless, we

opted to analyse the data using each of these coordinates separ-

ately as their dimensions can be directly interpreted as

perceptual JND distances within the avian visual system.

To test the prediction of the individual recognition

hypothesis, namely that different components of multiple visible

cues are independent of each other within eggs, we used stan-

dard least squares models in JMP 12.0 (SAS Institute, Cary, NC).
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Figure 3. Relationship between murre eggshells’ avian perceivable colour
space coordinate X (in units of JND) with their physico-chemical traits
(a,b: pigment concentrations, c: thickness). (Online version in colour.)
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To analyse the putative relationship between physico-

chemical properties of each eggshell and its background

coloration JND scores or maculation density, we used a second

set of standard least squares models. Predictors in these

models were the ln-transformed average concentrations of each

of the two pigments and the untransformed value of the average

shell thickness per egg because raw pigment concentration

data did (Shapiro–Wilk tests, both W . 0.58, p , 0.0001) but

thickness did not differ (W ¼ 0.99, p ¼ 0.93) from normal distri-

butions. The response variables were the three JND coordinate

scores from averaged background coloration analysis and the

average maculation density. We omitted non-significant terms

and interactions from the final model statistics reported for the

significant terms. For illustrative purpose we plotted the relation-

ships of eggshell properties using coloured data points that

reflect the human-visible appearance of the eggs as calculated

from each shell’s average reflectance spectrum (figures 3–6).
3. Results
As predicted by (A), the individual recognition signal

hypothesis, there was no statistical relationship within the

same egg between any one of its X, Y and Z JND coordinates

and its maculation density metric (all jRj , 0.05, p . 0.60).
For prediction (B) regarding the shell’s physico-chemical

properties, there was no statistically significant relationship

between JND coordinate X and shell thickness or pigment

concentrations (all F , 1.7, all p . 0.20) (figure 3). In contrast,

coordinate Y was negatively correlated with thickness (F ¼
3.8, p ¼ 0.05), not correlated with biliverdin (F ¼ 0.1, p ¼
0.76), and negatively correlated with protoporphyrin IX

(F¼ 4.6, p¼ 0.048) concentrations (figure 4). The JND coordi-

nate Z was also not statistically related to thickness, biliverdin

or protoporphyrin IX (all F , 1.5, p . 0.23) (figure 5). Finally,

maculation density was negatively correlated with thickness

(F¼ 7.5, p¼ 0.0086), negatively correlated with biliverdin (F¼
4.4, p¼ 0.042), and positively correlated with protoporphyrin

IX (F ¼ 4.2, p ¼ 0.047) (figure 6).
4. Discussion
4.1. Identity signalling hypothesis
Contrary to American coots Fulica americana [38] and

common moorhens Gallinula chloropus [39], the context of
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individual egg recognition, and of the resulting conspecific

egg discrimination, is unlikely to be conspecific brood para-

sitism, as murres lay only a single egg and do not build

nests. Nonetheless, behavioural experimentation shows

that murres can reliably recognize and retrieve their own

eggs when facing a choice of unattended conspecific

eggs in their dense breeding colonies [4,14] (figure 1).

They do so likely through the unique combination of

their own egg’s visible traits (though critical experiments

with manipulated real or model murre eggs remain to be

conducted; sensu [40]).

As assumed by the individual identity signalling

hypothesis [5], the appearance of eggs of common

murres is repeatable both within the same shell (this

study) and across eggs laid by the same female in different

years [20]. However, as predicted by (A) of the same

hypothesis, the multiple components of each murre egg’s

visible appearance, including its avian-perceivable back-

ground shell coloration and maculation density, are not

statistically related to each other even within the same

eggs ([16], this study).
4.2. The pigmentary basis of egg phenotypes
Here, we also assessed the structural basis underlying the

immense variation in visible traits of murre eggs. As

predicted by (B), even when analysing just two aspects of

the physico-chemical properties of each shell, namely its

thickness and pigment concentrations, these covaried statisti-

cally with some of our metrics of avian perceivable

background colour spectra and maculation density taken

from the same egg. Specifically, using the avian perceivable

colour space coordinates (X, Y and Z ) in units of JND

(figures 3–5) allowed us to measure the pigment-based cov-

ariation of colour appearance of the shells within our dataset.

This variation reached, on average, an extent of up to

approximately 2.0 JNDs, which is predicted to be discrimin-

able by the visual system of the murres. The results,

therefore, illustrate how individually unique eggshell appear-

ances, suitable for individual identity signalling, can be

generated by a small number of structural and physiological

mechanisms involved in the formation of avian eggshells and

their pigmentation during oviposition [9].



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190115

6
Regarding the statistical relationships we found between

eggshell thickness with shell background coloration and

maculation density, earlier work on murre eggs, also col-

lected at Gull Island, showed no significant covariation

between these traits [28]. However, such differences may

have arisen due to divergent methodologies used between

the two studies, i.e. using human-assessed (background

colour, spot pattern) versus avian perceivable metrics (JND

coordinates based on eggshell background reflectance spec-

tra, count-based maculation density), respectively. In turn,

prior work on great tit Parus major eggs from England also

showed an ecological and structural linkage between thinner

shells and pigmentation leading to denser spotting patterns

[26]. Here, we found a statistically negative relationship of

biliverdin and a positive relationship of protoporphyrin IX

with maculation density (figure 6a,b), which is in support

of the latter known as the pigmentary basis of avian eggshell

maculation patterns in other taxa [41].

Specifically, as seen in the great tit, we also found a nega-

tive relationship between eggshell thickness and maculation

density (figure 6c). However, given that the thinnest murre

eggshells in our sample were already 30% thicker than size-

matched average chicken Gallus domesticus shell’s thickness

[42], it therefore remains a relevant subject for future research

whether the covariation in murre eggshell thickness with

spotting patterns translates into biologically relevant vari-

ation in structural strength. For example, the known overall

thicker-than-predicted-by-size shells of murres, and the

thicker equatorial than blunt end shell regions, may be an

adaptation to incubation and rolling on a rough cliff-edge

breeding surface [14] and/or to withstand microbial contami-

nation through contact with the faeces-soiled breeding

substrate in the colony [43].
5. Conclusion
Previous work suggested that the pigmentary composition of

avian eggshells might be a poor predictor of the visible

appearance of shells across and within species ([36,44,45],
but see [29]). In contrast, here we imply that the extraordi-

nary amount of interindividual variation in murre egg

appearance seems to be generated by consistent differences

in some, but certainly not all, aspects of the pigment compo-

sitions and concentrations among eggs. However, whether

and how a putatively tighter physico-chemical control of egg-

shell appearance in murres is under more direct genetic

control so as to generate adaptively variable, but individually

consistent, shell colours and spotting patterns remain to be

investigated in the future. In general, across different bird

species and lineages, the two eggshell pigments may interact

with diverse physical properties of the eggshell differently to

produce avian perceivable variation in eggshell colours and

maculation patterns [8]. Further micro- and nanostructural

analyses of the shell matrix structure in murres and other

avian taxa (following [46,47]) should also be informative to

evaluate these alternatives.
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