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ABSTRACT

Since its introduction, multivariate pattern analysis (MVPA), or ‘neural decoding’, has

transformed the field of cognitive neuroscience. Underlying its influence is a crucial in-

ference, which we call the decoder’s dictum: if information can be decoded from patterns

of neural activity, then this provides strong evidence about what information those pat-

terns represent. Although the dictum is a widely held and well-motivated principle in

decoding research, it has received scant philosophical attention. We critically evaluate

the dictum, arguing that it is false: decodability is a poor guide for revealing the content of

neural representations. However, we also suggest how the dictum can be improved on, in

order to better justify inferences about neural representation using MVPA.
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1 Introduction

Since its introduction, multivariate pattern analysis (MVPA)—or informally,

neural ‘decoding’—has had a transformative influence on cognitive neurosci-

ence. Methodologically, it is a veritable multi-tool that provides a unified

approach for analysing data from cellular recordings, fMRI, EEG, and

MEG, which can also be paired with computational modelling and behav-

ioural paradigms (Kriegeskorte et al. [2008]). Theoretically, it is often pre-

sented as a means for investigating the structure and content of the brain’s

population code, thereby unifying psychological and neuroscientific explan-

ations while predicting behavioural performance (Kriegeskorte and Kievit

[2013]; Haxby et al. [2014]). More ambitiously still, decoding methods are

advertised as a means of ‘reading’ the brain and ‘listening’ in on the mind

(Haynes and Rees [2006]; Norman et al. [2006]).

Underlying these bold pronouncements is a crucial inference, which we call

the decoder’s dictum:

If information can be decoded from patterns of neural activity, then this

provides strong evidence about what information those patterns represent.

The decoder’s dictum should interest philosophers for two reasons. First, a

central philosophical issue with neuroimaging is its use in ‘reverse inferences’

about mental function (Poldrack [2006]; Klein [2010]). The decoder’s dictum is

a similar but more nuanced form of inference, so it deserves careful scrutiny.

Second, decoding results are some of the most compelling in cognitive neuro-

science, and offer a wellspring of findings that philosophers may want to tap

into when defending theoretical claims about the architecture of the mind and

brain.1 It is therefore worth clarifying what decoding can really show.

We argue that the decoder’s dictum is false. The dictum is underwritten by

the idea that uncovering information in neural activity patterns, using ‘bio-

logically plausible’ MVPA methods that are similar to the decoding proced-

ures of the brain, is sufficient to show that this information is neurally

represented and functionally exploitable. However, as we are typically ignor-

ant of the precise information exploited by these methods, we cannot infer that

the information decoded is the same information the brain exploits. Thus

1 A recent example: In arguing against the encapsulation of the visual system, Ogilvie and

Carruthers ([2016]) rely almost exclusively on decoding results about early vision since they

believe it provides more convincing evidence than behavioural research.
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decodability is not (by itself) a reliable guide to neural representation. Our

goal is not to reprimand neuroscientists for how they currently employ and

interpret MVPA. Rather, what follows will clarify the conditions under which

decoding could provide evidence about neural representation.

By analogy, consider research on brain–machine interface (BMI) systems,

which use decoding to generate control signals for computer cursors or pros-

thetic limbs (Hatsopoulos and Donoghue [2009]). Largely because of BMI’s

engineering and translational objectives, however, little attention is paid to the

biological plausibility of decoding methods. Consequently, BMI research does

not involve inferences about neural function based on decodability. We be-

lieve that, epistemically, decoding in cognitive neuroscience is typically no

better off than in BMI research, and so forms a thin basis for drawing infer-

ences about neural representation.

Our focus is on how MVPA is used to investigate neural representations.

Since talk of representation is itself philosophically contentious, we assume a

relatively lightweight notion that is consistent with usage in the relevant sec-

tors of neuroscience: a representation is any internal state of a complex system

that serves as a vehicle for informational content and plays a functional role

within the system based on the information that it carries (Bechtel [1998]).

This notion of representation is built into the idea that an internal state of a

system encodes information (that is, represents informational content), which

is then decoded for later use by a system (based on the functional import of the

information that is encoded).2 Thus, in talking of a ‘representation with in-

formational content’, we simply have in mind a state that encodes information

for subsequent decoding. As we shall see, some researchers talk of decoding

mental representations. We assume they have in mind at least the notion of

internal representation we have articulated, so our arguments apply to their

claims as well.

We focus on neural representations that take the form of population codes.

A population code represents information through distributed patterns of

activity occurring across a number of neurons. In typical population coding

models, each individual neuron exhibits a distribution of responses over some

2 One may reasonably wonder whether this characterization captures scientific usage. Although

foundational concepts like ‘representation’ are rarely explicitly defined by neuroscientists, there

are exceptions. For example, Marr ([1982], pp. 20–1) defines a representation as ‘a formal system

for making explicit certain entities or types of information’, and Eliasmith and Anderson

([2003], p. 5) state that ‘representations, broadly speaking, serve to relate the internal state of

the animal to its environment; they are often said to “stand-in for” some external state of affairs’

and that ‘representation, as we have characterized it, is defined by the combination of encoding

and decoding’ (p. 185). Along similar lines, deCharms and Zador ([2000], p. 614) define a

representation as a ‘message that uses [. . .] rules to carry information’ and define content as

the ‘information that a representation carries’. Our discussion of the theoretical basis for the

dictum (Section 3.2) also illustrates that something close to the above notion is widely assumed

by researchers in the field.

Decoding the Brain 583

Deleted Text: -


set of inputs, and for any given input, the joint or combined response across

the entire neural population encodes information about the input parameters

(Pouget et al. [2000]).

Our critique of the dictum will take some set-up. In Section 2, we provide a

brief introduction to decoding methods. In Section 3, we argue that the dictum

is false: the presence of decodable information in patterns of neural activity

does not show that the brain represents that information. Section 4 expands

on this argument by considering possible objections. In Section 5, we suggest a

way to move beyond the dictum. Section 6 concludes the article.

2 A Brief Primer on Neural Decoding: Method, Application,

and Interpretation

We begin by providing a brief introduction to basic decoding methods and

their interpretation. We focus primarily on research that has used MVPA with

fMRI to investigate the visual system. There are three reasons for this narrow

focus. First, decoding research on vision is largely responsible for popularizing

MVPA. Second, it has also driven many of the methodological innovations in

the field. Third, it is instructive because we have a detailed understanding of

the functional organization of many visual brain regions along with good

psychophysics (Haxby [2012]). Thus, if the dictum is viable at all, it should

apply to decoding research on the visual system.

2.1 What is multivariate pattern analysis?

MVPA is a set of general methods for revealing patterns in neural data.3 It is

useful to separate MVPA into three distinct stages (Mur et al. [2009]; Norman

et al. [2006]), which we will illustrate via a simple (hypothetical) fMRI experi-

ment. In this experiment, fMRI blood oxygenation level-dependent (BOLD)

responses are measured while participants view two gratings of different orien-

tations over a number of trials (Figure 1a). The goal of the experiment is to test

whether the activity patterns elicited in response to the two stimulus condi-

tions can be differentiated.

The first step of analysis, pattern measurement, involves collecting neuroi-

maging data that reflect condition-dependent patterns of activity. This step

3 Some terminological points. First, ‘MVPA’ originally meant ‘multi-voxel pattern analysis’,

rather than ‘multivariate pattern analysis’. The latter is preferable because it highlights the

fact that the methods are not specific to fMRI (Haxby [2012]). Second, ‘MVPA’ and ‘decoding’

are sometimes used interchangeably (as we do), but strictly speaking decoding methods are a

subset of MVPA methods (Naselaris et al. [2011]). And third, ‘decoding’ is often used in two

distinct senses: a machine learning sense, in which it is basically a synonym for ‘classify’; and a

neural sense, referencing the encoding and decoding of signals by the brain. We make use of

both senses here.
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has a number of components, including performing the actual recordings and

preprocessing of the activity-dependent signal. Our example uses fMRI, but

other techniques (for example, EEG, MEG, or cellular recordings) could also

be employed. As in all fMRI experiments, we must make certain assumptions

about the connection between the recorded signals and underlying neural ac-

tivity.4 Nevertheless, the end result is the same: a set of data consisting of

Figure 1. MVPA methods for a hypothetical fMRI experiment: (a) stimuli; (b)

region of interest (ROI) for feature selection; (c) partition of runs into training and

test data; (d) cross-validation with linear classifier.

4 It is well known that the signals measured with neuroimaging techniques such as fMRI and

MEG/EEG depend on neural activity, but often in complicated and indirect ways (Logothetis
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multiple distinct measurements of activity occurring during each experimental

condition.

The second step, pattern selection, involves focusing in on a subset of the

measured signals for further analysis. With fMRI, this typically involves a

subset of all voxels or ‘region of interest’ (ROI). ROIs can be defined ana-

tomically (using connectivity patterns or architectonic criteria) and/or defined

functionally (using neural response profiles or more traditional univariate

fMRI analyses). Pattern selection also depends on experimenter goals and

recording technique. In our experiment (Figure 1b), the ROI is parafoveal

primary visual cortex (V1), defined anatomically (Benson et al. [2012]).

The third and crucial step is pattern classification. Pattern classification

allows one to measure the discriminability of different patterns in multivariate

data. For example, in our experiment we want to see if the patterns of BOLD

activity in parafoveal V1 for our two stimulus conditions can be distinguished

(Figure 1c). A number of classification methods are available. The simplest is

to divide the data in half for each stimulus condition and compute the within-

and between-class correlations of the patterns (Haxby et al. [2001]). If the

patterns are discriminable, the within-class correlation should be higher.

A different (and widely used) technique employs machine learning classi-

fiers, which treat each element of the patterns of interest (for example, each

voxel) as a separate dimension, or ‘feature’, in a high-dimensional space.

Assuming our ROI includes N voxels, then each trial-wise stimulus presenta-

tion elicits a pattern that occupies a point in an N-dimensional neural

activation space. The goal of the classifiers is to find a way to transform this

high-dimensional space into one where the voxel patterns associated with each

condition are separable by a decision boundary (Figure 1d).

Although a rich variety of classifiers are available, usually simple linear

classifiers are used for MVPA because they provide a principled means of

estimating a linear boundary between classes in activation space. To avoid

overfitting, the decision boundary is estimated for a subset of the data desig-

nated as ‘training’ data, and the classifier is subsequently ‘tested’ on the re-

maining data (Figure 1d). The classifier assigns condition labels for the

training data based on the position of the activity patterns relative to the

decision boundary. The performance of the classifier is then a function of

[2008]; Nir et al. [2008]; Singh [2012]). For example, fMRI measures BOLD signals reflecting

changes in cerebral blood flow, cerebral blood volume, and cerebral metabolic rate of oxygen

consumption (CMRO2) following neural activity. Although it remains controversial precisely

which types of neural responses induce these haemodynamic changes (Logothetis et al. [2001];

Sirotin and Das [2009]; Lee et al. [2010]), applications of MVPA typically assume that neuroi-

maging techniques coarsely measure the spatial structure and temporal dynamics of local neur-

onal populations. It is thus common for the term ‘activity patterns’ to be used to describe the

multivariate data collected with these techniques, even though, strictly speaking, MVPA is not

being used to analyse neural activity patterns directly. We also adopt this convention.
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the accuracy of its label assignments (for example, percentage correct; Figure 1d).

Training and testing is done multiple times, with each data partition taking its

turn as the testing data, and the performance of the classifier is then averaged

across iterations. If the mean classifier performance is statistically better than

chance, the patterns for the different conditions are considered to be discrimin-

able. Although applications are typically far more complex than we have pre-

sented here, at root all decoding analyses make use of either correlations or

machine learning classifiers. In subsequent discussion, we focus primarily on re-

search using linear classifiers, but the same general conclusions apply to research

using correlation methods.

2.2 The informational benefits of multivariate pattern analysis

Before we turn to the dictum, it is worth considering the advantages of MVPA

over more traditional univariate analysis methods. To do this we adapt a

distinction from Kriegeskorte and Bandettini ([2007]) between activation-

based and information-based analyses of neuroimaging data. Activation-

based analysis involves spatially averaging activity across all voxels within a

given ROI, yielding a single measure of overall regional activation to correlate

with the tested conditions. By contrast, information-based analysis looks for a

statistical dependency between experimental conditions and the detailed local

spatiotemporal activity patterns distributed across the set of individual voxels

comprising the ROI (see, for example, Tong and Pratte [2012]; Haxby et al.

[2014]). Hence, what distinguishes the two approaches is whether or not they

are sensitive to spatial patterns in fMRI data. Information-based approaches

are so-called because they are sensitive to information contained in these

spatial patterns. In contrast, the spatial averaging at the heart of activation-

based analyses obscures this information.

All MVPA methods are information-based. Consequently, whatever the

status of the dictum, MVPA decoding holds an advantage over most univari-

ate methods because it offers more spatially sensitive dependent measures.

Demonstrating that information is present in activity patterns is also likely

to have greater functional significance given the widely held assumption that

the brain is an information-processing system that uses population coding to

implement its internal representations (Pouget et al. [2000]; Panzeri et al.

[2015]). For example, in fMRI research, activation-based methods are often

used to infer that a brain region is involved in some mental process given its

engagement during an experimental condition. But as a dependent measure,

mean BOLD activity itself likely has no obvious functional significance.

Similarly, the evoked responses that are the focus of traditional EEG and

MEG analyses are not signals that the brain itself processes. In contrast, if

the brain uses population codes, searching for information in patterns of
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activation means looking for the currency in which the brain makes its

transactions.

As an illustration of the informational benefits of MVPA over univariate

methods, consider the early findings of Haxby et al. ([2001]). Traditional

univariate methods had previously been used to isolate the ‘fusiform face

area’ (FFA) within the temporal cortex, which had been interpreted as a

highly specialized face-processing ‘module’ in the ventral visual stream

(Kanwisher et al. [1997]). Haxby et al. used MVPA to show that face infor-

mation was discriminable in the ventral stream even when FFA was excluded

from the analysed ROI. Hence, their results demonstrated that decoding

methods could reveal information present in brain activity that was otherwise

undetectable by traditional methods. The results of Haxby et al. not only

illustrated the greater sensitivity of decoding methods, but also made explicit

the idea that decoding was potentially useful for revealing distributed repre-

sentations in the brain (cf. O’Toole et al. [2007]).

In summary, univariate activation-based analyses often obscure the infor-

mation latent in spatial patterns of neural activity, while decoding affords a

powerful tool for revealing this information. If the brain uses population

codes, then spatial patterns in neural data that differentiate between condi-

tions should be recoverable using information-based MVPA methods.

3 Why the Decoder’s Dictum Is False

Significant decoding indicates that information is latent in patterns of neural

activity. However, researchers often draw a further inference: If there is de-

codable information, then there is strong evidence that the information is

represented by the patterns of activity used as the basis for the decoding.

For example, Kriegeskorte and Bandettini ([2007], p. 658) claim that

information-based analyses including MVPA ‘can help us look into [brain]

regions and illuminate their representational content’, and they go so far as to

define decoding as ‘the reading out of representational content from measured

activity’ (p. 659). Similarly, in comparing and contrasting different fMRI

analysis techniques, Davis and Poldrack ([2013], p. 120) state that ‘whereas

univariate analysis focuses on differences in mean signal across regions of

cortex, MVPA focuses on the informational content of activation patterns

coded in different regions’. We have dubbed this further inference the de-

coder’s dictum. Although the dictum is commonplace, exceptions can be

found where decodability is observed but the interpretation of the results

does not reflect this problematic inference. Instead, decodability is taken as

evidence of functionally specialized processing rather than representational

content (Davis and Poldrack [2013]).
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The many fMRI decoding studies looking at top-down effects of visual and

cognitive processing on primary visual cortex (V1) provide a good illustration.

For example, Williams et al. ([2008]) presented simple object exemplars in the

visual periphery, and found that object shape could be decoded from foveal

V1. Jehee et al. ([2011]) similarly found that if two orientation-grating stimuli

were presented in the periphery, but only one was attended to, this resulted in

greater classification accuracy for the orientation of the attended stimulus.

Both of these results were interpreted as providing evidence of attention-

driven feedback to primary visual cortex. In another study, Kok et al.

([2012]) found that when the orientation of a grating corresponded with an

observer’s expectations, this resulted in lower BOLD activity but higher clas-

sification accuracy. Again, the focus was on showing that early visual pro-

cessing can be modulated by expectations. Finally, Harrison and Tong

([2009]) found that stimulus information in a working memory task could

be decoded from V1 over a prolonged period of time, suggesting a recruitment

of the region for preserving stimulus information for later recall. The common

goal of these studies is to reveal facts about functional processing or localiza-

tion, not representational content per se.

In what follows, we defend the strong claim that the decoder’s dictum is

false: successful decoding of information does not provide reasonable grounds

for the inference that patterns of neural activity represent the conditions (or

aspects of the conditions) about which they carry information. For some

philosophers, this might sound like a trivial point: of course we cannot

make inferences from information to representation, as there is more to rep-

resentation than merely carrying information. Fair enough. Yet the problem is

not (just) that informational content comes too cheaply in comparison to

representational content (Fodor [1984]). For even if we accept that neural

representations have content that is partially or wholly determined by infor-

mation, there are several reasons for thinking that the dictum fails to hold. In

the rest of this section, we argue that a fundamental methodological issue with

MVPA—specifically, the uncertainty regarding the information exploited by

linear classifiers—shows why the dictum is false.

3.1 We don’t know what information is decoded

The dictum entails that if a classifier can discriminate between conditions, then

it is picking up on the same information encoded by underlying neural repre-

sentations. The problem is that we rarely know what information a classifier

actually relies on. Indeed, this is most obvious in cases where we know a good

deal about what a brain region represents.

To illustrate, consider again V1, where we have a reasonably good under-

standing of how orientation information is encoded (see, for example, Priebe
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and Ferster [2012]). Orientation-related information is also highly decodable

using fMRI and MVPA (Haynes and Rees [2005]; Kamitani and Tong [2005]).

And yet, we do not know what information classifiers are extracting from this

region. Indeed, it is something of a mystery why fMRI decoding in the region

even works at all. A typical voxel from a functional scan has a much coarser

spatial resolution (>2� 2�2 mm) than the scale of the cortical columns that

code for orientation in this region (�2 mm in humans; �1 mm in monkeys).

This means that one plausible explanation about how decoding works—that

patterns of activity across orientation columns occur at a spatial scale roughly

commensurate with the resolution of fMRI—cannot be correct.

There are a number of competing hypotheses about how orientation decod-

ing in V1 is possible. Imperfect sampling of the underlying orientation col-

umns might result in small biases at the voxel level, which decoding exploits,

resulting in ‘hyperacuity’ or sub-voxel resolution (Haynes and Rees [2005];

Kamitani and Tong [2005]). Another possibility is that biases in the retino-

topic map in V1 (in particular, radial biases) enable successful orientation

decoding (Mannion et al. [2009]; Freeman et al. [2011]). Yet a third possibility

is that activity patterns elicited by stimulus edges, not sampling or retinotopic

biases, provide a potential source of decodable information in V1 (Carlson et

al. [2014]; Wardle et al. [2017]). Note here that the ‘biases’ appealed to in the

explanations of orientation decoding are (in some important sense) artefacts

in the way the data presented to the classifier is structured, rather than deep

facts about the representational structure of the brain. So long as there is any

information that distinguishes the conditions at hand, a linear decoder stands

a good chance of finding it.

These issues are not restricted to decoding orientation in V1. For instance, it

has been found that motion information decoding is more robust in V1 than

V5/MT+ (Kamitani and Tong [2006]; Seymour et al. [2009]). This result is

surprising when one considers that the majority of MT+ cells encode motion

direction, while less than fifty percent of V1 neurons exhibit motion sensitivity

and the region does not have cortical columns for motion direction as it does

for orientation (Lu et al. [2010]). Wang et al. ([2014]) observe a direction-

selective response bias that appears to explain this contrast between decoding

and underlying functional organization—it is present in V1–V3 but not in

MT+—suggesting that motion decoding in early visual cortex bares little re-

lation to the actual encoding structure of these regions.

Thus, the fact that decoding can pick up on information unused by the

brain, even in regions where there is a suitable representation that is used

(for example, orientation representation in V1), means that even when prior

theory and decoding are in agreement, decoding results cannot be reliably

interpreted as picking up on the information that is neurally represented

and used. All the worse, then, when we do not have converging evidence
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and prior theory. This epistemic uncertainty regarding the source of decodable

information cuts to the core of the underlying rationale for the dictum. It is for

this reason it is false, as we will illustrate by reconstructing the theoretical basis

for the dictum.

3.2 The theoretical basis for the dictum

The decoder’s dictum licences inferences from decodability to facts about

neural representation. The principle is evidential: If we can decode, we have

reasonably strong evidence about what is represented in the measured patterns

of neural activity. But why think the dictum is true? Although appeals to the

dictum are commonplace in research using MVPA (a point we will return to

below), its rationale is often left underspecified. Here we reconstruct what we

take to be the underlying theoretical basis for the dictum.

The support for the dictum starts with two seemingly uncontroversial claims.

The first is that if activity patterns occurring in different experimental condi-

tions are discriminable, then information about the conditions is latent in these

patterns. The second is that if activity patterns represent information about an

experimental condition, then there must be some way to decode that content

from the neural patterns. In other words, if internal representations are imple-

mented in patterns of neural activity, and the brain is an encoder and decoder of

its own neural signals, then the information must be decodable—that is, after

all, what makes it a code. While substantive, these assumptions are not enough

to get us to the dictum. For all we have said, representations present in the brain

might not have the right relationship to information extracted by MVPA when

applied to the data recorded with standard neuroimaging techniques.

Two additional steps are required. The first secures the link between infor-

mation and representation. This requires something like an informational

approach to internal representations and their content. The presence of a

statistical dependency or correlation is of interest because it suggests a

causal dependency between the patterns and the experimental conditions

(cf. Dretske [1983]). So charitably, the notion of information that researchers

have in mind is that of natural information, where an event carries natural

information about events that reliably cause it to occur (Scarantino and

Piccinini [2010]). The view, which many in the field endorse, is very similar

to Dretske’s ([1988]): a representation is a state that carries natural informa-

tion, appropriately formatted to function as a state carrying this information.

For example, Cox ([2014], p. 189) notes that decoding research on the visual

system

[. . .] implicitly recognizes that the problem of vision is not one of

information content, but of format. We know that the activity of retinal

ganglion cells contains all of the information that the visual system can
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act upon, and that nonlinearity and noise in neuronal processing can

only decrease (and never increase) the absolute amount of information

present. However, the information present in the firing of retinal

ganglion cells is not in a format that can be easily read-out by a

downstream neuron in order to guide action.

In other words, vision repackages the information latent in the retinal input to

make it functionally available for downstream perceptual and cognitive process-

ing. A simple informational theory of representational content has as a corollary

the idea that we can distinguish between implicit and explicit information (Kirsh

[1990]), where being ‘implicit’ or ‘explicit’ is understood as being relative to some

procedure for reading-out the information based on how a code is structured.

Why should we think that successful decoding allows us to make an inference

about what information is explicitly represented by a population code? This

question brings us to the second additional assumption: the biological plausibil-

ity of MVPA methods in general, and linear classifiers in particular.

Many views of population coding assume that information can be read out

by some sort of linear combination of components to the code. If so, then

properties of the code can be made salient in the appropriate activation space.

As Kriegeskorte and Kievit ([2013], p. 401) put it:

We interpret neuronal activity as serving the function of representing

content, and of transforming representations of content, with the

ultimate objective to produce successful behaviors [. . .] The population

of neurons within an area is thought to jointly represent the content in

what is called a neuronal population code. It is the pattern of activity

across neurons that represents the content [. . .] We can think of a brain

region’s representation as a multidimensional space [. . .] It is the

geometry of these points that defines the nature of the representation.

Now comes the crucial step. If population coding does indeed involve linear

combination of elements, then MVPA is a plausible way to extract that infor-

mation. For ultimately, a linear classifier is a biologically plausible yet abstract

approximation of what the brain itself does when decoding its own signals

(DiCarlo and Cox [2007]; King and Dehaene [2014]). In other words, because

of the biological plausibility of linear classifiers, significant decodability is

taken as evidence that the latent information in the data is also explicitly

represented in the brain.

It is explicitly assumed in the field that linear decodability suffices to reveal

an explicit representation. In fact, Kriegeskorte and Kievit ([2013], p. 402) go

so far as to define explicit representation in such terms, claiming that ‘if the

property can be read out by means of a linear combination of the activities of

the neurons [. . .] the property is explicitly represented’.

Misaki et al. ([2010], p. 116) offer a similar characterization of when infor-

mation is explicit: ‘Linear decodable information can be thought of as
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“explicit” in the sense of being amenable to biologically plausible readout in a

single step (that is, by a single unit receiving the pattern as input) [. . .] Linearly

decodable information is directly available information’. So the decoding of a

linear classifier serves as a surrogate for the decoding of the brain. If the linear

classifier can use information latent in neural activity, then this information

must be used (or usable) by the brain: decoding provides evidence of an

encoding.

In summary, one gets to the decoder’s dictum by endorsing several claims:

(i) that MVPA reveals information latent in neural activity; (ii) that an under-

lying neural population code implies decodability; (iii) an informational view

of neural representations and their contents; and (iv) the hypothesis that bio-

logically plausible linear classifiers are sufficiently similar in architecture to the

decoding procedures employed by the brain. The latter is what lets us infer

that decodable information is appropriately formatted for use by the brain,

even when we do not necessarily know what that format is. So, (v) if we can

decode information from patterns of activity using MVPA, this provides good

evidence in favour of the hypothesis that the patterns represent the informa-

tion. Which is just a restatement of the dictum.

3.3 Undermining the theoretical basis

We are now in a position to see precisely why the dictum is false. For starters,

note that a version of the dictum appealing to non-linear classifiers would be

summarily rejected by researchers, as one cannot make an inference about

what information is represented by patterns of neural activity using over-

powered, biologically implausible, non-linear methods. For example,

Kamitani and Tong ([2005], p. 684) were the first to caution against the use

of non-linear classifiers:

[. . .] nonlinear methods may spuriously reflect the feature-tuning

properties of the pattern analysis algorithm rather than the tuning

properties of individual units within the brain. For these reasons, it is

important to restrict the flexibility of pattern analysis methods when

measuring ensemble feature selectivity.

Along the same lines, Naselaris et al. ([2011]) point out that non-linearity

should be avoided precisely because it is too powerful: it allows us to pull

out information that is present in the brain but could not be exploited by the

brain itself. Hence even though

[. . .] in theory a sufficiently powerful nonlinear classifier could decode

almost any arbitrary feature from the information contained implicitly

within an ROI [. . .] a nonlinear classifier can produce significant

classification even if the decoded features are not explicitly represented

within the ROI. (Naselaris et al. [2011], p. 404)
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The concern is that information relied on by non-linear classifiers might bear

little relationship to what is actually represented by the brain. In other words,

non-linear classifiers are too informationally greedy and so cannot serve as

surrogates for the decoding procedures of the brain. Hence, a version of the

dictum appealing to non-linear classifiers would clearly be false: non-linear

decoding does not provide evidence for what neural activity patterns repre-

sent. In contrast, the standard version of the dictum seems to assume that

linear classifiers are relatively conservative in terms of the information they

can exploit (that is, they are biologically plausible), and so provide a safe (if

defeasible) basis for making claims about representational content. The fact

that a linear classifier can discriminate between activity patterns from different

conditions is taken to provide good evidence that information about the con-

ditions is both latent in the brain and functionally available.

Critically, our earlier discussion of the uncertainty surrounding the source

of (linearly) decodable information shows the flaw in this reasoning. The fact

that linear classifiers are biologically plausible does not preclude them from

also being informationally greedy. Linear classifiers are surprisingly good at

finding some linear combination of input features that discriminate between

conditions in a multivariate data set. As we saw in our discussion of orienta-

tion decoding in V1, even when we do know the underlying functional archi-

tecture, how a classifier exploits information in neural data is deeply opaque.

To further illustrate the greed of linear classifiers, consider that in psychology

some have noted that linear decision-making models can be surprisingly good

even when feature weightings are assigned more or less arbitrarily (Dawes

[1979]). To emphasize a similar point, when using MVPA there is not even

a guarantee that classifiers are detecting multivariate signals. In a simulation

study, Davis et al. ([2014]) produced a univariate fMRI signal that could not

be detected by activation-based analyses, but could nonetheless be decoded

reliably.

Although a classifier (linear or non-linear) may, through training, come to

discriminate successfully between activity patterns associated with different

experimental conditions, the information the classifier uses as the basis for this

discrimination is not constrained to be the information the brain actually

exploits to make the distinction (that is, they are informationally greedy).

Importantly, it is evidence about the latter and not the former that is critical

for zeroing in on the contents of neural representations. Hence, decodability

does not entail that the features being combined, or their method of combin-

ation, bears any connection to how the brain is decoding its own signals. Of

course, one might use decodability, converging with other lines of evidence, to

make inferences about what information might be represented in a brain ROI

(cf. Kriegeskorte and Bandettini [2007], p. 659). But it provides no privileged

means of ‘listening’ in on the brain. At best, MVPA-based decoding shows
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that information about experimental conditions is latent in neural patterns. It

cannot show that this information is used, or is even usable, by the brain. This

is the deep reason why the dictum is false.5

4 Objections and Replies

We have argued that the decoder’s dictum is false. In this section we consider

and respond to some objections to our criticism.

4.1 Does anyone really believe the dictum?

When criticizing inferences in cognitive neuroscience, it is common for the

philosopher to be informed that no working scientist really makes the sort of

inference. Such an assertion is often meant to be a normative claim as much as

a descriptive one (‘no good scientist argues thus’). Yet it is the descriptive

claim that really matters—for philosophical critique matters only insofar as

it identifies areas of actual methodological friction.

Do scientists really believe something like the dictum? Our reconstruction of

the theoretical basis of the dictum already suggests that they do. At the same time,

enumeration is also illuminating. Here are just a few (of many possible) illustra-

tive examples where the dictum is either overtly referenced or strongly implied:

(1) (Kamitani and Tong [2005]) was one of the first studies showing that

orientation information is decodable from voxels in early visual

cortex, including V1. They state that their MVPA approach ‘may

be extended to studying the neural basis of many types of mental

content’ (p. 684).

(2) (Hung et al. [2005]) was one of the first studies to pair MVPA with

cellular recordings. They showed that object identity and category could

be decoded from monkey inferior temporal cortex as soon as �125 ms

post-stimulus onset. They state that their approach ‘can be used to char-

acterize the information represented in a cortical area’ ([2005], p. 865).

(3) In an early review of studies (that included Kamitani and Tong

[2005]; Hung et al. [2005]), Haynes and Rees ([2006], p. 524) conclude

5 Indeed, this is why a weakened version of the dictum, which takes decoding to provide some

evidence about neural representation, is unlikely to fare better. This is because the problem is

not with the strength of evidence that decoding is supposed to provide about neural represen-

tation, but the kind of evidence it provides. By way of comparison, suppose someone argued

that the decoding performance of a non-linear classifier provided weak evidence about what

information is represented in a brain region. This reply simply would not speak to the deeper

issue that these classifiers are overpowered relative to the decoding operations likely employed

by the brain. Likewise, weakening the dictum does not address the problem that linear classifiers

are likewise too informationally greedy to provide a reliable indicator of what information is

represented in a brain region.

Decoding the Brain 595

Deleted Text: Replies
Deleted Text: a
Deleted Text: r
Deleted Text: b
Deleted Text: d


that ‘individual introspective mental events can be tracked from

brain activity at individual locations when the underlying neural rep-

resentations are well separated’, where separation is established by

decodability with linear classifiers.

(4) Woolgar et al. ([2011]) used decoding to investigate the multiple-

demand or ‘MD’ regions of the brain, a frontoparietal network of

regions that seem to be recruited across cognitive tasks. They used

decoding to investigate these regions because ‘in conventional fMRI

the representational content of MD regions has been more difficult to

determine, but the question can be examined through multi-voxel

pattern analysis (MVPA)’ (p. 744).

(5) An important technique with time-series decoding is that of discrim-

inant cross-training, or ‘temporal generalization’: a classifier is

trained on data from one time-bin and tested on another. In a

review of this method, King and Dehaene ([2014], p. 1) claim it ‘pro-

vides a novel way to understand how mental representations are

manipulated and transformed’.

(6) More complex MVPA methods, which characterize the structure of

an activation space or its ‘representational geometry’, have been

promoted as ‘a useful intermediate level of description, capturing

both the information represented in neuronal population code and

the format in which it is represented’ (Kriegeskorte and Kievit [2013],

p. 401).

Some brief observations are worth making about these examples. First, they

include both individual studies (1, 2, 4) and reviews (3, 5, 6), spanning most of

the period that decoding methods have been utilized in neuroimaging, and

were written by key figures responsible for developing these methods.

Second, the examples span fMRI (1, 4), EEG and MEG (4), and cellular

recordings (2, 3). The dictum thus appears to be a fundamental and wide-

spread assumption in cognitive neuroscience, which has, arguably, played a

key role in popularizing MVPA because of what it promises to deliver.6

4.2 Good decoding is not enough

Another tempting reply to our argument goes as follows: Classifier perform-

ance is graded, so it makes sense to talk about different brain regions having

more or less decodable information. For example, although early visual cortex

contains some information about object category, decodability is typically

6 Of course, not all researchers using MVPA subscribe to the dictum. As we have acknowledged,

some embrace decoding because of its benefits over more conventional analyses, without draw-

ing unjustified inferences about representational content.
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much worse than it is in inferior temporal cortex, a region heavily implicated

in the representation of object categories (Kiani et al. [2007]; Kriegeskorte et

al. [2008]). So perhaps the dictum is true if we restrict ourselves to the best or

most decodable regions.

The problem with this reply is that it faces the same objection elaborated in

detail above. What makes a given region the best or most decodable might

have little or nothing to do with the information that is available to and used

by the brain. This is why decoding results can be (and often are) at odds with

the answers derived from other methods. As pointed out earlier, visual motion

is more decodable from V1 than V5/+MT using fMRI (Kamitani and Tong

[2006]; Seymour et al. [2009]), even though it is well established that V5/+MT

is a functionally specialized region for representing and processing motion

information. Seymour et al. ([2009], p. 178) similarly report classification ac-

curacy of 86% in V1 and 65% in V5/+MT, though they themselves refrain

from drawing any strong conclusions due to the ‘potential differences under-

lying functional architecture in each region’.

Their caution appears to embody the same concern that decoding results

may reflect arbitrary differences to which the classifier is sensitive, without

guaranteeing that these results track real differences in neural representation.

Decoding—excellent or otherwise—is not a reliable guide to representation.

Another problem with this suggestion is that it entails that poor decodabil-

ity (or even failure to decode) provides evidence that the information is not

represented in a region. But this is false. Non-significant decoding does not

entail the absence of information. One might have simply chosen the wrong

classifier or stimuli, or the particular code used by the brain might not be read

out easily by a linear classifier. Dubois et al. ([2015]) provide a nice illustration

of this issue. They compared single-unit recordings with fMRI decoding in the

face patch system of the macaque brain—a system known to possess face-

sensitive neurons. In agreement with the single-unit data, face viewpoint was

readily decodable from these regions. However, in the anterior face patches,

face identity could not be decoded, even though single unit data show that it is

strongly represented in these areas. These results indicate how poor decod-

ability provides a thin basis upon which to mount negative claims about what

a given region does not represent.

In sum, one cannot appeal to any level of classifier performance—good or

bad—to preserve the dictum.

4.3 Predicting behaviour is not enough

Though not always carried out, the ability to connect classifier performance to

behaviour has been highlighted as one of the strengths of decoding methods

(Naselaris et al. [2011]). To be sure, a deep problem with the dictum is that
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decodability fails to show that information is formatted in a way that is used,

or usable, by the brain (Cox and Savoy [2003]), while connecting decoding to

behaviour helps make the case for functional utilization (Tong and Pratte

[2012]). If behavioural performance can be predicted from the structure pre-

sent in brain activation patterns, this would provide more compelling evidence

that decodable information is used (or at the very least is usable) by the brain,

and hence neurally represented.

The simplest way to connect decoding and behaviour is to show that clas-

sifier and human performance are highly correlated. Minimally, if this obtains

for some activation patterns more than others, this provides some (relatively

weak) evidence that the patterns that correlate with behaviour represent in-

formation that is used in the guidance of behaviour.

Williams et al. ([2007]) provided one of the earliest indications that not all

decodable information is ‘read-out’ in behaviour. They analysed the spatial

pattern of the fMRI response in specific task-relevant brain regions while

subjects performed a visual shape-discrimination task. They hypothesized

that if decodable shape category information is behaviourally relevant, then

decodability should be higher on correct trials than on incorrect trials.

Critically, they showed that although both retinotopic cortex and lateral oc-

cipital cortex (LOC) in humans contain decodable category information, only

the LOC shows a difference in pattern strength for correct as compared to

incorrect trials. Specifically, category information was decodable in correct

but not incorrect trials in the LOC. This was not true for retinotopic cortex.

This pattern of results suggests that only the information in LOC might drive

behaviour.

It is also possible to quantify the relationship between decodability and

behaviour more precisely. For example, in an early EEG decoding study,

Philiastides and Sajda ([2006]) were able to show there was no significant

difference between human psychometric and classifier ‘neurometric’ func-

tions, suggesting that the classifier performance was highly predictive of ob-

server performance when trained on time-series data of certain latencies.

While connection to behaviour supplies valuable evidence, we still think

that it is not enough to warrant inferences to representational content. As

we noted earlier, there are cases where decodability appears to show some-

thing about functional processing rather than the content of neural represen-

tations. Again, V1 provides a useful test case. Since we know that V1 primarily

encodes information about low-level visual features (such as luminance or

orientation) and does not encode higher-level visual features (such as shape

or object category), any decoding of higher-level visual features is unlikely to

reflect genuine representational content. This is true even if decoded informa-

tion can be linked with behavioural performance. For example, Haynes and

Rees ([2005]) found that V1 activity was predictive of whether or not subjects
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were perceiving a visual illusion, and Kok et al. ([2012]) found that top-down

effects of expectation on V1 were predictive of behavioural performance. In

these cases, the connection is that early processing modulates later processing

that determines behaviour.

Note that the problem is not one of spurious correlation. In an important

sense, it is quite the opposite problem. There is plenty of information, even in

V1, which a clever decoding algorithm can often pick up on. More generally,

a brain region might carry information that is reliably correlated with the

information that is actually used, but which is not itself used in behaviour.

This is because the information in a region might need to be transformed into

a more appropriate format before it is read out. As DiCarlo and Cox ([2007],

p. 335) put it, ‘the problem is typically not a lack of information or noisy

information, but that the information is badly formatted’. But even ‘badly

formatted’ information might correlate with behaviour. In summary, merely

predicting behaviour using decodable information is not enough to revive the

dictum.

5 Moving beyond the Dictum

We have argued that the decoder’s dictum is false. However, we are not pes-

simists about decoding. Rather, we think the right conclusion to draw is that

decoding must be augmented in order to provide good evidence about neural

representation. If linear classifiers are greedy, then they cannot function as a

surrogate for the sort of linear read-out carried out by the brain. Instead, we

need some additional assurance that a particular decoding result relies on

information stemming from neural representations. This need not be knock-

down evidence, but decodability alone is not enough to do the job (as the

dictum suggests).

In the previous section, we considered one form of augmentation—linking

decoding results to behavioural outcomes—and argued that it was insuffi-

cient. The problem was that linkages to behaviour do not show that the

information is actually formatted in a useable way. Framing it this way, how-

ever, already suggests a solution. The dictum relies on the idea that the bio-

logical plausibility of linear classifiers allows them to function as a kind of

surrogate—the classifier-as-decoder takes the place of the brain-as-decoder in

showing that information that is latent in neural activity is used, or usable

(cf. De Wit et al. [2016]). We have shown that it cannot play this role. But if the

information latent in patterns of neural activity can be used to predict obser-

ver behaviour based on a psychological model, then we would have a stronger

evidential basis for drawing conclusions about neural representation. For

unlike classifier performance, observer behaviour is clearly dependent on

how the brain decodes its own signals. In other words, this approach depends
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on offering a psychologically plausible model of how observers (through

down-stream processing) exploit the information found in patterns of

neural activity (cf. Ritchie and Carlson [2016]). And as it happens, such an

approach is already on offer.

There is a long tradition in psychology of modelling behavioural perform-

ance using psychological spaces (Attneave [1950]; Shepard [1964]). By ‘psy-

chological’ space we mean a space in which dimensions reflect different

features or combinations of features of stimuli, as reconstructed from com-

parative similarity judgements of observers of stimuli and/or conditions.

Models within this tradition characterize representations for individual sti-

muli or experimental conditions as points in a space, and observer behaviour

(such as choice or reaction time (RT)) is modelled based on the relationship

between different representations in these spaces. Thus, familiar categoriza-

tion models from cognitive psychology such as prototype models, exemplar

models, and decision boundary models all predict observer behaviour based

on different distance metrics applied to a reconstructed psychological space

(Ashby and Maddox [1994]). A virtue of some MVPA methods, like repre-

sentational similarity analysis (RSA), is that they help to focus attention on

structure in activation spaces, rather than simply the discriminability between

activity patterns in these spaces, as is the case when using linear classifiers

(Kriegeskorte and Kievit [2013]; Haxby et al. [2014]). In RSA, the pair-wise

(dis)similarity for patterns of activity for different conditions is computed, and

this can be used to reconstruct an activation space from multivariate neural

data. One hypothesis that many have considered is that if an activation

space implements a psychological space, then one can apply psychological

models or hypotheses to the activation space directly in order to predict be-

haviour (Edelman et al. [1998]; de Beeck et al. [2001], [2008]; Davis and

Poldrack [2014]). Note that this approach is importantly different from the

dictum, as it does not rely on using linear classifiers as a surrogate (indeed, it

might not involve the use of classifiers or decoding at all). Furthermore, the

approach achieves both biological and psychological plausibility through a

linkage between the structure of the reconstructed activation space and the

structure of behaviour (Ritchie and Carlson [2016]). And since it makes use

of MVPA in conjunction with established techniques for modelling behav-

iour, it also takes advantage of some of the strengths of MVPA we have

already mentioned. Here we offer two examples of research that adopts this

sort of approach.

First, a popular and theoretically simple approach involves directly com-

paring the similarity structure of activation spaces with psychological spaces,

reconstructed from subjects’ similarity judgements of stimuli (for example,

Mur et al. [2013]; Bracci and de Beeck [2016]; Wardle et al. [2016]). One

illustration of this approach is provided by the results of Sha et al. ([2015]),
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who collected similarity ratings for a large number of exemplar images for

several animate or inanimate object categories. The similarity space con-

structed from these judgements was then directly related to the similarity

structure of activation spaces from throughout the brain, measured using

fMRI. They found that activation spaces that correlated with the behavioural

similarity space were best accounted for by a single dimension, which seemed

to reflect an animacy continuum rather than a categorical difference between

the neural patterns for animate and inanimate objects (Kiani et al. [2007];

Kriegeskorte et al. [2008]).

Second, some work has focused on the psychological plausibility of acti-

vation spaces by using them to predict the latency of behaviour. For ex-

ample, in two studies using fMRI and MEG decoding, Carlson and

Ritchie (Carlson et al. [2014]; Ritchie et al. [2015]) showed that distance

from a decision boundary for a classifier through activation space was pre-

dictive of RT. In their experiments they were explicitly motivated by the idea

that linear classifiers are structurally identical to the model of an observer

under signal detection theory (Green and Swets [1966]). A natural extension

of signal detection theory is that distance from an evidential boundary nega-

tively correlates with RT (Ashby and Maddox [1994]). As predicted, they

found that RT negatively correlated with distance from the decision bound-

aries, suggesting a level of psychological plausibility to even simple linear

classifiers.

Crucially, in these sorts of studies it is implausible to suppose that the in-

formation is present but not correctly formatted, because the decoded format

of the information in activation space is precisely what is being used to predict

behaviour in a psychologically plausible manner. We do not mean to suggest

that the results we have summarized suffice for drawing conclusions

about neural representation, but we do believe that they help point the way

forward.

6 Conclusion

The decoder’s dictum is false. Significant decoding does not warrant an infer-

ence that the decoded information is represented. However, we do believe that

if behaviour can be connected to the structure of activation space in a psy-

chologically plausible manner, then this may warrant the sort of inference

researchers have had in mind. And we should stress that we do not think

the above shows that decoding is immaterial. Indeed, as we have suggested,

MVPA is crucial for connecting activation spaces to behaviour. Rather, as we

have argued, appealing to the dictum obscures not only the true import of

decoding as a tool in cognitive neuroscience, but also what sort of evidence is

required for making claims about neural representation.
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