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Abstract

Repeat Image Feature Tracking (RIFT) is commonly used to measure glacier surface motion from 

pairs of images, most often utilizing normalized cross correlation (NCC). The Multiple-Image 

Multiple-Chip (MIMC) algorithm successfully employed redundant matching (i.e. repeating the 

matching process over each area using varying combinations of settings) to increase the matching 

success rate. Due to the large number of repeat calculations, however, the original MIMC 

algorithm was slow and still prone to failure in areas of high shearing flow. Here we present 

several major updates to the MIMC algorithm that increase both speed and matching success rate. 

First, we include additional redundant measurements by swapping the image order and matching 

direction; a process we term Quadramatching. Second, we utilize a priori ice velocity information 

to confine the NCC search space through a system we term dynamic linear constraint (DLC), 

which substantially reduces the computation time and increases the rate of successful matches. 

Additionally, we develop a novel post-processing algorithm, pseudosmoothing, to determine the 

most probable displacement. Our tests reveal the complimentary and multiplicative nature of these 

upgrades in their improvement in overall MIMC performance.
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I. Introduction

Due to the expanse and remoteness of glaciers and ice sheets, airborne and satellite remote 

sensing provide the only practical means for mapping ice motion over large areas and at 

frequent time intervals. Combined Synthetic Aperture Radar Interferometry (InSAR) and 

speckle tracking ([1]) have been the primary tool for constructing ice velocity maps over 

large areas and nearly complete coverage for Greenland and Antarctic Ice Sheet is available 

for multiple epochs (e.g. [2], and [3]). These data, however, are limited in temporal 
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resolution and range, hampering studies of seasonal or interannual glacier change over many 

years. On the other hand, Repeat-Image Feature Tracking (RIFT) can be applied to any pair 

of coregistered images, including nearly five decades of Landsat satellite imagery openly 

distributed by the United States Geological Survey (USGS) Landsat open archive and, 

beginning in 2014, the European Space Agency’s Sentinel constellation of both SAR and 

optical imagery. RIFT has been used to reconstruct short-term variability in glacier motion 

and mass balance in a number of studies (e.g., [4]–[8]) Additionally, the Optical Land 

Imager (OLI) aboard Landsat 8, launched in 2013, offers enhanced RIFT capabilities for 

glaciers and ice sheets through both increased radiometric resolution and higher signal-to-

noise ratio ([9], and [10]).

In order to generate wide-area maps of glacier motion at frequent time intervals using RIFT, 

several challenges must be overcome. Firstly, the RIFT algorithm must be general enough to 

track features over a range of displacements and not be sensitive to parameters such as 

search window size. Secondly, the algorithm must be able to properly handle image errors, 

including the null striping found in Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 

resulting from failure of the Scan-Line Corrector (termed, SLC-off imagery). Third, the 

algorithm needs to mitigate unfavorable atmospheric conditions, such as haze and cloud 

cover in optical images, which can cause spurious matches. Last, the algorithm must be 

efficient to process large numbers of pairs at minimal computational cost.

To address the above issues, [11] developed a RIFT approach, called Multi-Image, Multi-

Chip (MIMC), in which features are tracked through Normalized Cross-Correlation (NCC) 

using a range of search and reference window sizes and multiple convolution filters. The 

displacement for each tracked pixel is then determined from the population of individual 

measurements, termed the “voting cell” method. The MIMC approach is based on the 

assumption that increasing the number of matching attempts using different matching 

settings (search and reference window sizes and image enhancements) increases the 

probability of a successful match. This effectively generalized the RIFT method, but had a 

high computational cost due to the number of individual searches performed. In addition to 

the multiple matching attempts, the algorithm also mitigated the effect of the SLC-off voids 

by calculating the NCC in the spatial, rather than frequency, domain, further reducing 

computational efficiency ([6], [11]–[13]). This was improved by [12] who used NCC-based 

RIFT in the frequency domain by filling the null gaps with values that did not influence the 

NCC calculation in frequency domain.

While MIMC and other RIFT algorithms typically use only forward matching (i.e. the first 

image always provides the reference chip and the second image always provides the search 

chip) for NCC calculations, [14] proposed reversing the image order to utilize the “reverse 

correlation” results for finding correct matches. Based on this approach, we present an 

iterative procedure, termed quadramatching (QM) that further increases the matching 

redundancy and robustness of the statistics of the solutions.

To mitigate increased number of calculations needed for QM, we additionally introduce a 

Dynamic Linear Constraint (DLC) on the matching procedure based on an a priori velocity 

field. It is now common for at least one, high-quality map of flow velocity to be available for 
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a given region of interest for large ice sheets such as Greenland or Antarctica (e.g. [2], and 

[3]). In case that an existing velocity map is not available, a velocity map derived from 

another image pair in a time series of images can play role as a priori. These data constrain 

the RIFT search parameters and range, which can increase the computational efficiency and 

reduce the number of spurious matches. This increase in computational efficiency can then 

enable additional steps to improve the generality of the algorithm and accuracy of the 

results.

Here we present substantial improvements in efficiency and effectiveness to an NCC-based 

RIFT algorithm applied to glacier flow. Our updates are intended to provide robust, fast and 

automated processing of large numbers of image pairs over areas of complex flow, such as 

shear margins and calving fronts.

II. Method and Data

A. Quadramatching

Our algorithm builds upon the redundant solution approach of Multi-Image Multi-Chip 

(MIMC) RIFT method presented in [11] with the addition of iterative forward and reverse 

matching that we term Quadramatching (QM). A study in [14] proposed adding a 

redundancy to the match solution by swapping the reference and search chips from the 

initial, “forward” match and using these to solve for an additional “reverse” match. In the 

study, the closer the solutions of the forward and reverse matches, the greater the confidence 

of the displacement solution.

For the QM approach, we obtain further redundancy in the match solution by iteratively 

reversing both the direction of the search and the order of the image pair (pair swapping), 

resulting in four solutions that are combined to provide the match location and confidence. 

The QM procedure is illustrated in Fig.1. Initially, point A on the first image (I0) is matched 

to point B on the second image (I1). A new reference chip is the extracted around point B on 

I1, and the search is repeated on I0, giving the backwards match to point A’. This location is 

referred to as the “original pairing” result. Next, the order of images I0 and I1 are reversed 

and the forward-backward search procedure is repeated, giving the “swapped pairing” match 

at location A”.

Although those four sets of measurements are from the same image pair, they are not 

identical measurements. The differences between the solutions can be identified by first 

defining the initial match (forward matching from the original pairing) as:

original f orward : = f I0
A, I1 = B (1)

where the first and the second arguments on the left side are the reference chip and the 

search window (i.e. image to find the matching point). The superscript indicates the 

coordinates of the image chip and the subscript is the source of the image chip or the search 

window (0 is the earlier, 1 is the latter). Thus, (1) states that the original forward solution, 
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point B in I1, is determined from a reference chip around point A in I0 and a search chip in 

I1. In the same convention, the three other matches are described as:

original backward : = f I1
B, I0 = A ′ (2)

swapped f orward : = f I1
A, I0 = C (3)

swapped backward : = f I0
C, I1 = A ′′ (4)

Since each match solution has a different reference chip I0
A, I0

B, I1
A, and I0

C), they yield 

displacement vectors with different origins. Respectively, their displacements are:

d OF : = AB (5)

d OB: = BA′ (6)

d SF : = AC (7)

d SB: = CA′′ (8)

with subscripts O, S, F, and B for original pair, swapped pair, forward match, and backwards 

match, respectively. This procedure is applied to each set of chip size and filter combinations 

in MIMC, thus increasing the number of displacement solutions by a factor of four.

B. Dynamic Linear Constraint

Glacier speed can change abruptly in response to stress perturbations caused by, for 

example, calving front retreat and variations in basal water pressure. Measurement of these 

speed variations is a typical objective for RIFT applications. The direction of flow, however, 

tends to remain relatively constant through time; since direction is primarily determined by 

the surface slope and large variations in flow direction that would require large changes in 

the ice thickness field. Therefore, if the direction of flow is known from an existing velocity 
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map, or can be estimated from a digital elevation model or numerical ice flow model, it can 

be used to both constrain the area of NCC matching and to prevent spurious matches without 

biasing the measurement result. Examples of this approach include [14] and [15] that made 

use of existing ice flow measurements as a priori information to limit the location of the 

matching solution to within a defined rectangular boundary. Another major advantage of 

using such a directional constraint on the match solution is the large reduction in the number 

of NCC computations per match area. This is especially important when utilizing redundant 

match approaches such as MIMC and QM.

A concern in the use of an existing velocity field as a priori information for constraining the 

matching procedure is that errors in that velocity field, or change in surface flow between the 

times when the a priori field was constructed and the imagery to be used for RIFT was 

obtained, could influence the result, reducing the accuracy of the solution. To mitigate this 

effect, we use a non-deterministic approach, illustrated in Fig.2, to constrain the search for 

the NCC peak within the matching procedure. First, the a priori displacement vector, starting 

at the reference origin, is projected onto the search image and the pixels that intersect this 

vector are chosen as initial “pivots” from where the NCC peak search begins. For each initial 

pivot pixel, the NCC field is calculated for the search image chip centered on the pivot and 

the 8 surrounding pixels. The location of the maximum NCC value among these 9 solutions 

is chosen as the new “intermediate” pivot point for the next iteration. The NCC fields for this 

intermediate pivot and the surrounding pixels are calculated so that the pivot at the next 

stage is the location of the maximum NCC among the series. The procedure is then repeated 

until the point of maximum NCC is the intermediate pivot itself (the center of the 3-by-3 

cell) so that there is no update in the pivot location. This iteration is then repeated for all 

initial pivots.

This procedure ensures that each iteration, starting from initial pivot, will converge to a local 

maximum in NCC space only within or near the known direction of flow. Moreover, by 

constraining the search area to approximate a vector, the number of NCC calculations is 

drastically reduced. The length of the vector of initial pivot points is bounded by the 

magnitude of the expected maximum displacement and the coregistration error. Here, the 

extent of each search grid (Li,j) was determined by:

L i, j = s ⋅
v i, j
r ⋅ t ⋅ 365 + c (9)

where s is a scale factor (chosen to 1.8 in this study based on the maximum expected 

fluctuation of the flow speed for the test glaciers), vi,j is velocity (unit: m/yr), r is spatial 

resolution of the image, t is the length of temporal baseline of a pair (unit: day) and c is the 

maximum expected image coregistration error. Increasing s and/or c reduces the linear 

constraint, allowing for more deviation in flow direction but increasing the processing time.

Jeong et al. Page 5

IEEE Trans Geosci Remote Sens. Author manuscript; available in PMC 2019 May 08.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



C. Postprocessing

A critical postprocessing step of any redundant match approach such as MIMC and QM is 

the selection of the best single displacement from the population of redundant matches that 

will nearly always contain spurious single solutions. Several filtering approaches for single 

matching displacements exist in the literature. They include utilization of the images’ signal-

to-noise ratio (SNR) and NCC values ([16]), the SNR of measurements ([17]), forward and 

backward matching ([14]), expected speed or thresholding based on smooth changes ([1], 

and [18]), or combinations of these ([19], and [20]). Among those methods, the strain rate 

approach is based on the assumption that the glacier’s gradient of motion is smooth 

according to its viscoelastic flow. It has been widely adopted in filtering or postprocessing 

algorithms. However, strain rate-based filters tend to fail where similar spurious matches are 

spatially clustered, as typical for errors induced by clouds and shadows.

Here, we present a novel post-processing method, termed pseudosmoothing, which 

determines the most probable displacement from a population of redundant matches (Fig.3). 

Similar to the “voting cell” method in MIMC ([11]), pseudosmoothing is applied to clusters 

of multiple matching results (i.e. reference chip size, image filter, and QM) in each of the 

single grid. We apply a connectivity-based clustering algorithm rather than clustering the 

displacements into discrete cells as in the voting cell method. If the minimum Euclidian 

difference between the displacement di and elements in a cluster Ck is less than a threshold 

value, ρmin, the displacement di is considered as a member of Ck. This criterion for the 

cluster Ck can be formularized as:

Ck: = d i d i, Ck ≤ ρmin (10)

where the distance between the displacement and clusters are:

d i, Ck : = min d i, d j , d j ∈ Ck (11)

therefore, for any clusters Ck and Cl,

Ck, Cl > ρmin, k ≠ l (12)

where

Ck, Cl : = min d i, d j , di ∈ Ck, d j ∈ Cl (13)

We use Ck of 10 and a ρmin of 1 pixel. Next, clusters of displacements are defined. A cluster 

is considered prominent if its number of samples is more than 60% of the total population. 

The mean displacement of the prominent cluster is considered the prominent displacement 
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(d0) in the corresponding grid. However, due to the possibility of increased spurious 

matching, not all grid points have a prominent cluster and corresponding d0s. For those 

locations, an intermediate displacement (d1) is estimated instead.

The estimation of an intermediate displacement starts from finding the expected 

displacements (de) based on the given a priori velocity information. The expected 

displacement is obtained from:

d e, i, j =
v i, j

r ⋅ 365 ⋅ t (14)

with the same variables as (9). The difference in definitions of coordinate system between a 

priori and the image may require reversing the coordinate axes. When using a priori values 

for this calculation, seasonal and annual variability in flow speed should be considered. 

Therefore, a scale factor needs to be applied to de to compensate the variability. This factor 

is calculated by comparing de with the neighboring prominent displacements (d0) or d1 in 

the earlier iterations. When there are a sufficient number of d0 or d1 values around the 

location (i, j), d1 in the current iteration is calculated as

d 1, i, j =
d 0

d e, i, j

⋅ d e, i . j (15)

where the hat denotes the averaged values in the neighbor of (i, j). This iteration is repeated 

until all grids are filled with either d0 or d1.

Equations (14) and (15) imply that d1 at point (i, j) is not determined from the clustered 

displacements of the grid point, but from the neighboring d0 or d1 and the a priori 
displacement. The mean value of the closest cluster to d1 for each grid point, therefore, is 

chosen as the initial displacement (d2). In this way, the displacement at each grid point is 

determined from the mean values of grid clusters, which are either d0 or d2.

The resulting d2 is then adjusted through iterative and anisotropic weighted quadratic fitting. 

For a location (i, j), the displacements (d2) of the neighboring grid points are weighted using 

a negative exponential function with respect to distance and flow direction. To accommodate 

large lateral gradients (i.e. shear strains) in glacier flow, the neighboring displacements along 

the flow direction are given a greater weight than those in the across-flow direction. We term 

this postprocessing method “pseudosmoothing” because it finds a cluster’s displacement 

close to the smooth value, but the resultant displacement is neither interpolated nor an 

average.

D. Procedure

The complete RIFT processing flow is illustrated in Fig.4. A preliminary matching is 

performed on the image pair to estimate the coregistration error from the offset on stationary 
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(i.e. exposed rock) areas, as defined by a land classification mask. The preliminary matching 

does not use the DLC because a priori velocity information on stationary areas are not 

meaningful, since offsets are caused by misalignment in orthorectification process and not 

by flow. The results obtained from the preliminary matching are clustered using the 

algorithm described in section II-C and only prominent displacements (mean value of the 

displacements in the prominent cluster) are chosen to calculate the offset.

Following the RIFT process for coregistration error, the RIFT process is repeated over ice-

covered areas using DLC (section II-B). The solutions are then postprocessed as described in 

section II-C.

E. Test Data and Methods

We test our RIFT algorithm using a series of Landsat 7 and 8 panchromatic band images of 

Jakobshavn Isbræ located on the west coast of Greenland. The site is located at 

approximately 69° 11’ north and 49° 40’ west. The image pairs were clipped from the full 

Landsat image tiles and resampled to a polar stereographic projection to match the a priori 
velocity map, described below. The image pairs are listed in Table I and the anaglyphic 

composition of the image pairs in Fig.5(a)–(c). Fig.5(a) shows an example of Landsat 7 

ETM+ imagery with void stripping from SLC failure and small clouds that would be 

expected to give poor results. This scenario is chosen to provide a basis of comparison for 

later results.

We processed these data with several different scenarios to examine the effect of the 

individual components (i.e. QM and DLC) of our algorithm on RIFT. Firstly, four RIFT 

algorithm scenarios were applied to the test pair in Fig.5(a) to evaluate the improvement of 

the different algorithm components. The scenarios were 1) single matching without DLC, 2) 

single matching with DLC, 3) QM without DLC and 4) QM with DLC. For tests with QM 

applied, a result with at least one correct match among the four is considered a successful 

match. In these tests, no filtering was applied to the source imagery and the size of the 

reference image chip was chosen as 31 by 31 pixels. Successful matches were visually 

identified as vectors consistent with the expected ice flow. The criteria that determine the 

successful matching are 1) the direction of the measured displacement is close to the a priori 
(i.e. less than 45 degrees in difference) 2) The magnitude of the measured displacement is in 

certain range of the a priori (i.e. their ratio resides between 1/3 and 3), and 3) the magnitude 

and direction of the measurement is in close agreement with its neighboring measured 

displacements. The criteria 1) and 2) are automatically applied to the results, followed by 

manual inspection for the third criterion. In this way, manual input and the corresponding 

human biases were minimized. To take the human error into consideration, this inspection 

was repeated three times, and mean values along with the root mean squared differences 

were calculated. The size of search chip in the unconstrained matching test was determined 

as

wi, j
s = max de, (i, j) ⋅ m + e + 2wR + 1 (16)
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where m is a scale factor for the expected displacement to cope with variability in speed, e is 

a constant to cope with the expected coregistration error in the image pair and wR is the size 

of reference chip. For DLC matching, the size of the search image chip was determined by 

(16), but the extent of the initial pivot was determined by (9) and only pixels at the search 

chip’s center and along the extent were chosen as the initial pivots.

The comparison of the feature tracking algorithms was then followed by the comparison of 

the postprocessing algorithms designed for multiple matching. The multiple matching 

attempts were conducted for the test image with the procedure described in section II.D with 

4 different reference chip sizes (15 by 15, 31 by 31, 61 by 61, and 81 by 81 pixels), 4 

different filtered images (original, horizontal gradient, vertical gradient, and Laplacian 

images) and 4 components by QM (original forward, original backward, swapped forward, 

and swapped backward) which resulted in 64 matching results for each point of template 

grid. The matching result was then postprocessed by 1) the voting cell method proposed by 

[11] and 2) the pseudosmoothing algorithm described in section II-C. Again, successful 

matches were selected through visual inspection.

To further assess the effect of pseudosmoothing on the various processing scenarios, we 

process the image pair in Fig.5(a) by turning on and off the QM and DLC. Each set of 

results were postprocessed with the pseudosmoothing algorithm, and the resultant velocity 

maps are compared to each other to examine differences successful match coverage and 

discrepancy between final vector fields.

The full feature tracking algorithm generates 64 displacement vectors for each grid point, 

each obtained with different parameter combinations in terms of reference chip size, image 

filters and QM (pair order and matching direction). Investigating the individual effects of 

different parameters in a range of measurement conditions (i.e. image quality, flow pattern, 

etc.) is useful for understanding the specific mechanism by which the multiple matching 

improves the result. For this purpose, we apply our algorithm to the image OLI pair in Fig.

5(b) for a range of algorithm settings. Besides being free of data voids due to SLC failure, 

OLI images have a higher signal-to-noise ratio (SNR) and greater radiometric resolution 

than Landsat 7 ETM+ ([21]), providing a more ideal case for RIFT. For this assessment, we 

generate multiple matching results using different combinations of algorithm components. 

For example, we performed the multiple feature tracking with single size of reference chip, 

but utilized four sets of image filters and QM components. Therefore, there are 16 matches 

in each grid, but 4 sets of results from reference chips whose sizes are 15 by 15, 31 by 31, 61 

by 61, and 81 by 81 pixels respectively. Similar procedures were followed for the image 

filters and the QM components. We assess the quality of the results by examining the 

smoothness of the velocity (speed and direction) maps and the existence of spurious 

matches.

The a priori information used for DLC and pseudosmoothing (Fig.5(c)) is the Greenland Ice 

Mapping Project (GIMP) 2000–2010 averaged velocity map ([22]), generated from 

RADARSAT, ALOS and TSX using a combination of InSAR, speckle tracking and feature 

tracking, and distributed by the National Snow and Ice Data Center (NSIDC). The data were 

resampled to a spatial resolution of 300 meters, as the grid spacing of our experiment, and 
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voids were filled by interpolation. The a priori velocity map was also used as a visual 

reference for finding correct matches in the first experiment and for quality control of RIFT 

results. Since the largest source of error is coregistration error arising from terrain-dependent 

errors in the orthoimagery, the fractional error increases with decreasing displacement, so 

that the fractional error becomes very large for small displacements. Therefore, we confine 

our assessment to grids where de is larger than 4 pixels, or 1369 m/yr for this test pair. 

Further, we masked out floating icebergs at the glacier fronts because their chaotic, rapid 

motion imparts a noise to the ice flow field.

We also compare the relative processing time needed for the different algorithm 

components. We used a system with two Intel Xeon E5649 CPUs and 128GB of RAM. 

However, The computation was conducted in single threading configuration to avoid 

influence by utilizing multiple CPU cores when comparing the processing time. The 

processing software was implemented by MATLAB, with the feature tracking subprogram 

was written in C and compiled to MATLAB mex file to accelerate the process.

III. Results and Discussions

A. Performance

The matching results with the four combinations of the different configurations are 

illustrated in Fig.6. Unconstrained feature tracking required 537080 seconds to complete all 

64 matches for the image pair in Fig.5(a). Application of DLC reduced the processing time 

to 5983 seconds, which is an improvement by 98.9% compared to the unconstrained 

matching. The numbers and distribution of correct matches in each case are presented in 

Table II and in Fig.6. These show that DLC and QM result in increased numbers of correct 

matches, especially on the cloud-covered area and the bend in flow direction (X=−177km, 

Y=−2287km) on the main glacier trunk.

The improvement presented in Fig.6 and Table II is explained by the exclusion of spurious 

possible NCC peaks that are far off from the expected direction of the flow. The redundancy 

provided by QM further increases the chances that each grid has at least one correct match 

beyond what is provided by forward-only matching.

The results of the postprocessing algorithms are presented in Fig.7 and Table III. We find 

that pseudosmoothing substantially reduces noise when compared to the results obtained 

from the voting cell method. The results in Table III show that the ratio of successful 

matches from QM with DLC (4 matching per grid) is only about 3 percent less than that of 

pseudosmoothing (64 matching per grid). This small difference comes from the nature of 

manual and automatic postprocessing. The results in Table II are from manual selection of 

correct displacements from visual inspection, which can be more flexible but time-

consuming and impractical to apply to a number of pairs available in the time series. In 

contrast, pseudosmoothing is a automated postprocessing algorithm, which is faster but can 

be less flexible than manual filtering.

Despite of the robustness of this MIMC algorithm, it is not possible to measure the 

displacement when the ice surface texture is covered by opaque cloud, resulting in false 
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matches. Such spurious matching can be detected by matching ratio, which is the number of 

displacements in a valid cluster in each grid divided by total number of matching attempts. 

A larger ratio means that the feature tracking was more successful and consistent regardless 

of the MIMC parameters. Fig.8 provides an example of the matching ratio in areas of cloud 

cover. We find that area with smooth gradients in velocity have relatively high matching 

ratios. In contrast, speeds in areas of low matching ratio are relatively noisy.

The improved performance of pseudosmoothing over the voting-cell approach results from 

the synergy of several components. First, by applying the filter to clusters of displacements, 

starting with the most dominant, a consistent, and thus high-confidence result is obtained. If 

there is no dominant cluster in a grid, the displacement is left blank and passed to the next 

procedure, rather than filling the grid with less confident and possibly spurious values. 

Avoiding those less confident displacements from the beginning of the process prevents the 

propagation of errors through the processing chain. Second, improved post processing is 

achieved with the use of a priori information to find the most probable clusters of 

displacements.

The effects of DM and QLC to the pseudosmoothing results from Fig.5(a) are presented in 

Table IV and Fig.9. Overall, there were increases in correct matches of 2.21% and 3.24% 

resulting from QM and DLC, respectively, with their combination resulting in a 4.01% 

increase. Most of the additional successful matches are obtained from the glacier terminus 

and shear margins. The increase in success resulting from QM at the terminus is explained 

by the swapped matching. The ice within reference image chip close to the terminus may 

reach the calving front and be lost between image acquisitions. Reverse tracking ensures that 

velocities can be obtained as close as possible to the calving front. The inclusion of DLC is 

most effective at the shear margins and areas of flow near the terminus where the a priori 

velocity field reduces the search area and improves the chance of successful match.

Statistics of the difference in the speeds calculated using each combination of algorithm 

components are presented in Table V and the spatial distribution is shown in Fig.10. The 

table tells that the QM has caused about 28m/yr of discrepancy when DLC was not applied, 

and 45m/yr of difference when DLC was applied. In contrast, DLC has caused about 20m/yr 

and 19m/yr of discrepancy when QM has turned on and off respectively. Therefore, we find 

that QM results in more differences than the DLC in the measured velocities. In addition to 

the biases, the use of QM results in lower speeds over the fast-flowing glacier trunk (Fig.

10(b) and (e)). This is due to the velocity gradient along-flow. The glacier’s flow converges 

at its terminus, causing faster flow speed at its terminus than at the upglacier region. That 

causes the flow speed increases along the flow, causing positive velocity gradient along the 

flow direction. That means the displacement measured along the flow direction (i.e. heading 

the terminus) is usually larger than that measured reverse to the flow (i.e. heading the 

upglacier region). Since QM performs matching in both the forward reverse directions, a 

large change in velocity along-flow, as found on the trunk of Jakobshavn Isbræ, will result in 

substantially difference displacements between the forward and reverse matches, leading to a 

different final displacement than if QM is not employed.
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The pattern of speed difference in Fig.10 tells that the speed difference by QM at the main 

trunk (Fig.10(b) and (e)) is more visible than that by DLC (Fig.10(a) and (f)). The noisy 

patterns at the shear margin are found from the figure, which can be explained by feature 

tracking error caused by the non-transitional distortion of the surface texture. Despite the 

pattern, the overall difference did not exceed 45m/yr, or 0.13 pixels (Table V).

One concern is that utilizing a priori information in postprocessing may bias the solution 

toward the a priori, over constraining the solution. However, as per (15), only the a priori 
displacement direction, and not speed, is used when determining the initial displacement 

(d2). Moreover, pseudosmoothing iteratively analyzes the smoothness of the neighboring 

vectors and replaces the initial displacements into the clusters’ displacements. Thus, the 

determined displacement is not an interpolated value, but is rather the displacement within 

the cluster that gives the smoothest result.

B. Contribution of the multiple matching components

The pseudosmoothed velocity map from the pair shown in Fig.5(b) using the complete 

algorithm is shown in Fig.11. Using this result, we examine the impacts of high shear strain 

rates, supraglacial lakes, clouds and motion of the ice front on the results. The maps of 

matching ratio and the deformation rate (rooted sum of the square of normal and shear strain 

rates) are also provided in the figure. We find consistently high matching ratios with 

anomalies over the lower region of the main trunk, below the bend in flow (region 6 and 7 in 

the figure), and in the vicinity of a supraglacial lake (area 4).

We first consider the impact of high shear strain rates. The deformation rate map in Fig.11(c) 

derived from the velocity field in Fig.11(a) shows high shear strain rates in the middle of the 

main trunk, where the direction of flow changes by about 45 degrees. The matching ratio 

degrades substantially over the areas with larger shear strain rates. This trend is plotted in 

Fig.11(d).

To investigate the cause for the decrease in matching ratio with increasing shear strain rate, 

we applied the multiple matching algorithm by confining the size of reference chip into 

single value, while fully utilizing different image filters and components in QM. Constrained 

multiple matches were performed with the reference chips sizes given in section II-E. 

Zoomed-in results for the regions of low, moderate and high shear indicated in Fig.11 are 

presented in Fig.12. From those results, we find that the smaller reference chip is more 

successful for finding a matching point than the larger chip in areas of higher shear strain. In 

contrast, the results of the moderate and low strain areas get smoother as the chip size grows.

Typically, the use of the small reference chip for NCC-based tracking is problematic on 

glaciers due to ambiguities arising from repetitive textures, such as crevasses, resulting in 

spurious matches. Larger reference chip sizes can avoid this ambiguity. However, the 

significant geometric distortion of the surface texture in areas of high shear strain rates may 

result unsuccessful or incorrect matches with larger chip sizes. In this situation, DLC 

effectively reduces the chance of encountering ambiguous textures, allowing for smaller 

reference chips, and thus less sensitivity to the textures’ shape deformation. This is 

demonstrated for a point of high shear strain (point 7 in Fig.11(a)) presented in Fig.13. Out 
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of the range of chip sizes used, the smallest reference chip (15 by 15 pixels) with DLC gave 

the highest confidence displacements. In contrast, larger chip sizes resulted in spurious 

matches (i.e. direction opposite to InSAR flow direction). Without DLC, for the same point, 

a 15 by 15 reference chip also resulted in a clearly spurious result due to textural ambiguity. 

Without DLC, larger chip sizes resulted in the same, spurious displacements. This supports 

the effectiveness of DLC in improving measurements in areas of high shear through the use 

of smaller reference chip sizes.

In addition to the ability of finding the correct matches, Fig.13 provides evidence about the 

faster NCC peak search discussed in II.B. The dark blue areas in the NCC maps with DLC 

in the figure are the points for which NCC was not calculated because they were outside the 

spatial constraint imposed by the DLC. The drawback of null exclusion NCC calculation 

[11] is that the computation is performed in spatial domain, so that the effective calculation 

in frequency domain is not possible [12]. However, DLC optimizes the amount of 

computation by reducing the spaces to calculate the NCC, so that the NCC peak location can 

be found in faster manner.

While smaller reference chips improve measurements over areas of high strain rates, Fig.12 

also demonstrates that larger chip sizes provide smoother results over areas of low to 

moderate shear. In those areas, the advantage of a small reference chip decreases because 

shape distortion and rotation is less. There, larger reference chips are more statistically 

stable because more samples are used to calculate the NCC peak. Thus, we find a 

complimentary benefit to smaller and larger reference chip sizes as dependent on shear 

strain rate.

For features such as clouds and supraglacial lakes, the image filters applied in the multiple 

matching scheme are critical. In this study, feature tracking was applied to horizontal 

gradient, vertical gradient, and Laplacian filtered images, as well as the unfiltered images. 

Fig.14 compares the postprocessed results for areas with a supraglacial lake and partial 

cloud cover obtained from the original and filtered images. In both cases, the number of 

spurious matches decreases and the number of likely correct matches increases when using 

the filtered imagery.

Finally, glacier calving fronts are problematic for RIFT methods because they can advance 

or retreat between image pairs and features upglacier of the front in the first image may 

advect through the front (and calve) in the second image, causing a data gap near the front. 

These problems were mitigated by QM, as shown in Fig.15. By swapping the pairs, features 

at the front are tracked in reverse, resulting in displacement measurements up to the front. 

Further, we see that the individual match iterations within the QM sequence are noisy, 

potentially due to variations in glacier front position that contaminate the flow field. 

However, the combination of the four iterations results in a high confidence and smooth 

displacement field.
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IV. Conclusion

Comparative studies of RIFT algorithm performance have shown that all provide similar 

results using cloud-free and well-contrasted imagery over textured terrain, with some 

algorithms performing better in specific cases. The current challenge, therefore, is to develop 

improved algorithms for efficiently processing large datasets of varying image quality and 

terrain types. Here, we build upon the multiple image approach of [7] by introducing multi-

directional matching, termed Quadramatching, and incorporate a priori velocity information 

to constrain both the match direction (Dynamic Linear Constraint) and postprocessing 

(Pseudosmoothing). We demonstrated that these modifications substantially improved the 

number and quality of displacement measurements over the previous algorithm. We also 

found that the improvement provided by the new algorithm was achieved by (1) creating a 

positive, complementary effect between reference chip size and DLC and (2) by adding 

sample redundancy in displacement generation.

The major disadvantage of this algorithm is the increase in processing time. Despite the 

reduction in search space provided by DLC, the expanded multiple match approach 

increases the total amount of calculation. This could be mitigated by identifying and 

removing combinations of window sizes, image filters and search directions in the multiple 

matching scheme that do not improve the final result. Finally, the clustering result used in 

the pseudosmoothing processing can be sensitive to the given threshold (ρmin). Future work 

should be directed at finding an adaptive threshold to further improve the generality and 

robustness of the algorithm.
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Fig.1. 
Schematic illustration of quadramatching, (a): Original forward, (b): Original backward, (c): 

Swapped original, (d): Swapped backward.
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Fig.2. 
Normalized cross correlation peak searching algorithm using dynamic linear constraint, (a): 

Initial pivots lie under the extent of flow vector, (b): iterative searching for the cross 

correlation peak.
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Fig.3. 
Postprocessing flow.
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Fig. 4. 
Flow chart of the complete RIFT algorithm.
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Fig.5. 
Anaglyphic color images of the test pairs and reference velocity information, (a): ETM+ 

image pair of 1 April 2009 and 17 Apr 2009, (b) OLI image pair of 12 July 2014 and 28 July 

2014, (c) interpolated InSAR velocity map as a priori data, color-coded in unit of m/yr, with 

5(a) in its background. The earlier image in each tested pairs is colored in red, while the 

latter one is in cyan.
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Fig.6. 
Comparison of feature tracking results from Fig.5(a), overlain on image backgrounds. (a): 

Original forward matching without DLC, (b): Original forward matching with DLC, (c): QM 

without DLC, (d): QM with DLC. Note that the speed is plotted in log scale.
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Fig.7. 
Postprocessing results from “voting cell” method (a) and pseudosmoothing method (b).
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Fig.8. 
ETM+ image pairs with thick cloud cover (a, and b) with the obtained speed (c) and 

matching ratio (d) maps obtained from the pair. The data acquisition date and the scene IDs 

of the source data are presented at top of the each subset.
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Fig.9. 
Comparison maps of correct matches obtained from postprocessing results of different 

feature tracking settings. Red dots mean that configuration at the row gave correct matches, 

whereas the settings at the column was not. Green dots mean vise versa. Gray dots mean 

both of the two settings were successful.
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Fig.10. 
Speed difference between the measurements obtained from different feature tracking 

settings. The difference is calculated by subtracting the speed from the settings on column 

from the settings from the row. The speed difference is colorscaled in log as shown in the 

colorbar at the bottom.
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Fig.11. 
(a): Speed map derived from an image pair in Fig.5(c), (b): Matching ratio, (c): deformation 

rate map with the Gaussian filter applied, and (d): Distribution of deformation rate with 

respect to matching ratio. Note that the log color scales have applied for (a) and (c), and that 

Gaussian filter was applied on (c).
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Fig.12. 
Results from multiple matching over regions of differing shear strain rate with differing 

reference chip sizes. Each row is results from the high, moderate and low strain areas shown 

in Fig.11, box 1,2, and 3 respectively. Each column is the result obtained using reference 

chip sizes of 15 by 15, 31 by 31, 61 by 61 and 81 by 81 pixels, respectively.
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Fig.13. 
Normalized Cross-Correlation (NCC) maps for location 7 in Fig.11, with different reference 

chip sizes and with and without (DLC). Blue arrows are expected displacement derived from 

the InSAR velocity data, and red arrows are feature tracking results, i.e. the NCC peaks for 

each case. The relative locations of the NCC peaks are presented on top of each plots in the 

precision of integer. Dark blue areas in the DLC results mean that NCC was not calculated.
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Fig.14. 
Pseudosmoothing results with different image filters for areas indicated in Fig.10. The 

results from supraglacial lake (box 4 in Fig.11) are in the upper row and the ones from cloud 

cover (box 5 in Fig.11) are in lower row. The color-coded velocities are in unit of m/yr.
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Fig.15. 
Pseudosmoothing results near a calving front (box 6 in Fig.11(a)) for multiple matches using 

the different components of QM. The maps in the first row are from original pairs while 

those in the second row are from the swapped pair. The results in the first column are from 

forward matching while those in the second column are from backward matching. The map 

in the third row is obtained from the full QM procedure.
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Table I

Test Data

Pair Sensor Acquisition time Path/Row Scene ID

1st
ETM+ April 1,2009 8/11 LE70080112009091EDC00

ETM+ April 17, 2009 8/11 LE70080112009107EDC00

2nd
OLI July 12, 2014 8/11 LC80080112014193LGN01

OLI July 28, 2014 8/11 LC80080112014209LGN00
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Table II

Ratio of Successful Matching in the ETM+ Pair. The Root Mean Squared Differences are presented at the 

Second Lines of each Cell.

Method Without DLC With DLC

Original forward only 2918/3793 (76.93%)±6.02 (0.16%) 3418/3793 (90.11%)±14.38 (0.38%)

QM 3300/3793 (87.00%)±8.06 (0.21%) 3662/3793 (96.55%)±2.49 (0.07%)
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Table III

Ratio of Successful Matching after Postprocessing, with Their Root Mean Squared Difference. Their 

Respective Percentages are presented at The Parentheses in Each Cell.

Total # grids Correct matchings

Voting-cell Pseudosmoothing

3793 3041±5.31 (80.17±0.14%) 3779±2.94 (99.63±0.08%)
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Table IV

Ratio of Successful Matching after pseudosmoothing with and without the QM and the DLC, with Their Root 

Mean Squared Difference. Their Respective Percentages are presented at The Parentheses in Each Cell.

Without DLC With DLC

Without QM 3627±4.32
(95.62±0.11%)

3710±3.74
(97.81±0.10%)

With QM 3749±4.50
(98.84±0.12%)

3779±2.94
(99.63±0.08%)
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Table V

Mean and standard deviations of the velocity differences produced with and without QM and DMC. The first 

and the second values in each line are x and y components of the velocity. The First and the second line in 

each cell depicts mean and standard deviation in each MIMC setting. The Unit of all values are in m/yr.

Method Without QM With DLC With QM Without DLC With QM With DLC

Without QM (15.09,−13.24) (−24.18,−15.06) (36.92,−10.15)

Without DLC (363.01,295.73) (368.05, 306.37) (466.23, 274.86)

Without QM N/A (−37.50, −3.15) (−44.76, −2.10)

With DLC (421.84,313.10) (400.37, 274.86)

With QM N/A N/A (−16.87, 9.22)

Without DLC (408.73, 344.60)
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