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Abstract

We do not have a full understanding of the mechanisms underlying plasticity in the human

brain. Mouse models have well controlled environments and genetics, and provide tools to

help dissect the mechanisms underlying the observed responses to therapies devised for

humans recovering from injury of ischemic nature or trauma. We aimed to detect plasticity

following learning of a unilateral reaching movement, and relied on MRI performed with a

rapid structural protocol suitable for in vivo brain imaging, and a longer diffusion tensor imag-

ing (DTI) protocol executed ex vivo. In vivo MRI detected contralateral volume increases in

trained animals (reachers), in circuits involved in motor control, sensory processing, and

importantly, learning and memory. The temporal association area, parafascicular and med-

iodorsal thalamic nuclei were also enlarged. In vivo MRI allowed us to detect longitudinal

effects over the ~25 days training period. The interaction between time and group (trained

versus not trained) supported a role for the contralateral, but also the ipsilateral hemisphere.

While ex vivo imaging was affected by shrinkage due to the fixation, it allowed for superior

resolution and improved contrast to noise ratios, especially for subcortical structures. We

examined microstructural changes based on DTI, and identified increased fractional anisot-

ropy and decreased apparent diffusion coefficient, predominantly in the cerebellum and its

connections. Cortical thickness differences did not survive multiple corrections, but uncor-

rected statistics supported the contralateral effects seen with voxel based volumetric analy-

sis, showing thickening in the somatosensory, motor and visual cortices. In vivo and ex vivo

analyses identified plasticity in circuits relevant to selecting actions in a sensory-motor con-

text, through exploitation of learned association and decision making. By mapping a connec-

tivity atlas into our ex vivo template we revealed that changes due to skilled motor learning

occurred in a network of 35 regions, including the primary and secondary motor (M1, M2)

and sensory cortices (S1, S2), the caudate putamen (CPu), visual (V1) and temporal associ-

ation cortex. The significant clusters intersected tractography based networks seeded in
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M1, M2, S1, V1 and CPu at levels > 80%. We found that 89% of the significant cluster

belonged to a network seeded in the contralateral M1, and 85% to one seeded in the contra-

lateral M2. Moreover, 40% of the M1 and S1 cluster by network intersections were in the top

80th percentile of the tract densities for their respective networks. Our investigation may be

relevant to studies of rehabilitation and recovery, and points to widespread network changes

that accompany motor learning that may have potential applications to designing recovery

strategies following brain injury.

Introduction

Exercise before injury or aging can induce beneficial plasticity, enhance brain resilience, and

decrease its vulnerability to stress, depression [1], and degeneration [2]. With respect to injury

(e.g. ischemia, or trauma) and rehabilitation, exercise can promote resilience to injury effects

and promote recovery. Motor enrichment and exercise influence cognition [3, 4] and induce

vascular and neuronal changes [5, 6]. The associated molecular and cellular changes could

benefit the injured or aging brain through infusion of trophic factors such as brain-derived

neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1) or fibroblast growth factor-

2 (FGF-2) [7, 8], neurogenesis [6], and enhanced myelination and regional brain volume in

memory circuits [9].

Neuroanatomical and physiological studies support the dogma that the brain can be viewed

as structurally and functionally dynamic, which is relevant in cases of damage, for example to

the motor cortex [10]. While voluntary exercise, skill training, and forced limb use have been

used extensively to this end, such strategies devised to work in humans need to be investigated

carefully. Animal models can help reveal the mechanisms and interactions between different

components of such interventions, e.g. the formation or enhancement of brain circuitry, or

angiogenesis. Here we used high resolution magnetic resonance imaging as a translational tool

to evaluate changes following a motor learning task. Our goal was to characterize the plasticity

of brain circuits through behavioral, morphometric and microstructural properties (based on

diffusion tensor imaging, or DTI).

Previous studies have evaluated brain plasticity in the mouse brain using cross sectional

imaging following a motor task such as the rotarod [11], which tests motor coordination and

balance; or more complex tasks involving learning and memory, such as the water maze [12].

In an example that comes close to our task Sampaio-Baptista and colleagues [13] examined the

effect of a prehension task using rats. These studies have assessed either morphometry as a

measure of gray matter plasticity [12], or fractional anisotropy (FA) as a measure of white mat-

ter plasticity [13], or a combination of morphometry and DTI for gray and white matter plas-

ticity [14] [11]. There is a paucity of data using mouse neuroimaging, especially longitudinally

and with multivariate approaches, to help understand the mechanisms behind the plasticity

observed in human brains. Given the more robust ability to modify mouse behavioral abilities

through gene editing or epigenetics [15–17], such studies would help advance our mechanistic

understanding, and devise and test effective interventions.

We aimed to address this gap, along with the complementary values of two common sce-

narios in preclinical imagining, relying on rapid in vivo structural or prolonged ex vivo diffu-

sion tensor based imaging protocols. We evaluated the plasticity following learning of a

complex reaching movement, restricted to one limb, based on voxel based morphometry, cor-

tical thickness and DTI microstructural changes. We cross examined our results against a
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mouse brain connectivity atlas [18] to identify more extended brain networks responsive to

motor learning. Our investigation may be relevant to studies of rehabilitation and recovery,

and have potential applications in designing and testing preventive strategies against degenera-

tive conditions in the aging brain.

Methods

Animals

An animal cohort consisting of 24 C57BL/6 male mice, originating from The Jackson labora-

tory (Bar Harbor, ME), was divided into balanced groups between passive controls, and ani-

mals trained to perform a skilled prehension motor task. To keep the same experimental

timeline animals were divided into three cohorts, balanced between controls and reachers (ses-

sion 1: 3 controls, 3 reachers; session 2: 4 controls, 3 reachers; session 3: 5 controls, 6 reachers).

The motor task has been previously described [19, 20] and restricts the animals to repeatedly

using the right forelimb. Briefly, mice were food restricted to 85% of the baseline weight and

trained in modified cages to reach for 45-mg dustless precision pellets (Bio-Serv). A training

block consisted of 40 pellets at a distance of 1 cm, with each pellet presented one at a time. The

animals underwent two blocks of 40 reaching attempts per training day, five days per week,

and with one block per training day twice per week. Mice not undergoing training were treated

just like the trained mice (allowed to run free in their cage, food restricted, fed the same pellets,

and maintained on the same light/dark cycle). They were placed in the same training chambers

for the same length of time as the mice undergoing motor learning and were given free access

to the same food pellets placed on the floor of the cage as the mice undergoing training, but

did not have to perform the complex reaching movement to access the food. Baseline imaging

occurred when mice reached 85% of their weight prior to any exposure to prehension task.

Mice were trained on the prehension task until plateau (23–27 days), reaching at least 50% suc-

cess rate. Our behavioral success measure was defined as the percent of successful prehension

attempts per pellet. Prehension was scored as a success when the mouse reached its forelimb

through the slit, grabbed the pellet, and ate it without knocking it from its resting space, drop-

ping it, or in any other way losing control of it. If not, the attempt was recorded as a miss.

However, if the mouse did not touch the pellet, it was not counted as an attempt. The mice

were monitored by manual observations. We have discarded the 25% most extreme perform-

ers based on behavior using the pure median average deviation estimator at day 23 (excluding

values outside median ± 2� median average deviations), and balanced the groups analyzed at

each time point to reduce potential bias, ending up with even groups of 9 animals.

The visreg package [21], http://pbreheny.github.io/visreg/) was used to graph the behavior

data, including the 95% confidence intervals.

Final in vivo imaging occurred the day after the last training session. During imaging, mice

were anesthetized with isoflurane (1%) in an oxygen–air mixture (1:3 ratio) via a vaporizer. All

mice survived the two 40 min imaging sessions and recovered quickly after anesthesia.

At the end of the behavioral training period and immediately after the final in vivo MRI ses-

sion, animals were sacrificed and brain specimens were prepared for ex vivo imaging following

transcardiac perfusion fixation protocols similar to those described in [22] [23], tuned and

evaluated by other groups as well [24] [25]. Mice were perfusion fixed with 4% PFA in phos-

phate-buffered saline (PBS), then the heads were removed and immersed in 4% PFA in PBS

for 12 h at 4˚C before being transferred to PBS. The specimens were kept in PBS (50 mL for

each specimen; with weekly changes into fresh PBS), with 0.2 mM Gd-DTPA (Magnevist,

Bayer HealthCare Pharmaceuticals Inc. Wayne, NJ, USA) for 2–3 weeks at 4˚C. This proce-

dure washed out residual fixative, which reduced tissue T2 and the signal-to-noise ratio of the

Magnetic resonance imaging of mouse brain networks plasticity following motor learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0216596 May 8, 2019 3 / 21

http://pbreheny.github.io/visreg/
https://doi.org/10.1371/journal.pone.0216596


acquired images, and introduced Gd-DTPA to enhance MR signals. Before ex vivo MRI, the

specimens were placed into custom-built, MR-compatible tubes, filled with Fomblin (Fomblin

Profludropolyether, Ausimont, Thorofare, NJ). This is an MR-invisible liquid for susceptibility

matching and can also prevent dehydration. All animal procedures were performed with

approval from the Johns Hopkins University Animal Care and Use Committee.

Imaging

Animals were imaged in vivo at two time points separated by 25.4 ±1.2 days (23–27 days

range), before and after learning to perform the skilled prehension task, i.e. reaching for food

pellets. In vivo mouse brain MRI was performed on a 9.4 Tesla vertical bore NMR spectrome-

ter (Bruker Biospin, Billerica, MA) equipped with a Micro 2.5 gradient system (100 G/cm max-

imum gradient strength), a manufacturer provided animal imaging probe, and a physiological

monitoring system (electrocardiograph, respiration, and body temperature). A 20 mm diame-

ter volume coil was used as the radiofrequency transmitter and receiver. Temperature was

maintained by a heating block built into the gradient system. Respiration was monitored

throughout the entire scan. Images were acquired using a three-dimensional (3D) T2-weighted

fast spin echo sequence (FSE) with: echo time (TE)/repetition time (TR) = 40/700 ms, 16 mm

x 16 mm x 16 mm field of view, and 128 x 128 x 80 matrix (resolution = 0.125 mm × 0.125

mm × 0.2 mm, echo train length = 4, number of average = 2, flip angle = 40˚, bandwidth

(BW) = 100 kHz). The total imaging time was ~40 minutes. T2-weighted FSE images were

resampled to 125 μm isotropic resolution.

Ex vivo MRI-DTI of brain specimens was performed at approximately the same time after

fixation (2 weeks), with max one-week difference, enforced by scanner availability and scan

duration. We used the same 9.4 T NMR spectrometer and a 15 mm diameter volume coil as

the radiofrequency transmitter and receiver. Images were acquired using a diffusion weighted

3D gradient and spin echo sequence [26] with: TE = 33 ms, TR = 900 ms, BW = 100 kHz, and

4 signal averages. The field of view and matrix size were 13.0 mm x 10.0 mm x 18.4 mm and

128 x 96 x 180, resulting in a native resolution of 0.1 mm x 0.1 mm x 0.1 mm. The spectral data

were apodized by a symmetric trapezoidal function with 10% ramp widths on either side of the

trapezoid and zero-filled before Fourier transformation. Six diffusion-weighted images (b

value = 1700 s/mm2) and two non-diffusion-weighted images were acquired, and the total

imaging time was 11 hours.

Image analysis

The ex vivo 3D diffusion-weighted images were reconstructed on an off-line PC workstation

using IDL (ITT Visual Information Solutions, Boulder, CO, USA). Average diffusion-weighted

images (DWI) were generated from the six direction specific images acquired for each speci-

men. DTIStudio (www.mristudio.org) was used for log-linear tensor fitting. The tensor was

then diagonalized to obtain three eigenvalues, based on which the FA [27] was calculated. The

skull and other extraneous (non-brain) tissues were manually removed.

Voxel based morphometry relied on a high-performance compute cluster based pipeline

[28]. This constructed minimum deformation templates based on in vivo, and ex vivo control

animals separately, using a sequence of rigid, affine and symmetric diffeomorphic registrations

implemented in ANTs [29, 30]. For the rigid and affine stages, DWI images were histogram-

matched, and registered using a gradient step of 0.1 voxels, the Mattes similarity metric (32

bins, 10−8 convergence threshold, 20 iteration convergence window), in a multiresolution

scheme with 2 down-sampling levels (6 and 4 times down-sampling), and smoothing sigmas

of 4 and 2 voxels, and 3000 iterations.

Magnetic resonance imaging of mouse brain networks plasticity following motor learning
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We used a 0.5 voxel gradient step for the symmetric normalization (SyN); 3 and 0.5 regular-

ization parameters for the velocity update and total warp field respectively, a cross correlation

metric with a 4 voxel kernel radius, and full density sampling. We used a multi resolution

scheme with 4 down-sampling levels (by factors of 8, 4, 2, and 1 –with 1 corresponding to the

full resolution), and 4 smoothing sigmas (kernel standard deviations of 4, 2, 1, and 0 voxels),

which the ANTs syntax represents as 8x4x2x1 for the spatial sampling, and 4x2x1x0 for the

smoothing sigmas, respectively. We used maximum 4000 iterations per level.

Fig 1. Skilled prehension task performance. A. Learning performance in a representative mouse. B. Average learning performance for all mice trained in the

skilled prehension task, modeled with a 3rd order polynomial. The average on the last day of training was 55.13±8.24%.

https://doi.org/10.1371/journal.pone.0216596.g001
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Averaged DWI images were used to drive the registration for the ex vivo specimens. All

images (in vivo and ex vivo) were registered to their respective minimum deformation tem-

plates using the same strategy to calculate deformation fields.

A mouse brain atlas [28] was used to label the minimum deformation template (MDT) with

332 labels, which were subsequently propagated onto the individual ex vivo images. Regional

statistics were obtained for the volume, fractional anisotropy (FA), and apparent diffusion

coefficient (ADC) parameters, which we have previously found to be sensitive markers for

microstructural changes [31]. We computed regional volumes, and their corresponding

microstructural properties, as well as cortical thickness in ex vivo images only, because of the

clearer demarcation of cortical boundaries relative to the in vivo images, and because our atlas

has been built using ex vivo DTI [32].

The segmented brain regions were used to estimate cortical thickness maps, relying on the

displacement during diffeomorphic registration of the inner and outer cortical boundaries [33,

34]. For this purpose, we defined the outer shell as the sum of the isocortex regions, and the

inner core as the sum of regions encapsulated by the corpus callosum.

Prior to statistical analyses images were smoothed with Gaussian kernels (250 μm standard

deviation or sigma for ex vivo images, 313 μm for in vivo), aiming to respect the ratio of voxel

sizes.

We determined morphometric and DTI changes based on fractional anisotropy and appar-

ent diffusion coefficients using voxel based analysis (VBA), without the need for a priori
defined regions. The in vivo and ex vivo images were analyzed separately, each in their own

study specific template, because they present different resolution and contrast. Both the in vivo
and ex vivo templates, as well as the statistical maps were however aligned into the same atlas

space [32], to facilitate comparisons within groups, assuming that specimens for controls and

trained animals shrink in a similar fashion.

The log Jacobian of the diffeomorphic deformation fields for both in vivo and ex vivo
images was used to estimate local morphometric differences between animals trained to per-

form a skilled prehension task using the right paw, and age matched controls. FA and ADC

maps were also compared voxel wise for the same groups to further characterize microstruc-

tural tissue changes.

Statistical analyses

The Statistical Parametric Mapping (SPM) toolbox, version 12 [35, 36] was used to assess dif-

ferences between trained and untrained animals, as well as the in vivo interaction term

between time and training, implementing a repeated measures ANOVA design. To correct for

multiple comparisons, we used a cluster-based false discovery rate (FDR = 0.05) and an initial

cluster defining threshold of p = 0.05.

We hypothesized that changes in local volume and DTI parameters occurred along the pri-

mary motor pathways, as well as in circuits responsible for learning and memory. We com-

pared statistical maps identifying plastic brain circuits against a reference connectivity atlas

[18]. This atlas provided surrogates of connection probabilities, and each voxel in the atlas was

Fig 2. In vivo and ex vivo study specific templates normalized into a 3rd generation Waxholm space. We created study

specific templates for in vivo T2-weighted FSE images (A) and ex vivo DTI parametric images. The transforms used to

register the DWI contrasts were re-used to generate the FA template, with good contrast for gray/white matter boundaries

(B). We automatically segmented 332 regions for the ex vivo specimens based on a reference atlas [28] (C). A comparison of

the in vivo versus ex vivo images revealed areas of shrinkage (blue) in control specimens. The statistical tmaps were cluster-

corrected for multiple comparisons, using an FDR threshold of 5%, and an initial cluster forming threshold significance

level of 0.05 (D).

https://doi.org/10.1371/journal.pone.0216596.g002
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assigned a value given by the total number of tracks originating from a seed region that pass

through or terminate in that voxel. The comparison was done qualitatively using visualizations

with multiple overlays for each VBA morphometric analysis (VBA-M), superimposed on tract

density (TD) maps; and quantitatively—computing the overlap between significant clusters

from ex vivo VBA morphometry and relevant regions from our anatomical atlas, as well as

with the associated networks from the reference connectivity atlas. Specifically, we computed

the percentage of the clusters found in each atlas region, and the percentage of atlas regions

volume covered by the clusters. We estimated the percentage cluster in individual networks,

with respect to the size of the cluster, and to the size of the network. We estimated the median

and maximum tract densities for the intersections between clusters and atlas regions. Finally,

we computed the number of significant voxels in the upper 80th percentile for relevant TD

maps.

Visualization

FSLeyes (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes) was used for cross sectional visualiza-

tion of statistical parametric maps overlaid on the study specific templates based on FSE for in

Fig 3. In vivo voxel based morphometry identified areas of significant enlargement in trained animals relative to the controls. These areas were found in

the bilateral medial orbital cortex (MO) and cingulate cortex (CgCx) (A32), as well is in the contralateral (left) cingulate cortex (A24, and 29), primary motor

(M1), somatosensory (S1), caudate putamen (CPu), and hippocampus (Hc); and the visual (V1) cortex. In addition, clusters of hypertrophy covered areas of the

thalamus (Thal; e.g. the parafascicular and mediodorsal nuclei), the superior (SC) and inferior colliculi (IC), and cerebellum (Cblm). The ipsilateral piriform

cortex (Pir) was enlarged. Results are presented as tmaps, FDR cluster-corrected for multiple comparisons using an initial cluster forming threshold of 0.05

significance and the whole brain as a mask (blue color). Uncorrected statistical maps (shown in yellow) suggested involvement of the ipsilateral hemisphere as

well.

https://doi.org/10.1371/journal.pone.0216596.g003
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vivo and on FA for ex vivo images. The coronal slice visualizations in Figs 3–5 show the ana-

tomical/or FA image as the bottom layer, uncorrected statistics as the next (shown in yellow),

while corrected statistics are shown overlaid, as the top layers, using distinct color schemes

(blue for in vivo VBA-M at the end of learning; green for the in vivo VBA-M interaction term;

orange for the ex vivo VBA-M). Fig 7 uses the yellow color scheme for showing tract density,

and the corrected statistical maps reuse the same color coding as in Figs 3–5. Avizo (Thermo-

Scientific, Houston USA) was used for volume rendering.

Results

Behavioral assessment

We evaluated the impact of learning a complex motor task on the brain morphometry and

microstructure, using mice trained to reach for food pellets using the right paw, and imaged in
vivo with structural MRI and ex vivo with DTI. Our results confirm that plasticity manifests at

the level of behavior, brain morphometry, as well as microstructural properties.

The percentage of successful attempts in the skilled prehension task improved over the ~25

days of training (range 23–27 days; mean 25.4±1.2), from 14.77±10.75% on the first day to

~55.13±8.24% correct on the last day of training (Fig 1).

Population averages

We produced in vivo and ex vivo population averages for the control animals, to serve as study

specific reference spaces for analyzing differences due to learning, and to address biases due to

shrinkage (t = 4.04 ± 1.92; mean ± standard deviation) in the fixed specimens (Fig 2).

Fig 4. In vivo voxel based morphometry identified a significant interaction between time and training. Trained animals showed significant enlargement

prominently in the contralateral (but also ipsilateral) cingulate cortex (A24, and 29), M1, S1, and the visual cortex (V1). The contralateral hippocampus, and

corpus callosum, under the M1 were also enlarged. Results are presented as tmaps, FDR cluster-corrected for multiple comparisons using an initial cluster

forming threshold of 0.05 significance, and the whole brain as a mask (green color). Uncorrected statistical maps (yellow) suggested involvement of the

ipsilateral hemisphere.

https://doi.org/10.1371/journal.pone.0216596.g004
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In vivo voxel based morphometry

Morphometric differences based on in vivo imaging at the end of the learning process (Fig 3)

were significant after cluster based correction, predominantly in regions located in the contra-

lateral hemisphere. The contralateral primary and secondary motor (M1, M2) and somatosen-

sory (S1, S2) cortices, the caudate putamen (CPu) and hippocampus (Hc) were enlarged, as

well as the temporal association, and visual cortex areas. In addition, thalamic nuclei also

appeared enlarged unilaterally, in particular the parafascicular, centromedial, and mediodorsal

nuclei. The midbrain precuneiform nucleus was enlarged. Bilateral changes were observed in

the orbital cortex (lateral, and ventral), the piriform cortex, and the cingulate (areas 24, and

32), and in the cerebellum. The in vivo analysis at the end of the learning process identified

two significant clusters with a total coverage of 12067 voxels, out of the average study template

brain volume of 220204 voxels, or 5.5% of the brain volume (3.7% in the 1st, and 1.8% in the

2nd cluster). The uncorrected statistics suggested involvement of the ipsilateral motor and

somatosensory areas as well.

When examining the interaction between time and group (trained versus non-trained) (Fig

4) significant morphometric changes were found largely in the same cortical areas seen when

comparing trained animals and controls, but missed the more rostral areas of the orbital cor-

tex, as well as the thalamic, midbrain and cerebellar components seen at the end of training.

These results indicated a role for both the ipsilateral and contralateral M1, M2, S1 (forelimb

and hindlimb) cortices, the cingulate cortex (A24), as well as the hippocampus (Hc). The inter-

action term identified one cluster covering an area of 9142 voxels, or 4.2% of the brain volume,

overlapping the results at the end of training by 36% (Dice coefficient). The uncorrected statis-

tics covered a larger area (13480 voxels, or 6.6% of the brain volume), suggesting a role for the

more rostral motor areas, the visual cortex, the parafascicular, centromedial, and mediodorsal

thalamic nuclei, the hypothalamus, and the cerebellum.

Fig 5. Ex vivo voxel based morphometry identified areas of significant enlargement in trained animals relative to controls. These were located in the

contralateral (left) M1, S1, S2, CPu, amygdala (Amy), as well as the visual (V1) and entorhinal cortex (Ent). Results are presented as tmaps, FDR cluster-

corrected for multiple comparisons using an initial cluster forming threshold of 0.05 significance and the whole brain as a mask (orange color). Uncorrected

statistical maps (yellow), suggested involvement of the ipsilateral hemisphere as well, and a role for the hippocampus.

https://doi.org/10.1371/journal.pone.0216596.g005
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Ex vivo regional and voxel based morphometry following learning

The total brain volume only showed a trend (p = 0.1) towards being enlarged in reachers (450

± 11 mm3) relative to controls (441±12 mm3). Regional differences based on morphometric

and DTI estimates did not survive FDR correction for the whole set of 332 regions, however

the uncorrected statistics suggested enlargement of the left parietal cortex posterior area (13%,

p = 0.006, t = 3.2, df = 16; 12.3±0.8 10−3% brain volume in reachers, versus 11.0± 1.1 10−3 in

controls), and 3% in primary somatosensory cortex (upper lip region, S1UL) (p = 0.02, t = 2.6,

0.57±0.02% of brain volume in reachers versus 0.55±0.01 in controls).

Ex vivo analysis of morphometric changes in reachers (Fig 5) also revealed hypertrophy in

the contralateral (left) M1, M2, S1, S2, CPu, primary visual cortex, as well as novel clusters in

the entorhinal cortex, amygdala, and the auditory cortex (compared to in vivo findings). White

matter tracts involved included the corpus callosum and optic tracts. Ex vivo based morphom-

etry identified one cluster covering an area of 7604 voxels, or 1.9% of the brain volume of

410804 voxels, overlapping the in vivo results at the end of training by 6% (Dice coefficient).

Together, our voxel based analyses identified volume changes after learning a skilled pre-

hension task in circuits involved with sensory motor processing, and integrating information

from a limbic component.

We next compared cortical thickness estimates based on ex vivo imaging, since this pro-

vided a better definition of the anatomical regions, particularly for corpus callosum/ isocortex

boundaries. These results did not survive multiple comparison correction, but the uncorrected

statistics suggested thickening of the contralateral somatosensory (especially forelimb and jaw

regions) and visual cortices (V1, V2), as well as for the bilateral olfactory/pirifom cortex, sup-

porting the results of voxel based morphometry (S1 Fig).

Ex vivo regional and voxel based dti analyses following learning

Regional analyses revealed that the FA for the cerebellar white matter was higher in reachers

relative to control animals (5%, p = 0.02, t = 2.5, df = 16; 0.53±0.02 in reachers, versus 0.51

±0.02 in controls). Conversely, the ADC was lower in reachers for the superior cerebellar

peduncle (8%, p = 0.005, t = -3.1, df = 16; 0.35±0.02 10−3 mm2/s in reachers, versus 0.38±0.02

10−3 mm2/s in controls), and the fastigial nucleus (10%, p = 0.003, t = -3.6, df = 16; 0.36±0.03

10−3 mm2/s in reachers, versus 0.40±0.02 10−3 mm2/s in controls).

We next used voxel based analysis to evaluate microstructural changes in trained animals

based on FA (VBA-FA) and ADC (VBA-ADC) (Fig 6). VBA-FA revealed FA increases local-

ized to the caudal aspects of the brain, the cerebellum, and inferior cerebellar peduncle. Relax-

ing the statistical threshold (to p<0.05) suggested changes also in the hippocampus, S1, V1,

cingulate cortices. VBA-ADC revealed significant and more extensive ADC changes, in areas

of the hippocampus and thalamus, deep mesencephalic nuclei, the red nucleus, cerebellum

and its connections, as well as the pons reticular formation. White matter tracts showing

reduced ADC included the corpus callosum, internal capsule, medial lemniscus, the cerebellar

white matter, and cerebellar peduncles. Together, these findings suggest microstructural

changes occurred in response to motor training in both gray and white matter regions.

We compared voxel based analysis results with tract density maps reconstructed based on a

connectivity reference atlas (Table 1, and Fig 7) [18], registered to our study specific templates.

We reconstructed tract density images for all atlas regions, but only show those tracts intersect-

ing significant clusters identified by ex vivo voxel based morphometry (which were the most

conservative in terms of the extent of detected changes).

The tract density (TD) maps (Fig 7) were seeded in the contralateral primary and secondary

motor cortices (M1, M2), the primary somatosensory cortex (S1, its forelimb region), the
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secondary somatosensory cortex (S2), caudate putamen (CPu), primary visual cortex (monoc-

ular vision, V1M), and the temporal association cortex (TeA). A qualitative evaluation showed

good overlap between morphometric changes in circuits connecting the contralateral S1, S2,

M1, M2 and V1 areas. Interestingly, we found that most of these networks also project to ipsi-

lateral areas, supporting the validity of ipsilateral findings from VBA-M.

We also evaluated quantitatively the overlap between brain networks shown to have plastic-

ity following learning based on significant ex vivo VBA-M clusters, and atlas based tract den-

sity maps. We identified based on this atlas a set of 35 network nodes which showed plasticity

following motor learning. This included prominently the primary and secondary motor and

sensory cortices, as well as the caudate putamen, visual cortex, and the temporal association

cortex. Our quantitative analysis showed that 89% of the significant clusters’ extent identified

by VBA-M belonged to a network identified based on seeding tracts in the contralateral M1,

and 85% were also part of a network identified based on seeding in the contralateral M2. The

caudate putamen (CPu) and primary somatosensory (S1) networks were also represented at

the 80% level. Approximately 40% of these cluster by tract intersections for M1, S1BF (barrel

field) and S2 were in the 80th percentiles of the network densities. These top ranked networks

were followed by those for the M2, S1, CPu, primary visual (V1M) and auditory cortex (30% of

voxel in 80th percentile), and ~20% of ectorhinal cortex and insula, temporal association cor-

tex, while V1, the entorhinal cortex and claustrum were represented at the 10% level.

Together these analyses suggested a good overlap between VBA-M results and networks

identified as important based on the reference connectivity atlas. Our results confirmed that

morphometric changes occurred in areas connecting not just M1, M2, and S1, S2, but involved

more extensive thalamocortical-circuits and networks with roles in associative functions.

These results indicate plasticity in circuits involved with sensory-motor function, and with

associative learning and decision making following a skilled prehension task acquisition.

Fig 6. Voxel based analyses for fractional anisotropy (FA) and apparent diffusion coefficient (ADC) detected increased FA and decreased ADC in

trained reachers relative to controls. These occurred mostly in caudal regions such as the cerebellum and brainstem (ADC), but largely missed the motor and

sensory cortices, although decreased ADC values were detected in the corpus callosum, below M1. Results are presented as tmaps, FDR cluster-corrected for

multiple comparisons using an initial cluster forming threshold of 0.05 significance, and the whole brain as a mask. Uncorrected statistical maps are also shown

in yellow, suggesting microstructural changes in the hippocampus and isocortex.

https://doi.org/10.1371/journal.pone.0216596.g006
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Discussion

Motivation

Animal models can help dissect the mechanisms behind brain plasticity following injury and

repair, and help devise and test strategies for building a reserve conferring enhanced brain

Fig 7. Mapping of ex vivo VBA-M and tract based connectivity maps. To verify the overlap between morphometric changes detected ex vivo and circuits

relevant to motor learning, we registered tract based connectivity maps [18] for individual seed regions to the minimum deformation template from our ex vivo
study. We examined networks seeded in regions found to be enlarged in the contralateral (left) hemisphere, including the primary and secondary motor

cortices (M1, and M2), as well as the primary and secondary somatosensory cortices (S1 –the forelimb region, S2), caudate putamen (CPu), V1M primary

visual cortex (monocular); and the temporal association cortex (TeA). Significant clusters for in vivo morphometry at the terminal point are shown in blue, the

interaction of time by group (trained versus not trained) in green, and the morphometric results from ex vivo specimens are shown in orange. These clusters

showed good overlap with the tract density maps (TD).

https://doi.org/10.1371/journal.pone.0216596.g007
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Table 1. Comparison of ex vivo VBA-M and tract based connectivity maps based on a reference atlas [18] providing anatomical regions and associated tract densi-

ties (TD) for 332 ROIs.

Abbrev. Cluster \ ROI Cluster \ ROI

(% ROI)

Max TD

(AU)

Median TD (AU) Cluster \ Network (% Cluster) Cluster \ Network (% Network) >80 percentile of TD

(% Cluster)

M1 6.85 13.23 1.27E+08 7300.78 89.11 2.82 37.23

M2 0.59 1.07 7.81E+07 3855.64 84.69 2.65 26.2

S1 0.53 9.28 1.29E+08 10904.67 83.65 2.71 32.75

CPu 14.17 10.06 8.97E+07 3195.99 82.18 1.58 25.89

S1BF 9.23 15.46 6.05E+07 9155.23 79.3 2.94 40.48

V1M 0.08 0.28 9.97E+07 6929.78 77.67 2.51 26.56

S1FL 3.91 15.82 1.42E+08 2899.99 77.52 3.6 26.18

AuD 1.71 16.46 5.01E+07 8671.08 77.5 2.72 26.21

V1 0.14 3.79 3.16E+07 4064.39 77.46 2.4 21.61

S2 11.22 31.16 1.24E+08 18128.94 75.49 2.87 35.05

S1HL 5.96 31.28 8.22E+07 2775.28 75.24 4.3 29.12

V2L 2.46 5.32 4.40E+07 4589.09 74.78 2.47 21.44

S1UL 11.81 35.96 1.54E+08 8640.17 73.4 3.43 32.73

Pir 6.09 1.73 1.59E+07 412.1 73.01 1.6 20.92

TeA 0.03 0.14 4.68E+07 3821.42 70.91 2.07 20.27

Ins 3.68 3.24 2.54E+07 1399.28 69.77 2.3 19.61

Ect 0.04 0.13 6.59E+07 3809.28 68.91 2.08 20.8

AuV 1.16 5.18 4.44E+07 5253.91 68.78 2.68 23.11

V1B 2.32 16.43 2.26E+07 3044.9 68.46 2.59 19.4

PRh 0.46 3.76 7.05E+07 3521.97 66 2.19 19.29

Au1 1.85 3.27 4.12E+07 3772.89 63.81 2.3 17.02

S1Tr 0.13 3.22 3.02E+07 4649.03 61.35 5.36 17.64

GP 0.38 0.74 3.74E+07 3484.7 59.11 1.57 14.3

S1DZ 0.42 4.33 3.66E+08 6821.74 56.64 5.04 11.93

Amy 7.35 8.04 3.36E+07 511.08 54.01 1.31 15.07

VPal 0.96 0.15 8.61E+07 3464.94 53.24 1.34 15.02

ot 0.75 0.29 2.71E+08 6826.12 52.93 1.55 11.76

S1J 0.91 4.25 9.03E+08 6278.1 51.08 4.28 12.68

VCl 1.46 0.84 1.96E+08 10967.93 47.5 2.25 10.51

DLEnt 1.42 2.29 7.10E+07 2564.6 46.05 2.16 12.32

Preopt 0.03 0.07 3.19E+07 990.39 43.29 1.05 11.1

Hyp 0.14 0.24 1.86E+07 762.85 41.6 1.01 7.56

DCl 0.53 3.38 4.58E+08 19983.45 40.93 2.57 9.53

S1Sh 0.01 1.23 6.84E+07 4307.68 40.01 5.1 7.13

cc 1.21 0.55 7.07E+07 2143.26 37.09 1.13 7.55

The left most column shows the atlas regions (abbreviations) intersected by significant clusters identified by ex vivo VBA-M. The percentage of the total cluster found in

each atlas region was highest (14%) for the CPu, followed by S1/S2 (~ 10%), and M1 (7%). The percentage of atlas regions covered by the VBA-M clusters was >30% for

S1/S2, and >10% for M1 and CPu. We estimated the median and maximum tract density for the overlap between clusters and atlas regions, and the percentage cluster

in individual networks, with respect to the size of the cluster, and the size of the network. More than 80% of the clusters were found to overlap with networks for M1,

M2, S1, although these clusters occupied a small percentage of the extensive connectivity maps for these regions. The number of significant voxels in the upper 80th

percentile for the individual tract density maps was ~40% for M1/S1. Abbreviations: M1: primary motor cortex, M2: secondary motor cortex, S1 primary somatosensory

cortex, CPu: caudate putamen, BF: barrel field, V1M: primary visual cortex (monocular), FL: forelimb; AuD: auditory cortex; S2: secondary somatosensory cortex; HL:

hind limb; UL: upper lip; V2: secondary visual cortex; Pir: piriform; TeA: temporal association area; Ins: insula; Ect: ectorhinal cortex; PRh: perirhinal cortex; Tr: trunk;

GP: globus pallidus; DZ: dysgranular; Amy: amygdala; J: jaw; Cl: ventral claustrum; DLEnt: dorsolateral entorhinal cortex; Preot: preoptic; Hyp: hypothalamus; DCl:

dorsal claustrum; Sh: shoulder; cc: corpus callosum.

https://doi.org/10.1371/journal.pone.0216596.t001
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resilience to injury and degenerative processes. Importantly, animal studies can be conducted

in well controlled environments, with subjects having the same genotypes and experiences (e.g.

environmental enrichment or exercise routine). Such studies can help us understand how genes

modulate brain plasticity, or the selective vulnerability of brain networks, and highlight impor-

tant network nodes and pathways that can be targeted for interventions. For example, Sampaio-

Baptista and colleagues [13] used 72 rats in a motor learning skill and found microstructural

changes using ex vivo imaging. This study found increased FA in the corpus callosum overlying

the motor cortex, cingulum and external capsule; but did not include a morphometric analysis.

The present study examined the extent to which we can detect brain plasticity following a

complex reaching task restricted to the right forelimb. We quantified how it manifests at the level

of behavioral, morphometric, as well as microstructural changes revealed through DTI protocols.

In vivo and ex vivo voxel based morphometry

Our in vivo and ex vivo voxel based analyses corroborated to support enlarged local volumes in

the contralateral hemisphere, primarily in the somatosensory and motor cortices (M1, M2, S1,

and S2), and also in the caudate putamen and the visual cortex. Interestingly, hippocampal vol-

ume changes were significant in the in vivo data, while the ex vivo data showed changes only in

the uncorrected statistics.

Both in vivo and ex vivo morphometric analyses revealed expected contralateral increases in

local volumes for the motor and sensory cortices. We also found ipsilateral changes, which

have been more controversial, but have been reported in humans based on fMRI activations

during the execution of a unilateral task, where effects have been found to depend on the preci-

sion of the required task [37]. The changes in volume may be attributed to existing interhemi-

spheric connectivity, which is enhanced through the learning process, and possibly to

rewiring. Moreover, enhanced ipsilateral inhibitory activity can also lead to increased volume.

Besides these expected changes in the primary and secondary motor and somatosensory

cortices at the end of training, more extended networks involved the cerebellum, motor related

areas of the midbrain (seen in vivo only), as well as the cingulate cortex, the hippocampus,

amygdala, temporal association areas, and thalamic nuclei. These included the parafascicular,

mediodorsal, and centromedial nuclei. The parafascicular receives input from layer 5 of the

limbic, association, and sensory-motor cortices, providing major excitatory input to the cau-

date putamen, while also sending projections to the cortex. The parafascicular nuclei are thus

thought to form networks that shape the caudate putamen output, to mediate the correct

action selection in a sensory motor context [38]. The mediodorsal nucleus, and lateral habe-

nula have been associated with adaptive behaviors [39, 40]. The centromedial nucleus projects

to limbic and sensory motor regions in the rostral forebrain, which suggests a role in integrat-

ing affective, cognitive and sensory motor information to improve goal directed actions [41].

Compared to findings at the end of training, the in vivo interaction of time by group

(trained versus non trained) indicated more bilaterality, suggesting that regional volumes

prior to training may predict the ability to respond to interventions.

Thus, voxel based morphometric analyses identified plasticity in circuits responsible for

sensory motor function, as it is integrated with learning and memory during training. Our

data support that changes occurred in circuits involved in both declarative and procedural

memory circuits.

Ex vivo voxel based dti analyses

Previous studies [13] have suggested that learning a motor skill induces microstructural white

matter changes in FA, which may be due to learning-related increases in myelination. In our
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study, we found predominant changes in caudal regions such as the cerebellum and pons

(reticular formation) survived FDR corrections in both VBA-FA and VBA-ADC analyses.

Only the ex vivo ADC analyses detected hippocampal changes at a microstructural level.

Uncorrected statistics suggest that future studies may detect FA changes in the hippocampus,

and relevant areas of the isocortex as well. These data support the VBA-M results, suggestive of

changes in circuits integrating learning in a sensory motor context.

Volumetry to connectome mapping

Together, the in vivo and ex vivo results suggested plasticity in circuits relevant to exploitation

of learned association and decision making, to select and shape actions in a sensory-motor

context. To confirm that observed changes occurred in circuits related to motor learning and

memory formation, we mapped a reference connectome atlas into our ex vivo study specific

template [18]. By registering this tractography based connectivity atlas to our data sets, we ver-

ified that plasticity due to learning a skilled prehension task occurred in a set of 35 regions

including the primary motor cortex (M1, 7% of the cluster), the caudate putamen (CPu, 14%

of the cluster), the somatosensory cortices (S1BF, 9%; S2, 11% of the cluster), as well as the

visual (V1) and temporal association cortex (TeA). The significant clusters intersected net-

works seeded in M1, M2, S1, and CPu at levels of ~80% or higher. 89% of the significant cluster

belonged to a network seeded in the contralateral M1, and 85% to one seeded in the contralat-

eral M2. V1 was represented at 77% level. 40% of the M1 and S1BF cluster by network intersec-

tions were in the top 80th percentile of the tract densities for their respective networks.

VBA-M provided significant clusters which were part of sensory motor networks, as well as a

limbic component modulating learning and memory, leading to improved action control in a

sensory motor context.

Considerations on experimental design

We have used protocols for preparing brain specimens similar to [22] [23], tuned and evalu-

ated by other groups as well [24] [25]. We have imaged specimens in the skull to avoid shape

distortions and tissue damage [42]. We computed T1 and T2 relaxation maps after soaking

specimens in PBS and 0.5 mM Gd-DTPA between fixation and scan time between 7–14 days

reduced T1 to ~100 ms, and T2 to ~25 ms. Future studies may consider further optimizing the

times for fixation and soaking in PBS+GdDTPA to increase contrast [43] and ensure stability

of the tissue relaxation parameters. For example, [44] found that 24 hours fixation, 24 hours

soaking and 5 days storage were required for achieving a stable signal to noise ratio (SNR). On

the other hand, [45] showed that the brain undergoes morphometric changes, primarily atro-

phy with prolonged fixation and storage times, at a rate of 3% per month, and importantly,

that these changes occur nonuniformly throughout the brain. The nonuniformity may be

explained by region dependent cellular composition, or the proximity to skull and fluid filled

areas. Thus, [45] recommended imaging between 7 and 40 days to keep differences within 1%,

or between 1–6 months for keeping volume differences within 5%; or alternatively to image

after storing between 7–14 days or between 1–3 months PBS. In our own study, we found

changes of 7% in the caudate putamen volume, and 5% in the hippocampus between in vivo
and ex vivo estimates, which may be overestimated due to differences in resolution between in
vivo and ex vivo scans. Independent studies on preparing specimens for imaging and pathol-

ogy [46, 47] recommended neutral buffered formalin fixation over paraformaldehyde-lysine-

periodate and paraformaldehyde fixation, and acknowledged shrinkage issues. While zinc

based fixation methods may confer less shrinkage, they also resulted in a higher degree of

deformation [47]. Importantly, maintaining consistency in the fixation protocol, and the
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interval between fixation and imaging will help reduce experimental biases. To help control

for variability due to time dependent changes in specimen properties, we have used such a sys-

tematic approach, treating all specimens the same way in terms of fixation and storage time

(12 hours, and ~14 days storage).

Our imaging protocol used 4 signal averages due to the use of phase cycling to remove stim-

ulated echoes from imperfect 180o radio frequency pulses in our sequence, which included

multiple refocusing pulses. We later developed an optimized gradient spoiler scheme that

enabled us to use only 2 signal averages. Future protocols should use more diffusion directions,

and higher spatial resolution to enhance sensitivity to white matter changes as detected previ-

ously in rats [13], to increase our ability to examine mouse brain tractography and connectiv-

ity. Accelerated imaging protocols are needed the achieve the high angular and spatial

resolution required to detect plasticity in mice, and our efforts are moving towards using com-

pressed sensing to provide 8x acceleration [48].

Limitations

A limitation of our study is that we cannot discern whether the changes we observed were due

to learning, limb activity, or enrichment effects due to task exposure. Future studies focused

on correlative analyses of imaging biomarkers with behavioral traits could help establish the

mechanistic relationships between structural changes and behavioral performance. A second

limitation is that we have compared results based on two very different imagining protocols,

thus some of these differences are methodological and some are biological. Nevertheless, our

study used two common approaches in preclinical imaging, and illustrated some of their rela-

tive strengths and weaknesses in the context of imaging plasticity. The third limitation is that

only males were included in this study. It would be interesting to evaluate whether a possibly

enhanced interhemispheric connectivity results in different responses in females.

Our study adds knowledge on morphometric and white matter microstructural plasticity

[13, 14, 49], and was powered to detect a Cohen effect size of 1.23, for 9 animals/group, at a sig-

nificance level of 0.05 with 80% power. We measured effect sizes on the order of 1.50 for the in
vivo cross sectional morphometric analyses, 1.95 for the interaction term, and 1.55 for ex vivo
morphometry. However, we should consider that not all animals showed the same learning

process and progress, indicating that they may not learn in the same way, or that they process

information differently. Thus, future studies including more animals, and a longer task learn-

ing time could enable verifying those results and refining the task specificity. Such studies

should increase the optimism that useful interventions could be designed for rehabilitation fol-

lowing injury, and for building resilience for neurodegenerative disease. For example, recent

efforts have underlined the role of adaptive myelination as a key mechanism for the fine-tun-

ing of neuronal circuitry [50].

Future directions

In vivo imaging of animal models has translational value for human studies of rehabilitation

and repair. While most studies to date have used cross-sectional designs, longitudinal studies

are necessary for directly estimating the effects of exercise interventions on motor function

and cognition over time. Diffusion based imaging adds benefit in terms of increased contrast

emphasizing white matter structures, and the ability to detect potential lesions. We believe that

rapid in vivo diffusion based imaging protocols will provide valuable information on micro-

structural remodeling. Complementary ex vivo studies can add information through complex

protocols employing more diffusion directions and higher resolution, and enable validation

with histology. These will help increase awareness of methodological limitations, while
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allowing us to understand at a finer scale the consequences of interventions (in terms of tim-

ing, specificity, intensity) on neurons, myelin or astrocytes, and how these interventions could

be amended to augment their effects. Furthermore, understanding and fine-tuning plasticity

based interventions targeting age-related cognitive decline may offer benefits to broad

populations.

Supporting information

S1 Fig. While cortical thicknesses differences did not survive multiple comparison correc-

tion, the uncorrected statistical analysis suggested increased cortical thickness in trained

animals (reachers). These results pointed to a role for the contralateral motor somatosensory

(dysgranular, and forelimb areas) and visual cortices, as well as the ipsilateral piriform cortex

(A: coronal cross sections; B: volume/surface rendering. Results are presented as tmaps, thre-

sholded at 0.05 significance level, using the whole brain as a mask (yellow).

(TIF)
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