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In most professional sports, playing field structure is kept neutral so that scoring imbalances may be
attributed to differences in team skill. It thus remains unknown what impact environmental heterogeneities
can have on scoring dynamics or competitive advantages. Applying a novel generative model of scoring
dynamics to roughly 10 million team competitions drawn from an online game, we quantify the relationship
between the structure within a competition and its scoring dynamics, while controlling the impact of chance.
Despite wide structural variations, we observe a common three-phase pattern in the tempo of events. Tempo
and balance are highly predictable from a competition’s structural features alone and teams exploit
environmental heterogeneities for sustained competitive advantage. Surprisingly, the most balanced
competitions are associated with specific environmental heterogeneities, not from equally skilled teams.
These results shed new light on the design principles of balanced competition, and illustrate the potential of
online game data for investigating social dynamics and competition.

C
ompetition between groups is a ubiquitous feature of human social systems. Classic game theory, which
models competition outcomes from strategic decisions within relatively well-defined choices, has yielded
many insights into the principles of competition1. However, many real-world competitions are better

represented as dynamical systems, in which computationally limited players imperfectly navigate many possible
actions with uncertain payoffs2, and traditional models say relatively little about the dynamics within these
systems. The empirical study of dynamical competitions promises to shed new light on fundamental questions
about competition, and team sports provide a rich and relatively controlled domain through which to do so3,4.

A distinguishing feature of most team sport competitions is their structurally homogeneous or ‘‘level’’ playing
field, which allows differences in team scores to be attributed to one team being relatively more skilled than
another, or, if the difference is small, to chance events5,6. This design choice eliminates the impact of structural
heterogeneities, like an irregular playing field, variations in rules, or differences in within-competition resources,
on a competition’s internal dynamics. Models of economic competition suggest that such heterogeneities should
produce structural competitive advantages7, allowing a team to perform above its skill level by exploiting these
environmental irregularities. These models, however, provide little guidance about the relative importance of
different heterogeneities and say little about the relative impact of skill (or other team-endogenous variables),
structure (or other team-exogenous variables), and chance on competition outcomes.

In fact, it is not generally known how to disentangle the roles these factors play in determining competition
outcomes, and their relative importance remains a highly controversial topic, both in sports8 and in other types of
social competition7,9,10. A better understanding of these issues would inform our general understanding of the
principles of competition in human social systems and the design of novel competitive environments11,12. To the
extent that underlying commonalities exist, progress on these topics may also shed new light on competition
dynamics in other domains, such as ecology and evolutionary biology13, political conflict1 and economics14.

A novel approach to investigate these questions lays in online games, which are proving increasingly useful in
investigating a wide variety of complex questions about human social dynamics17,28,29. In general, online games
encompass a broad and growing variety of relatively controlled competitions, played by large and demograph-
ically diverse populations15, and, critically, producing large quantities of detailed observational data by which to
quantify subtle patterns and test complex hypotheses.

Here, we study a unique data set drawn from the popular online game Halo (see SI Appendix), a kind of virtual
team combat, which contains nearly 1 billion scoring events across roughly 10 million diversely structured team
competitions. Although Halo is a particular online game, it exhibits several features that make it a model system
for studying questions about human competition dynamics. In particular, each competition is essentially inde-
pendent, with team memberships being substantially randomized across competitions, and with no resources
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carried between competitions. These features thus mitigate the con-
founding effects of cross-competition correlations present in profes-
sional sports, e.g., fixed team rosters and differences in team budgets,
and provides a randomized control for studying how structural var-
iations shape competition dynamics and outcomes.

To quantify the impact of structure on dynamics, we partition
these competitions according to their particular environmental
structure, competition rules, resource quality and difference in team
skill, and then characterize their scoring dynamics via a probabilistic
model. The resulting model parameters provide a compact repres-
entation of that group of competitions’ internal dynamics, which
serve as targets to be explained by variation in structural features.

Despite wide variation, structure has a modest impact on the
tempo of events, but a large impact on the scoring balance, i.e., the
difference in team scores. Additionally, the rate of scoring events over
time exhibits the same three-phase pattern observed in professional
sports16. Overall, structural features alone are highly predictive of
overall competition tempo, the range of competitive scoring advan-
tages, and ultimate predictability of the competition’s outcome. Like
business firms competing in the marketplace7, teams appear to
exploit environmental and resource heterogeneities to achieve sus-
tained competitive advantages. However, contrary to the pattern of
professional sports, the most balanced competitions—those with
narrow margins of victory—arise from specific environmental het-
erogeneities, not from equally skilled teams competing in homogen-
eous environments. These results illustrate the rich potential of
online game data for investigating social dynamics and competi-
tion17, clarify the role of chance when teams are well matched, and
point to specific design principles for balanced competitions.

Results
Quantifying competition dynamics. We first introduce the notion
of an ‘‘ideal’’ competition, in which perfectly matched teams play on
a level field with no exploitable features. Such a competition’s out-
come is thus determined solely by the occurrence and accumulation
of chance events, e.g., accidents, miscalculations, and events outside
direct control. In this way, perfect performance by equally skilled
teams will produce purely stochastic dynamics.

These dynamics can be described by a particularly simple stoch-
astic process18. Scoring events occur infrequently and independently,

and their pattern follows a Poisson process with rate l0—a common
assumption in quantitative analysis and modeling of professional
sports16,19,20. Given a scoring event occurs, a fair coin determines
which team accrues points from it. The difference in scores between
teams thus follows an unbiased random walk (Fig. 1a), and scoring
overall follows an equiprobable or balanced Bernoulli scheme.

Real competitions, with heterogeneous structure or skill differ-
ences, will deviate from this ideal, and it is useful to measure how
far from the ideal a particular real competition lays. We capture these
deviations through a generalized model, which may be fitted directly
to scoring data and whose parameters quantify the size and character
of the non-ideal patterns. We then investigate the extent to which the
observed non-ideal patterns can be predicted from variation in com-
petition structure.

We assume a competition between teams r and b, and we let sr(t)
denote team r’s cumulative score at an intermediate time t , T. The
probability that r’s score increases at time t is given by the joint
probability of a scoring event occurring at t and of r scoring it.
Letting these probabilities be independent yields

Pr Dsr tð Þw0ð Þ~Pr Dsrw0 hj , eventð ÞPr event at t hjð Þ,

where h parameterizes the non-ideal patterns.
Scoring events occur infrequently and independently, and are now

produced by a simple non-stationary point process, in which the
arrival of events varies linearly with time:

Pr event at t l0j ,að Þ~l0za t:

The base or background rate is given by l0 and a parameterizes the
non-stationarity, e.g., increasing (a . 0) or decreasing (a , 0) tempo.
When a 5 0, we recover the ideal case of a Poisson process with rate
l0.

The score of a team follows a general Bernoulli process. Given a
scoring event, points are awarded to team r with some probability
that is fixed for this competition, but which may vary between com-
petitions

Pr Dsrw0 eventjð Þ~c,

and otherwise, they are awarded to team b. This scoring bias c is a
probabilistic measure of r’s competitive advantage over b, e.g., from a
difference in skill or from exploitable features of the competition.

Figure 1 | Patterns in scoring dynamics and final score differences for simulated ideal and non-ideal competitions. (a) Scoring trajectories

for ideal competitions. (b) Scoring trajectories for non-ideal competitions where b 5 29.5, the system’s global average. (c) Distribution of final score

differences for ideal and non-ideal competitions. When competitions are ideal, scoring trajectories remain near 0 and variability in final score differences

is relatively small. When competitions deviate from ideal, scoring trajectories stray from 0 and variability in final score differences increases.
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When c 5 1/2, we recover the ideal case of a balanced Bernoulli
process, while deviations produce the more lopsided trajectories
associated with non-ideal dynamics (see Fig. 1a,b).

Across competitions with the same structure, different pairs of
teams will exhibit different competitive advantages. Thus, the natural
explanatory target is the distribution of the scoring imbalances Pr(c),
whose natural form is a symmetric Beta distribution21 (see SI
Appendix), the conjugate prior for the Bernoulli process. The result
is a one-parameter model that quantifies the overall variability in
competitive advantages across a set of competitions. The ideal case of
perfectly matched teams and scoring differences due only to chance
events occurs at c 5 1/2, which is recovered in the limit of b R ‘

(Fig. 1a,c). Smaller values of b produce scoring trajectories that result
in larger variance in final score (Fig. 1b,c).

We supplement this parametric approach with a non-parametric
measure of non-ideal behavior: the predicability of the winner from a
partially unfolded competition. Having observed the first k scoring
events, predicting the winning team is a kind of classification task,
which we formalize as a Markov chain on the sequence of team scores
(see SI Appendix). For two-team competitions, the probability that
team r wins, given current scores sr and sb, is

Pr r wins sr,sbjð Þ~Pr r wins srz1,sbjð Þ:̂cz

Pr r wins sr,sbz1jð Þ: 1{ĉð Þ,

where ĉ~sr= srzsbð Þ estimates r’s competitive advantage. After each
event, the classifier predicts as the winner the team with the greatest
estimated odds-to-win, and its accuracy is measured by the AUC
statistic22, the probability of choosing the correct winning team.

The AUC versus k provides complete information about a com-
petition’s predictability but is not amenable to our subsequent ana-
lysis. We instead use a point measure r, defined as the ratio of the
Markov classifier’s AUC to that of an ideal competition (c 5 1/2),
when 20% of the competition has unfolded. A value of r . 1 indi-
cates that the competition outcomes are more predictable than in the
ideal case.

Competition data. Our data are drawn from the popular online
game Halo: Reach, and span nearly 1 billion scoring events across
roughly 10 million diversely structured team competitions. These
competitions are divided into 125 types according to 35 structural
features defining the spatial environmental, competition rules,
resource quality, and whether teams had roughly equal skill (see SI
Appendix).

Halo competitions are a kind of real-time virtual combat. Human
players guide their avatars through an arena containing complex
terrain, coordinate actions with teammates through visual and audio
signals, and encounter opponents. A scoring event occurs when one
avatar eliminates another, and this event increments the former’s
team score. After a short delay, the latter is returned to the competi-
tion at another arena location. Competitions end either when a fixed
time limit is reached (typically 10 minutes) or when one team’s score
reaches some threshold (typically 50).

Only individual player skill persists across competitions. Tem-
porary resources, whose control may yield a competitive advantage,
are acquirable within a competition, e.g., highly defensible positions,
high quality avatar items, and tactical information. Team membership
is also temporary, being substantially randomized across competitions
by the online system. These features make Halo competitions a model
system for investigating the impact of structural heterogeneities on
competition dynamics by creating a kind of randomized control that
eliminates the impact of cross-competition variables, e.g., fixed team
rosters or team budgets, that exist in professional sports. That is, Halo
competitions may be treated as roughly iid draws from an underlying
stochastic process, a feature that mitigates confounding effects in
characterizing the importance of structural variations.

From the scoring events within a given type of competition, we
estimate both model parameters and the outcome predictability (see
SI Appendix). This produces a set of coordinates (l̂0, â, b̂, r̂) and
provides a compact and interpretable summary of that competition
type’s scoring dynamics and variability. Letting~g denote the struc-
tural features of a given competition type, explaining variation across
the estimated coordinates from variation in~g will reveal the impact of
structural features on competition dynamics, if any. Although here~g
is a set of binary variables indicating the presence or absence of
particular structural features, this approach is entirely general and
could be applied to features with real- or integer-values.

The determinants of balance b, which quantifies the strength and
distribution of competitive advantages, are of particular interest.
Players may prefer more balance because it offers a fair chance at
winning. Or, they may prefer less balance because it offers greater
reward for the risk. In these competitions, we find that greater bal-
ance correlates with a lower probability that at least one player will
prematurely leave the field of play (r2 5 0.43, see SI Appendix),
typically a voluntary action. Thus, players exhibit a moderate but
real preference for more balanced, i.e., more ideal, competitions,
whose outcomes are less predictable, whose final score differences
are smaller, and whose dynamics are closer to those of a simple
stochastic process.

Patterns in tempo and score dynamics. We first verify that our
generative model effectively captures the true scoring dynamics of
these competitions and whether they exhibit patterns similar to those
of professional sports.

Across all competition types, we find a consistent three-phase
non-stationary pattern in the tempo of scoring events, i.e., the prob-
ability of a scoring event as a function of time elapsed or time remain-
ing. Specifically, we find an early phase of little or uneven activity, a
protracted middle phase of slow and steadily increasing activity, and
an end phase of either slightly decreased or markedly increased
activity (Fig. 2a–c). This same three-phase pattern is also observed
in professional sports (see SI Appendix, Fig. S5), in support of our use
of an online game as a model system for studying competition
dynamics.

The early- and end-phase patterns are caused by boundary effects
in the length of competition, and are also observed in professional
sports16. Early in a competition, players require some time to move
from their initial set positions to their first scoring opportunities,
which suppresses the tempo of events relative to the ideal case.
Although the shape of this early phase varies moderately by com-
petition type (Fig. 2a), after 20–30 seconds these variations largely
disappear and the tempo transitions into the more stable middle
phase.

Similarly, near a competition’s end, the impending cessation of
scoring opportunities encourages different strategic choices1 than in
the early or middle phases. Here, we observe either slightly decreased
or strongly increased tempo (Fig. 2c), depending on whether the
competition type’s particular rules provide an incentive for risk tak-
ing in the final seconds. When the incentive is present, the tempo
increases dramatically just before the competition ends, as players
take greater risks for the win—a pattern also observed in professional
sports16,19. When the incentive is absent, players instead adopt
defensive positions to deny the opposing team additional points,
leading to decreased scoring rates—a pattern not typically observed
in sports (see SI Appendix, Fig. S5).

In contrast, the middle phase’s tempo exhibits a roughly linear
increase over time (Fig. 2b), which agrees with our generative model
for event timing. To estimate our tempo model parameters, we elim-
inate the boundary effects by focusing on events in this phase alone
(see SI Appendix). Across competition types, both the base tempo
and the acceleration vary widely: base rates by up to a factor of two
and tempo by 5–20% over the phase. Within-competition learning is
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one plausible explanation for this increase23, e.g., through trial and
error, teams may learn how and where to produce scoring events,
which would progressively reduce the time spent searching for new
scoring opportunities and thereby increase the tempo of events.

To understand the variation in the accumulation of points, we
examine the distributions of scoring biases across competition types.
For a particular competition, the scoring bias is estimated as the
fraction of points held by an arbitrarily labeled team r. We find that
all competition types exhibit moderately non-ideal variations in
scoring biases (Fig. 3), i.e., they are consistently dispersed from the
ideal case of c 5 1/2. As with the competition tempo in the middle
phase, the degree of dispersion varies substantially across competi-
tion types, suggesting a significant role for structural variables.

As a further test of our generative model’s quality at modeling
dynamics within these competitions, we estimate l0, a and b from
the entire data set, draw many synthetic competitions from the fitted
model, and consider whether the simulated scoring dynamics are
similar to those in the empirical data. The results indicate that the
simulated competitions match the observed sequences on multiple
scoring and timing statistics unrelated to parameter estimation (see
SI Appendix). This quantitative agreement indicates that our model
successfully captures the important dynamical features of our com-
petitions.

How structure shapes dynamics. We now investigate four specific
types of structure and their impact on the estimated competition
dynamics. These analysis are intended to shed light on how speci-
fic structures may shape dynamics, and will aid the interpretation of
our systematic analysis below.

Team skill differences. When assigning individuals to a new competi-
tion instance, the online system uses a matchmaking algorithm to
substantially randomize team composition. This algorithm operates
in two modes. For players who have completed a moderate number
of competitions, it adjusts team memberships so that the skill differ-
ences between teams are small. These precise estimates, which are
not variables in the data, are derived from a Bayesian generalization
of the popular Elo rating system of individual player skill, known as
TrueSkill6. TrueSkill estimates ‘‘skill’’, which is not a simple or arbit-
rary measure like action rate, but rather related to the probability of

winning a match, by integrating over many types of actions.
Otherwise, teams are assembled without regard to player skill and
skill differences between teams are large. We examine the differences
in our model parameters for all competitions constructed under each
of the two modes.

Differences in skill have a substantial impact on competition bal-
ance, as we might expect. However, they have little impact on com-
petition tempo (Table I, Fig. S4a). When teams have roughly equal
skill, scoring is more balanced than when the equal-skill control is
absent (b 5 45.9 6 0.35 versus 20.9 6 0.22). This difference implies
that well-matched teams produce substantially more ideal competi-
tions, have smaller competitive advantages, and exhibit overall
dynamics that are closer to those produced by a fair coin. In effect,
reducing the difference in team skill serves to amplify the importance
of chance events, i.e., accidents and miscalculations.

Figure 2 | Patterns in tempo and score dynamics. For each of 125 competition types, the probability of a scoring event at time t, in the (a) early, (b)

middle and (c) end phases of a competition.

Figure 3 | The distributions of the probability that team r is awarded the
point. Ideal (dashed) and the global average (solid) patterns are also

shown.
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Physical environment. The arenas for these competitions are typically
complex virtual terrains, and may contain large outdoor spaces,
complicated indoor corridor systems, buildings with multiple levels,
defensible positions, high ground, etc. We compare model para-
meters for all competitions taking place within two structurally dis-
tinct environments: one is largely neutral, exhibiting strong spatial
symmetries and few features like defensible locations that might offer
tactical advantage, while the other is strongly irregular, with an asym-
metric and strongly vertical spatial structure, truncated sight lines,
and at least one defensible location.

Overall, the more symmetric environment produces substantially
more balanced outcomes and higher scoring rates than the irregular
one. In fact, the observed difference in balance parameters is roughly
as large as the difference induced by the equal-skill criterion (Table I,
Fig. S4b). This suggests that increasing the homogeneity of the com-
petitive environment, e.g., introducing symmetries, removing
defensible positions, etc., serves to limit environmental opportunities
for competitive advantage. Much like eliminating differences in skill,
simpler environments effectively amplify the importance of chance
events, making competition scoring more ideal.

Scoring difficulty. Few studies have examined the difference in com-
petition dynamics caused by variations in the rules of the competi-
tion. Our data include several variations of this kind, and we examine
one particular variant to shed light on how small changes in rules
may impact competition dynamics. A popular group of competition
types alters the standard scoring rules by reducing the threshold
required to eliminate an opposing avatar and by slightly limiting
each player’s visual field. These changes make scoring opportunities
easier to exploit, and we compare the estimated model parameters for
all competitions of the standard and easy scoring types.

Lowering the threshold for scoring has a substantial impact on
competition dynamics (Table I, Fig. S4c), with easier scoring rules
producing less balanced outcomes. The size of this difference is
nearly half as large as the impact of the equal-skill criterion.
Additionally, the lower threshold decreases the base scoring rate by
15% but increases the acceleration by roughly 8% over those of
standard competitions. The implication is that lowering the barrier
to scoring skews the playing field, allowing skilled players to exploit
either their skill-based competitive advantage or other structurally-
derived advantages.

Resource quality. Each competition has a fixed a set of acquirable
resources, which players use to score points. Each resource belongs to
one of two classes, which we label ‘‘versatile’’ and ‘‘limited.’’ Versatile
resources are generally of higher quality and are more effective for
scoring points. When resources of both classes are present in a com-
petition, 80% of scoring events are associated with the versatile class,
illustrating a strong player preference for more effective tools. To

clearly separate their effects, we examine competitions with either
only versatile- or only limited-class resources.

Limited-class competitions produced moderately higher base and
acceleration rates than versatile-class competitions, indicating an
overall faster tempo. Furthermore, competitions with only limited-
class resources produce substantially more balanced scoring out-
comes (b 5 41.7 6 1.04 versus 20.2 6 0.52; Table I, Fig. S4d), a
difference as large as that of the equal-skill criterion. Just as envir-
onmental structures can be exploited for competitive advantages,
differences in the quality of acquirable resources also represent
exploitable structural heterogeneities, and limiting such variations
can effectively level a playing field to produce more ideal dynamics.

Structural determinants of competitive dynamics. Each compe-
tition type defines a point on a (l0, a, b, r)-manifold, and the
distribution of these points describes the observed variability in
competition dynamics. We now consider the degree to which a
competition’s position in this coordinate space is predictable from
its structural features alone.

The joint distribution of the model timing parameters l0 and a is
broadly distributed and shows little internal structure (Fig. 4). The
typical scoring base rate is roughly one event per 7.5 seconds, with
variations of 2.5 s in either direction. Additionally, nearly all com-
petitions types show modest acceleration rates, with an increase of
10–12% over the middle-phase of competition being common. Were
timing parameters anti-correlated, with lower base rates correlating
with higher acceleration, we would have some evidence that teams
were learning how to predict the likely locations of new scoring
opportunities. However, the lack of correlation, in either direction,
suggests that teams do not in general improve their efficiency by
learning within a competition.

The estimated balance parameters b are also broadly distributed,
indicating a wide range of competitive advantages. The typical com-
petition type has b between 20 and 30, but some have values as large
as 50 or as small as 10 (Fig. 5). We observe a strong negative correla-
tion between scoring balance b and the predictability r of a competi-
tion’s winner, as expected under our generative model. However, the
relationship between balance and predictability is not simple, and
outcome predictability varies considerably in the very low b regime.
Understanding the mechanism driving this variability is left for
future work.

Predicting dynamics from structure. The extent to which a
competition’s dynamical variables (l0, a, b, r) are predictable from
its structural variables ~g provides a direct measure of how
competition structure shapes dynamics. Thirty-five structural
features, divided into resources (R), environment (E), team skill
(S), and rules (P) categories, were used to identify 125 distinct
types of competition. Regressing these structural features onto the

Table I | Estimated tempo and scoring parameters for four dimensions of competition variation, illustrating a substantial impact of structure
on dynamics. Values in parentheses give the bootstrap uncertainty

feature variation

balance base tempo acceleration

b̂ l̂0 |10{3ð Þ â |10{5ð Þ

skill equal 45.9(0.35) 166(0.1) 7.09(0.09)
unequal 20.9(0.22) 160(0.1) 7.18(0.02)

environment neutral 47.9(1.20) 169(0.4) 9.09(0.22)
irregular 23.9(0.67) 147(0.3) 7.49(0.21)

scoring standard 41.7(0.36) 185(0.2) 8.45(0.16)
easy 30.3(0.71) 158(1.1) 9.16(0.64)

resources versatile 20.2(0.52) 153(0.2) 7.08(0.13)
limited 41.7(1.04) 166(0.3) 8.49(0.21)

all – 29.5(0.21) 163(0.1) 7.13(0.05)
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estimated model parameters quantifies the overall predictability of
dynamics from structure, and the resulting coefficients provide
additional insights into the relative importance of specific factors.

Overall, competition dynamics are highly predictable from struc-
ture alone (Table II), with structural variables explaining 65–96% of
the variance in individual dynamical parameters. Because the cov-
erage across our feature space is sparse, we performed three addi-
tional tests to determine the robustness of our results. Both multiple
and stepwise regressions produce models of nearly equal quality and
assign features nearly the same relative importances. Randomizing
the association of structural and dynamical variables yields non-
significant correlations (see SI Appendix), indicating our results are
reliable. These results imply a very strong role for structural variables
in shaping the dynamics of competitions.

Structural variables have the largest impact on base rate l0 (r2 5

0.96), with features describing neutral or homogeneous environ-
ments playing the dominant role in setting its value. The particular
pattern observed can be explained by considering the ‘‘encounter
rate’’ between scoring opportunities and competitors. Here, an
encounter requires two individuals to locate and engage each other.
Large, open and outdoor environments tend to be more neutral, and
thus generate these encounters more often than irregular ones. While
indoor terrains are spatially complex, but tend to be smaller, which
should also increase the encounter rate. In agreement with this inter-
pretation, we note that in team sports, scoring rates are highest on
small playing fields, e.g., basketball and hockey, where encounter
rates with scoring opportunities are high, and lowest on large playing
fields, e.g., soccer and American football.

Although resources that allow engagement at larger distances
should increase the base rate by effectively shrinking the size of the
arena, medium- and long-range resources in fact decrease it, perhaps
because players assume overly defensive playing styles in response.
Finally, more equally matched and more skilled teams seems likely to
increase the rate because players are more familiar with the environ-
ments, resources and tactics. However, we find that more equal skill
raises the rate only marginally, and is between 4–16 times less
important, in absolute value, than any other statistically significant
feature.

The scoring acceleration rate a is moderately well predicted by
structure (r2 5 0.65), although only two features are significant and
both of which correlate with less acceleration, i.e., more ideal com-
petitions, and substantial variation remains unexplained by any of

our features. In contrast to the results for the other three estimated
parameters, environmental variables play no role in increasing or
decreasing the acceleration of scoring events. Although having
equally-skilled teams correlates with more ideal competitions (less
acceleration), it is seven times less important than teams having
access to long-range resources. If such resources effectively shrink
the size of the arena, scoring opportunities should be easier to locate
and exploit. However, the absence of environmental variables corre-
lated with small arena sizes, e.g., indoor terrain, suggests a more
complicated mechanism. The unexplained variation may be attrib-
utable to learning effects, i.e., identifying and adapting to the oppos-
ing team’s tactics, which are endogenous variables not represented in
our set of competition features.

The scoring balance b, which measures the variance in observed
competitive advantages, is highly predictable from structure (r2 5

0.93, regression on log b), as is the relative outcome predictability r
(r2 5 0.89). In contrast with the tempo parameters, resource variables
play no systematic role in either increasing or decreasing balance.
Having well-matched teams does improve balance, as we would
expect, but the magnitude of its contribution is surprisingly small.
Instead, we find that specific environmental heterogeneities have a
much larger balancing effect (0.36–1.25 times larger) than the skill
variable. Well-balanced scoring typically appears in large, open or
outdoor environments, a situation similar to the kind of level playing
fields seen in professional team sports.

Our recovery of this intuitive correlation serves as a useful sanity
check on the overall analysis, and supports the conventional wisdom
that literally leveling the playing field improves the balance of com-
petitions. Counter-intuitively, however, and in contrast with that
conventional wisdom, the single most important feature, by a factor
of two, for producing balanced competitions is the opposite of a level
playing field, i.e., indoor terrain like rooms and corridors. One
explanation for this pattern is that large amounts of spatial hetero-
geneity effectively handicap all competitors, regardless of skill, by
limiting their ability to observe and anticipate nearby threats or
opportunities. These results suggest that both extremely simple
and extremely complex environments provide the fewest exploitable
opportunities for sustained competitive advantage, while the middle
ground—moderately complex environments—provides the most.
The result is that both types of environments mitigate other sources
of competitive advantages, including those derived from greater skill
or strategic locations, moving scoring dynamics closer to the ideal.

Figure 4 | Equally spaced quantiles of joint distributions across 125 competition types of base scoring rate l0 and acceleration a.
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In contrast, the most imbalanced and predictable competitions are
those with controllable or strategically valuable environmental fea-
tures like high ground or defensible positions. For setting the values
of b and r, such features are at least as important, but opposite in
sign, to having teams of equal skill. These strategically important
environmental features can thus effectively upset the competitive
balance produced by well-matched teams by providing one team
with a sustained competitive advantage throughout the competition.

Surprisingly, variations in competition rules, including reduced
spatial awareness, weakened defensive capabilities, or a lower thresh-
old for scoring, were not statistically significant predictors. None of
these features produced a measurable impact on the tempo or bal-
ance of scoring within competitions, once the effects of other features
were taken into account.

Discussion
Although professional sports are often considered models of team
competition16,19,20,24,25, their limited structural variation provides few
opportunities for understanding how competition structure can
shape competition dynamics. Our results shed new light on these
and other fundamental questions about human social dynamics and
competition.

In particular, heterogeneities in the spatial environment, available
resources, competition rules, and team skill exert a strong influence
on the balance and tempo of scoring dynamics within a competition.
For the virtual team-combat simulation studied here, spatial struc-
ture plays the most important role in producing or eliminating com-
petitive advantages, with skill and resource differences assuming
supporting roles. Much like business firms exploiting heterogeneous
and scarce resources, e.g., prime real estate, zoning permits, patents,
etc., for sustained competitive advantage in the marketplace7,30,
teams in our model system leverage environmental and resource
heterogeneities, like high ground and defensible positions, toward
the same ends. The modest role we observe for skill, after controlling
for the impact of environmental variables and chance, suggests a
larger importance for exogenous variables in economic competitions
than has previously been appreciated7.

But unlike the pattern of either business firms or professional
sports teams, some heterogeneities—in our case complex spatial

environments—can effectively neutralize competitive advantages
normally derived from exploitable structural features. When these
‘‘leveling’’ features are present, scoring outcomes are substantially
more balanced than when they are absent, and this leveling effect
is stronger than the one produced by having equally skilled teams.
Although the precise mechanisms of these leveling effects remain
unknown, their existence implies that competitive advantages are
derived from specific mechanisms whose effects can be neutralized
by other mechanisms. A better understanding of them could be
derived from controlled experiments using designed online games,
and may facilitate the design of inhomogeneous competitive envir-
onments that nevertheless exhibit the balanced dynamics that homo-
geneous environments produce.

Otherwise, the most ideal competitions occur in large neutral
spaces between well-matched teams. Thus, it seems no accident that
professional team sports are often played in precisely this type of
environment: absent spatial or resource heterogeneity, competition
between skilled teams is significantly more ideal. Combining this
result and the previous one implies a general U-shaped dependency
between competition balance and environmental complexity. Both
extremely simple and extremely complex environments provide the
fewest exploitable opportunities for sustained competitive advant-
age, while the most opportunities and the least balance appear in the
middle ground, with moderately complex environments.

The close agreement between our generative model and the
observed competition dynamics in our model system implies that
the more balanced a competition, the more effectively it may be
described as a purely random process, not despite but in fact because
of the significant strategic and tactical effort behind individual
events. In effect, as a competition becomes more ideal, chance events
like miscalculations and accidents play a greater role in determining
the final outcome. We note, however, that replacing the underlying
competition mechanics by actual coin flipping seems unlikely to
produce the same level or type of engagement among players and
spectators.

The three-phase pattern in the tempo of events in our model
system is strikingly similar to the pattern observed in professional
team sports. Yet the underlying structures of most professional
sports and our model system—a team combat simulation—could

Figure 5 | Outcome balance b and predictability ratio r. For event timing parameters, we observe little statistical correlation, while greater balance is

strongly correlated with lower outcome predictability.
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hardly be more different. In the former, goals have fixed locations,
the environment and within-competition resources are homogen-
eous, and teams are highly trained and persistent. In the latter, goals
are highly mobile, the environment and within-competition
resources are heterogeneous, and teams are largely non-persistent.
The existence of a common dynamical pattern despite such differ-
ences suggests that it may be a universal feature of team competi-
tions. The elucidation of its origin is an important open question.

Finally, we omitted explicit roles for within-team variables like
team composition26, coordination27, and player characteristics.
Their impact is implicit within the estimated model parameters,
whose variation is well explained by structural variables alone. This
particular result is likely supported by the substantial randomization
in team membership across our competitions, which serves to mit-
igate any significant differences in team composition. Player and
team characteristics likely play a more significant role in determining
the dynamics in competitions with persistent teams or homogeneous
environments, as in professional sports. A broad study of within-
competition dynamics across fundamentally different types of com-
petition may shed complementary light on the origin of competitive
advantages, the mechanisms by which specific features promote or
discourage balanced outcomes, and the fundamental laws of com-
petitive dynamics, if any.

Methods
In this section, we provide a broad overview of the computational and statistical
methods we employed in this research. For a detailed explanation of what follows,
please refer to the SI Appendix. Additionally, please see the SI Appendix for a detailed
description of the data.

Model parameter estimation and goodness of fit. We estimate the parameters of our
model of competition by directly maximizing the model’s log-likelihood functions.
The likelihood function which quantifies the probability of observing a series of
scoring events is defined as,

lnL~
Xn

i~1

ln l0za tið Þz
XT{n

j~1

ln 1{l0{a uj
� �

, ð1Þ

where {ti} denote the observed times of these events, and {uj} the times at which no
event was observed. For a complete derivation of the likelihood function, see the SI
Appendix.

Similarly, we estimate the balance of competition, b, by directly maximizing its log-
likelihood function, which is defined as,

lnL~
XN

k~1

ln B Srk zb,Sbk zbð Þ½ �{ln B b,bð Þ½ � ð2Þ

where Srk and Sbk are final scores of teams r and b in competition k. For details and
additional checks of model robustness, see the SI Appendix.

To test the plausibility of our generative model, we compare simulated competi-
tions against the empirical data along specific statistical measures. The simulation is
parametric and uses the estimated parameters from our generative model to define
the corresponding probability distributions in the simulator. A close match between
the synthetic scoring dynamics and the empirical data along multiple statistical
measure is evidence that our generative model accurately captures the basic features
of these competitions. For details of the simulation framework and statistical mea-
sures, see the SI Appendix.

Multivariate regression analysis. To predict a competition’s dynamical parameters,
(l0, a, b, r), from environmental structural features,~g, we conduct a multivariate
regression analysis. To test the robustness of our results against spurious correlation,
due to the high-dimensionality of our data, we conduct three additional analyses.
First, we study co-linearity between dependent variables by conducting a MANOVA.
Second, we perform stepwise AIC feature selection to choose an optimal subset of
features. Third, we perform a randomization test by randomly permuting dependent
variables across features and repeating the original regression analysis. Our model is
robust to these tests. For details of each test’s procedure as well the corresponding
results, see the SI Appendix.
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