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Abstract Background Thirty-day hospital readmissions are a quality metric for health care
systems. Predictivemodels aim to identify patients likely to readmit tomore effectively
target preventive strategies. Many risk of readmission models have been developed on
retrospective data, but prospective validation of readmissionmodels is rare. To the best
of our knowledge, none of these developed models have been evaluated or prospec-
tively validated in a military hospital.
Objectives The objectives of this study are to demonstrate the development and
prospective validation of machine learning (ML) risk of readmission models to be utilized
by clinical staff at a military medical facility and demonstrate the collaboration between
the U.S. Department of Defense’s integrated health care system and a private company.
Methods We evaluated multiple ML algorithms to develop a predictive model for 30-
day readmissions using data from a retrospective cohort of all-cause inpatient read-
missions at Madigan Army Medical Center (MAMC). This predictive model was then
validated on prospective MAMC patient data. Precision, recall, accuracy, and the area
under the receiver operating characteristic curve (AUC) were used to evaluate model
performance. The model was revised, retrained, and rescored on additional retro-
spective MAMC data after the prospective model’s initial performance was evaluated.
Results Within the initial retrospective cohort, which included 32,659 patient
encounters, the model achieved an AUC of 0.68. During prospective scoring, 1,574
patients were scored, of whom 152 were readmitted within 30 days of discharge, with
an all-cause readmission rate of 9.7%. The AUC of the prospective predictive model was
0.64. The model achieved an AUC of 0.76 after revision and addition of further
retrospective data.
Conclusion This work reflects significant collaborative efforts required to operatio-
nalize ML models in a complex clinical environment such as that seen in an integrated
health care system and the importance of prospective model validation.

received
April 24, 2018
accepted after revision
March 22, 2019

© 2019 Georg Thieme Verlag KG
Stuttgart · New York

DOI https://doi.org/
10.1055/s-0039-1688553.
ISSN 1869-0327.

Research Article316

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

mailto:carly@kensci.com
https://doi.org/10.1055/s-0039-1688553
https://doi.org/10.1055/s-0039-1688553


Background and Significance

Decreasing 30-day hospital readmissions is motivated by
efforts to improve patient care and reduce penalties for
avoidable readmissions, such as those levied by health care
payers including the Centers for Medicare and Medicaid
(CMS).1 Accurately predicting patients who are likely to be
readmitted should enable a targeted approach for more effec-
tive interventions.2 Efforts to accurately predict 30-day read-
missions have been met with moderate success,3–6 as
summarized in two systematic reviews.7,8 The authors of
the 2011 review7 note the overall modest performance of
readmission prediction models. Indeed, only one study,
focused on a cohort of heart failure patients,9 exhibited even
moderate discriminative capability with an area under the
curve (AUC) of 0.72. The 2016 review8 similarly concluded that
while several of the tools predicting readmissions did exhibit
moderate discriminative ability (AUC > 0.70), none of the
studies with either a prospective or an external validation
cohort surpassed this threshold. The authors of this review
caution that more rigorous validation of models is needed.8

Thewidespread use of electronic health records (EHRs) and
their underlying data have enabled new opportunities for
applied research. In a review of these tools by Goldstein
et al, the authors note the overall shortcomings of much of
the current work, including the limited use of available fea-
tures and longitudinal data.10 The application of artificial
intelligence and predictive analytics to health care is fitting
given the vast amount of potential data for analysis.11Analytic
methods, particularly machine learning (ML)-based ensemble
methods, arewell suited for the complexity of health care data
which includes a large number of features andmissing data.12

Futoma et al describe the utility of ML-based models in
predicting readmissions13 and several other studies now
populate the academic literature offering ML-based solutions
to address this issue.14–17 Recent work by Hao et al demon-
stratesprospective validationof a 30-day readmission risk tool
using health information exchange data from Maine.18

Thirty-day hospital readmissions are a priority for all health
carepayers, including thefederalgovernment.The2014Military
HealthSystem(MHS)Review,aspecial reportat thebehestof the
Secretary of Defense to address MHS access, quality, and safety,
highlighted reducing readmissions as a priority for military
treatment facilities (MTFs) and cited an all-cause MTF read-
mission rate of 8.8%.19While rates are lower than those seen in
most other patient populations,20 penalties still apply. These
penalties, which are aligned with CMS Hospital Readmissions
Reduction Programpenalties and potentially apply to the 25%of
Medicare eligible Department of Defense (DoD) beneficiaries,21

are levied againstDoD facilitieswhen readmissions occur. These
penalties, along with the continual desire to improve patient
care, spurred interest in developing andprospectively validating
ML models aimed at reducing readmissions.

Objectives

Beginning in 2016, MAMC Clinical Informatics (CI) and
KenSci, a ML company, collaborated to develop, test, and

validateML-based predictive readmissionmodels. Operating
within the DoD health care environment presents unique
opportunities and challenges for ML applications. Specifi-
cally, considerations such as health system size, complexity,
and necessary safeguards introduced several variables that
distinctly impact health information technology (HIT) pro-
jects. The aim of this work is to develop and externally
validate ML-based models for all-cause risk of readmission
within a DoD health care facility: a large, complex, and
integrated health care delivery network.

Methods

Study Design and Setting
MAMC is a tertiary care DoD medical facility located in Joint
Base Lewis-McChord in Tacoma, Washington, United States.
The MTF serves over 110,000 active duty service members,
their families, and military retirees. MAMC, through an
agreement with community hospitals, also provides emer-
gency and inpatient care services for civilians whose proxi-
mity and condition require activation of the local trauma
system. The hospital has 243 inpatient beds and approxi-
mately 15,000 inpatient admissions each year. MAMC, and
other MTFs, functions as integrated delivery networks and
offer inpatient, outpatient, and pharmaceutical services to
beneficiaries. Several DoD-specific approvals were required
to begin the project and this project was considered Quality
Improvement by the MAMC Institutional Review Board.

The initial retrospective cohort included all MAMC inpa-
tient encounters from January 2014 to January 2016. A read-
missionoccurred if a patientwashospitalized atMAMCwithin
30 days of discharge from the index hospital stay. Given the
available data, we were unable to exclude planned readmis-
sions for the analysis. For all included encounters, the patient
was alive at the time of discharge. A discharge status flag was
present in thedataanddistinguisheddischargedpatients from
transfers. Thirty-day readmissions were only captured if they
occurred at MAMC, as opposed to other DoD or civilian
hospitals. Patient encounters were excluded in cases where
encounter discharge date was later than 30 days prior to the
date of data extraction (to ensure 30 days of follow-up).

Data Sources and Data Preprocessing
The data sources that comprise the DoD EHR include several
noninteroperable health information systems with disparate
naming conventions and ontologies. The data includes patient
comorbidities, health care utilization elements, and pharma-
ceutical details. Data captured at the point of care, such as vital
signs and certain laboratory results, is available in the EHR.
Data from the outpatient documentation system was not
available for this project. Free-text clinical notes were not
codifiedwhen data sources were identified andwere omitted.

Raw data elements from the EHR and other sources
required significant preprocessing prior to model building.
Twenty-one laboratory test parameters were selected for
model inclusion (►Table 1). The parameters were selected
basedon information available in the literature and input from
the project’s subject matter experts. There was considerable
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Table 1 Features included in the AdaBoost v1 and v2 models

Model Initial model Revised model
(additional features)

Admission
details

Admission diagnosis
Date/Time
Admitting physician
Admitting ward
Admitting division
HCDP code
Primary care provider (PCP)
PCP location

Sociodemographics Year of birth
Ethnicity/Race
Sex/Gender
Marital status
Military grade
Insurance coverage
Home Zip code

Military rank

Comorbidities Acute coronary syndrome HIV
Alcohol abuse Lung disorder
Anemia Malnutrition
Arrhythmia Myocardial Infarction
Asthma Nephritis
Atherosclerosis Other heart disease
Cancer Paralysis
Cardiorespiratory failure Peptic ulcer
CHF PVD
CKD Other psychiatric disorder
Cerebrovascular disease Renal failure
Complicated diabetes Rheumatic
Connective tissue disorder Sepsis
COPD Solid tumor
Dementia Ulcer
Depression Uncomplicated diabetes
Fluid disorders Urinary tract disorder
Gastrointestinal disorder Pneumonia
Other liver disease

Charlson Comorbidity Index

Vital signs Heart rate
Respiratory rate
Temperature
Systolic blood pressure
Diastolic blood pressure
Pain score

Pharmacy Number of prescriptions
Number of new prescriptions
Rx filled (total)
Rx dispensed (index admission)
Rx dispensed (prior to admission)
Medication type (NDC class)

Laboratory
results

Sodium, glucose, calcium,
potassium, creatinine, blood
urea nitrogen, total protein,
albumin, total cholesterol,
white blood cell count, red
blood cell count, hemoglobin,
hematocrit, platelets,
international normalized ratio (INR),
alanine transaminase (ALT),
aspartate transaminase (AST),
bilirubin, brain natriuretic
peptide (BNP), pro-BNP

Abbreviations: CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; HCDP, health care delivery
program; HIV, human immunodeficiency virus; PCP, primary care provider; NDC, National Drug Class; PVD, peripheral vascular disease; Rx,
prescriptions.
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variability in the naming conventions for each laboratory test
parameter. For example, “Glucose” is labeled: “GLUCOSE
POCT,” “GLUCOSE, COBAS,” and “GLUCOSE (WRB-COBAS),”
among other variations. This variation is due to lack of stan-
dardization at the data entry level. We relied on our subject
matter experts to map each laboratory result name to its
parent parameter, as with “GLUCOSE” variations above.
Laboratory values were maintained as continuous variables.
We did not utilize normal or abnormal result flags in model
building.

Comorbidities were encoded according to International
Statistical Classification of Diseases and Related Health Pro-
blems (ICD) 9 and 10 codes.22 These diagnoses were then
grouped according to Clinical Classification Software (CCS)
groups. The 38most common CCS groups, verified by clinical
domain experts, were used in the model (►Table 2). CCS
group selection was guided by our subject matter experts’
experience and evidence from the peer-reviewed literature.
Patient records containing current and historical encounter
information (vital signs, laboratory values, and diagnostic
codes) were combined with derived features, such as length
of inpatient stay, to provide additional inputs. For some
patients, this could be many years of included data and
features. Prior admission count for each unique encounter
was defined as the number of MAMC inpatient encounters
the patient had prior to the current encounter, that is, the
encounter being scored. Prior emergency visit count was
defined as the number of MAMC emergency visits for the
patient in the 6 months prior to the current encounter.
Length of stay from prior inpatient encounters was calcu-
lated as the number of days from date of admission to date of
discharge. This variable was encoded as an integer and
fractions of days were not considered. Thus, the ceiling
functionwas used for considering fractions of days. Observa-
tional stays were not encoded differently by the model.
Encounters with invalid ICD code fields were excluded as
were laboratory results with nonnumeric data in the results
field. Multiple inpatient encounters for the same patient
during the study periodwere considered independent obser-
vations by the model. The ensemble methods utilized do not
consider the longitudinal nature of subsequent encounters
and the correlation between intrapersonal encounters was
managed by the learning algorithm.23

Feature selection was informed by literature review, dis-
cussions with subject matter experts, and prior work by
KenSci.16,24–27 Transformed features were automated and
features from multiple sources were flattened into a single
record for modeling. Multiple methods of imputation were
explored to manage null or missing values, including k-
nearest neighbor (KNN),28 carry forward, and mean value
imputation. In KNN imputation, the k closest neighbors
(based on other data values) to the encounter with the
missing field are identified. The mean of the feature under
evaluation is then abstracted from the nearest neighbors and
imputed. In carry forward imputation, the last complete
value for that field is used to complete the missing field.
For example, if the laboratory result for albumin is missing,
the patient’s most recent albumin prior to the missing one is

Table 2 CCS codes used in feature construction

CCS group CCS code

CHF 108

COPD 127

Asthma 128

Renal failure 157

Uncomplicated diabetes 49

Complicated diabetes 50

Septicemia 2

Pneumonia 122, 129, 130

Chronic kidney disease 158

Anemia 59, 60, 61

Cerebrovascular disease 109, 111, 113

Cancer 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34,
35, 36, 41

Arrhythmia 106, 107

Connective tissue 210, 211

Dementia 653

Depression 311

Drug / Alcohol disorder 660

Fluid disorders 55

HIV 5

Nutrition deficiencies 52

Nephritis 156

Paralysis 82

Gastroduodenal ulcer 139

Atherosclerosis 114

Acute coronary syndrome 101

Cardiorespiratory failure/ Shock 131, 249

Rheumatic 96

Gastrointestinal disorder 153, 154, 155

Hematological 62, 63, 64

Lung disorder 133

Myocardial infarction 100

Other heart disease 104

Psych disorder 650, 651, 652, 655,
656, 657, 658, 659,
660, 661, 662, 663, 670

Peripheral vascular disease 115

Solid tumor 39

Ulcer 199

Urinary tract disorder 159, 160

Other liver disease 151

Abbreviations: CCS, Clinical Classification Software; CHF, congestive
heart failure; COPD, chronic obstructive pulmonary disease; HIV, human
immunodeficiency virus.
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carried forward into the missing field. Mean value imputa-
tion involves calculating the mean value for that patient for
the missing parameter. In this case, the patient’s calculated
mean albumin for all nonmissing results is used as the value
for the missing field. Twenty-one laboratory test parameters
were included as defined above. The feature space was
reduced to reduce the noise of the predictive model. We
applied principal component analysis to identify the top
binary features to capture > 80% of the variance in the
data.29 After feature selection, 54 features were used in the
model (summarized in ►Table 1).

We modeled 30-day risk of readmission as a binary
classification task, with the negative class nonreadmitted,
and the positive class readmitted. The model generated a risk
score between 0 and 1 for each patient based on the available
data, with a score closer to 1 indicating a higher likelihood of
readmission. Specificity, sensitivity/recall, precision/posi-
tive predicted value, accuracy, and C-statistic of the receiver
operating characteristic (AUC) curve were used to evaluate
model performance.30 Four ML algorithms were evaluated
for this task: decision tree,31 AdaBoost,12 random forest,32

and logistic regression.33 Decision trees are commonly uti-
lized in health care ML, as they provide easily interpretable
algorithms and results for clinical use. Logistic regression is a
classic statistical andML algorithm to utilize whenmodeling
a binary outcome (readmitted or nonreadmitted). The output
of logistic regression algorithms is similar to that of decision
trees in that it is typically readily interpretable without
specialized knowledge. Boosting methods, such as AdaBoost
and random forest, are commonly used with health care
data.12 These methods refer to an ensemble of decision trees
constructed through boosting. We used a stochastic gradient
boosting with 50 iterations where at each iteration of the
algorithm, a base learner fits on a subsample of the training
set drawn at random without replacement.34

Outcomes
The primary outcome of this work is to predict the risk of 30-
day readmission for each inpatient encounter. The input
feature vector is Xi ¼ xi1, xi2, …xin for an encounter i that
contains the n features mentioned in table. Each row is
designed to represent an encounter at the hospital for every
patient. The goal is to predict Y (1/0) if the patient will be
readmitted to MAMC within 30 days of discharge.

Analysis
After building and testing the ML model on the retrospective
cohort,we attempted tovalidateourmodelwith prospectively
scored inpatient encounters. Within the initial MAMC retro-
spective inpatient cohort, a patient was predicted to be in the
readmitted class if the resulting risk score was greater than
0.25, the Youden threshold determined by the model.35 We
optimized the precision, recall, and AUC with 10-fold cross-
validation. Cross-validation is considered to be a superior
method for assessing model performance as compared with
the holdout method since cross-validation gives a better
estimate of the generalization error.36 Cross-validation was
also used to test model generalizability and overfitting.37 Risk

scores were only generated once for the retrospective cohorts
(both original and revised) at the time of patient discharge. For
the prospective cohorts, risk scoreswere generated at the time
of patient admission, once daily throughout the hospital stay,
and at the time of discharge. The risk score at the time of
discharge was then utilized to evaluate model performance.
Only data available at the time of scoring was used for all
scoringmodels. For the prospective cohort, asmore data from
laboratory tests and other results become available, the mod-
els are updated to reflect patient status (►Fig. 1).

Model performance assessment on prospective inpatient
data at MAMC began in June 2017. Data validation was
performed by the MAMC CI database analyst with daily data
inspection for inconsistencies. The prospective performance
of the model was evaluated after 3 months by comparing
model predictions, based on discharge readmission risk score,
to actual readmissions. The prediction of readmission was
returned as a continuous value between 0 and 1. The risk of
readmission (RoR) tool actively scored admitted patients
every 24 hours as their clinical records updated.

Results

Initial Retrospective Results
We utilized data from 32,659 inpatient admissions involving
24,499 individual patients admitted to MAMC from Janu-
ary 2014 to January 2016 for the initial retrospective analy-
sis. For each of our predictor variables all missing data was
imputed using mean imputation.

Multiple methods of imputation were initially evaluated;
however, the required computing power of KNN imputation
was prohibitive for the near-real time scoring scenario
required by the clinical users. The prevalence of missing
data, based on the number of inpatient encounters, for select
features is show in ►Table 3. There were 3,085 all-cause 30-
day readmissions (9.4%) during this time. Four different ML
approaches were applied to this classification problem; of
these, AdaBoost exhibited the best performance across
metrics including accuracy, recall, and AUC (►Table 4).
Model performance was compared with the LACE model, a
frequently used rules-based risk of readmission score.38 The
LACE score incorporates four variables when predicting risk
of readmission: length of stay, acuity of admission, comor-
bidities, and number of emergency department visits in the
prior 6 months. The AdaBoost model surpassed the LACE
model in all performance metrics, as shown in ►Table 4.

Initial Prospective Results
Prospective model evaluation began in June 2017. Patients
with recent inpatient stays were labeled into readmitted or
nonreadmitted classes according to their RoR scores. This
model utilized the same identified variables as the retro-
spective evaluation. Mean imputation was similarly used.
The performance of the model was evaluated after 11 weeks
of clinical use (June 12–August 24). Admissions from June 12
to July 20 were included in the analysis, to ensure at least
30 days of follow-up. During this period, 1,574 patients were
admitted to MAMC and 152 were readmitted within 30 days
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of discharge (9.7%). The AdaBoost model discriminated
between readmissions and nonreadmissions with an accu-
racy of 0.60, precision (positive predictive value) of 0.15,
recall (sensitivity) of 0.66, and an AUC of 0.64 (►Table 5).

Revised Model Results
The performance of themodel on prospective data prompted
involved clinicians, data scientists, and engineers from
MAMC and KenSci to reevaluate the risk of readmission
model. Several working sessions followed to discuss, revise,
and augment the model including advanced feature devel-
opment over the following weeks. A revised version with
additional features was then tested on retrospective data
reflecting inpatient admissions that occurred from Janu-
ary 2014 to June 2017. This data set included 42,392 admis-
sions of 32,219 patients. There were 3,894 30-day
readmissions within this group, 514 of which occurred in
patients less than 18 years of age. The revised features were
based on the availability of data sources and discussionswith
subject matter experts. These additional features included
Charlson Comorbidity Indices for modeling patient comor-
bidities,39 military rank as a surrogate for socioeconomic
status, and pharmaceutical data incorporated using National
Drug Code drug class flags. Pharmaceutical data, which is
available fromMTF-provided inpatient and outpatient phar-
maceutical services, included data related to present and

Fig. 1 Data incorporated and time of scoring for retrospective (A), prospective (B) and revised (C) models.

Table 3 Prevalence of missing data for patient vital signs
(initial retrospective cohort)

Data element % missing

Heart rate 5.5

Systolic blood pressure 17.2

Diastolic blood pressure 17.1

Pulse oxygen 20.7

Temperature 6.6

Respiratory rate 5.7

Table 4 Retrospective performance metrics of ML algorithms
and LACE

Model Accuracy Precision Recall AUC

AdaBoost 0.64 0.18 0.73 0.68

LACE 0.61 0.17 0.70 0.65

Decision tree 0.59 0.21 0.65 0.60

Random forest 0.62 0.20 0.71 0.65

Logistic regression 0.55 0.15 0.51 0.54

Abbreviations: AUC, area under the curve; ML, machine learning.
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historical prescriptions ordered, filled, and dispensed. Phar-
maceutical data was incorporated into the model as drug
class (benzodiazepines, antidepressants, etc.) and included
flags for new prescriptions over the past 1 and 6 months.
Military rank of the service member was imputed to depen-
dents. Two specialized models were included in the ensem-
ble: one for pediatric patients (age < 18 years) and a second
model for adult patients (age � 18 years). The revised model
was retested on the retrospective patient cohort and exhib-
ited improved performance metrics (►Table 5). The revised
model achieved an AUC of 0.76 with these modifications.

Discussion

The purpose of this work was to develop and prospectively
validate the performance of an ML-based solution for pro-
spectively predicting 30-day readmissions. This work repre-
sents significant collaboration between a government entity
and a private company, each providing key expertise in an
attempt to solve a significant problem in health care. Similar
to the work of Escobar et al, buy-in from the HIT team was
critical to the success of this project and the MAMC CI team
was instrumental.40 This work builds on that of Choudhry
et al which highlights the need for health care organizations
to partner with information technology companies to
achieve lofty goals.41 The Health Information Technology
for Economic and Clinical Health Act of 2009 aims to improve
coordination of patient care, of which reducing readmissions
is a key component.42

Thederivedmodel reported throughout this article is based
on AdaBoost. AdaBoost is an ensemble learning method that
utilizes multiple models to build the strongest possible
model.12 AdaBoost’s performance is robust in the setting of
missing values,making it particularly usefulwith clinical data.
As an ensemblemethod, AdaBoost can accept a variety of base
algorithms and decision trees were used in this situation. One
advantage of using an ensemble of decision trees is the ability
to incorporatemultiple collinear features intomodels, such as
comorbidity flags and Charlson scores, without concern for
model convergence.43 The ML methods used here also enable
the incorporation of a large feature space. While many EHR-
based models include a relatively low number of features, our
models exploit more of the available data and included 54
features.10Thoughweallowedahighnumberof features inour
model, we did consider the computing power required for
operationalizing this work into a clinical workflow. Decisions
such as the use of mean imputation emphasize to the need to
streamline the computational load of these models as a key
component of applied ML in health care.

Many published works recount predictive RoR models but
few report prospective validation metrics.7,8 The work of
Amarasingham et al is a rare example of a prospectively
validated predictive model.44 The authors of this study pro-
spectively stratified heart failure patients by readmission risk
and intervened accordingly, resulting in reduced readmissions.
The work of Hao et al is notable as an operationalized, exter-
nally validated model of readmission risk using data from a
health information exchange inMaine.18Our plan for data and
clinical validation presented a similar opportunity to prospec-
tively evaluate model performance and to revise the model as
needed. The need for model revision is not unexpected, but
rather points to the critical nature of model validation.45,46 An
iterative process should be expected as a key component of
operationalizingML. Although prospective validation is rare in
health care research, it is more common in other industries
such as tax accounting and gaming.47,48 Altman and Royston
discussed the differences between statistical and clinical vali-
dation, and the importance of each.49 The authors write that it
is insufficient to describe a predictive model’s performance
based solelyon retrospectivedata, yet it is toocommonly found
in the published literature.49Model performance is frequently
describedasbeing “excellent”or “verygood,”basedsolelyon its
performance on retrospective data. Overfitting and other
problems can occur, often giving a false depiction of model
performance.45Furthermore, thedynamicnatureof real-world
data introduces computer science problems such as “concept
drift.”50 This is particularly true in health care where patient
populations shift, and thedistributionsofdisease, patients, and
patient characteristics constantly evolve. Predictive models
must be continuously tested on new data to address concept
drift and related issues, which includes data collected asyn-
chronously.51 Risk model validation, especially models that
may influence clinical care, is an emerging field of research of
vast importance as the interface between artificial intelligence
and health care grows.45

In this work, model performance improved after feature
enhancement. The primary set of features used for model
building was based on availability during model construc-
tion. The inclusion ofmilitary rank, pharmaceutical data, and
Charlson Comorbidity Indices in our revised model substan-
tially improved predictive performance. The role of socio-
economic features, or their surrogates, has been discussed in
the literature with mixed results.52,53 Military rank is an
interesting surrogate for socioeconomic status, as it is nearly
uniformly collected among military beneficiaries and can be
extended to a spouse or other family members.54 Other DoD
research has reported that military rank does not signifi-
cantly correlate with outcomes in military health care, citing

Table 5 Comparison of AdaBoost model performance on retrospective and prospective data

Model Data type Accuracy Precision Recall AUC

AdaBoost v1 Retrospective 0.64 0.18 0.73 0.68

AdaBoost v1 Prospective 0.60 0.15 0.66 0.64

AdaBoost v2 Retrospective 0.73 0.23 0.76 0.76

Abbreviation: AUC, area under the curve.
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the single payer system as reducing socioeconomic dispa-
rities.55,56 Prior work by Forster et al demonstrated that drug
classes can be predictive of adverse events, particularly in
elderly patient cohorts.57 Other additional features included
incorporating a patient’s Charlson Comorbidity Index to
model comorbidities, a scale commonly used in other such
models.39 Additionally, the initial model attempted to score
all inpatients (from pediatrics to adults) using one model.
This was revised to two models in the ensemble, one for
pediatric patients (< 18 years old) and one for adults.

While the revised model’s performance metrics show
improvement, as discussed above, these results are based
solely on retrospective patient data. The reported metrics for
our revised model are based on a sample of inpatient encoun-
ters that overlapwith the populations used in both the original
retrospective evaluationandtheprospective study. Thismodel
requires exposure to new data to truly evaluate its perfor-
mance and clinical value. We plan to validate this model on
prospective data using a similar approach as described in this
article. Additionally, by nature of our access to the data under
evaluation, we are unable to determine if the improvement in
the AUCs across our models is statistically significant.

Limitations of this work include the single-center nature
of the encounter data. Right censoring is a common problem
in longitudinal data collection and is often not addressed in
health care studies.10 MTFs provide comprehensive care to
their population, have an integrated payment and billing
systems, and have a particularly strong relationship to the
DoD beneficiaries they serve. As such, we assumed data
capture to be high. This assumption could be more fully
evaluated by examining third-party billing data and tracking
patient encounters, including admissions and readmissions,
at other MTFs. Additionally, the inclusion of planned read-
missions is a limitation of thiswork. It is reasonable to expect
that around 10% of readmissions in a large hospital system
are planned, although rates vary.58 The data sources incor-
porated into the present work did not allow for the exclusion
of these readmissions. Futurework will involve the exclusion
of this type.

As we iterate on this work, we will make available to the
clinical user the patient-specific explanations associated
with each derived risk score. Explainable ML models are a
key component to engender user trust and to ensure the
validity and accuracy of an individual patient score.59 These
associated factors may provide additional insight to the end
users in terms of actions to take to reduce a patient’s future
readmission risk.

Conclusion

Hospital readmissions and successful methods to prevent
them, is a central problem for health systems and a problem
many attempt to solve with predictive analytics. Introducing
a predictive analytics solutionwithin anMTFadds increasing
complexity to this problem due to infrastructure and HIT
requirements. Our project highlights the challenges of devel-
oping and externally validatingMLmodels in health care and
the potential for significant collaboration between civilian

and military partners to advance military health care. Our
work also demonstrates the importance of iteratively
improving ML algorithms using prospectively collected data.

Clinical Relevance Statement

This study demonstrates a successful collaboration and
implementation of advanced predictive analytics in a large
military hospital. Further development of this predictive tool
has the potential to augment clinical care in health care
settings to achieve the quadruple aim of better care,
improved patient and provider satisfaction, and reduced
health care costs.

Multiple Choice Questions

1. Evaluating a prognostic model for clinical use involves all
of the following EXCEPT:
a. Model validation using prospective data.
b. Awareness of data nonstationarity.
c. Removing all records with missing values.
d. Consideration of model calibration.

Correct Answer: The correct answer is option c. Two very
important aspects of a clinically directedmodel aremodel
and data health. To ensure model and data health, the
model must be evaluated in terms of calibration and
discrimination using prospective data, or data that was
not used in model training. A plan for evaluating model
drift, or nonstationarity, must also be considered, as the
distribution of the population and associated events is
likely to change over time. The handling of missing data
must also be addressed; however, the blanket removal of
all records with missing values is not usually done.

2. An advantage of machine learning models over more
traditional statistical models used in health care and
medicine includes which of the following?
a. The ability to model relationship linearly.
b. The ability to automatically incorporate a variety of

complex relationships between available features.
c. The ability to generate human understandable risk

scores.
d. The ability to discern the weight of different features in

the model output.

Correct Answer: The correct answer is option b. Advan-
tages ofmachine learning strategies to address health care
problems include the ability to efficiently analyze “big
data,” to employ multiple models, to model nonlinearity
and complex interactions between variables, and to
develop local models for specific cohorts or populations.
Both machine learning models and traditional statistical
methods like those that are regression-based enable
linear modeling of the model and its variables. Both
machine learningmodels and traditional statistical meth-
ods can generate risk scores that are understandable to a
human. Also, both approaches have the ability to discern
the weight of different features in the model output.
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