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Abstract

Background and Purpose—Graph theory analysis of brain connectivity data is a promising 

tool for studying the function of healthy and diseased brain. The consistency of resting state 

functional MRI (rsfMRI) connectivity measures across multiple scanner types is an important 

factor in designing multi-institutional research studies and has important implications for potential 

use of this technique in a heterogeneous clinical setting. We sought to quantitatively study the 

inter-scanner variability of rsfMRI graph theory metrics obtained from healthy volunteers scanned 

on three different scanner platforms.

Methods—In this prospective IRB approved study, 9 healthy volunteers were enrolled for brain 

MRI on 3 3T scanners (Magnetom Prisma, Skyra, and Trio, Siemens, Erlangen, Germany) in 3 

separate scan sessions within approximately 1 week. Standard pre-processing of rsfMRI was 

performed with SPM12. Subject scans were normalized to MNI space, and connectivity of 116 

ROIs based on the automated anatomic labeling (AAL) atlas were calculated using Conn toolbox. 

Whole-network graph theory metrics were calculated using Brain Connectivity Toolbox, and intra-

class correlation (ICC) across three scan sessions was assessed.

Results—A total of 25 rsfMRI exams were completed in 9 subjects with a median-intersession 

time of 3 days. Among all three sessions, there was good to excellent agreement in characteristic 

path length and global efficiency (ICC 0.79, 0.79) and good agreement in transitivity, local 

efficiency and clustering coefficient (ICC 0.72, 0.69, 0.62).

Conclusions—There was high consistency of graph theory metrics of rsfMRI connectivity 

networks among healthy volunteers scanned on three different generation 3T MRI scanners.
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Introduction:

Resting state functional magnetic resonance imaging (rsfMRI) has emerged in the last 

decade as an important research tool for evaluation of the brain in health and disease. First 

described in 1995 by Biswal et al, spontaneous slow (<0.1 Hz) fluctuations of blood oxygen 

level dependent (BOLD) signal in spatially distinct brain regions is used to infer the 

connectivity between these regions.1 There are a multitude of approaches to rsfMRI data 

analysis, including seed-based analysis, independent component analysis (ICA), and graph 

theory analysis.2–4 The strength of graph theory lies in its established mathematical 

foundation and general applicability to various networks, including both functional and 

structural brain networks constructed using data from rsfMRI, magnetoencephalography, 

and diffusion tensor imaging.5 The local and global properties of networks can be 

summarized as various metrics to provide insight into the interaction between different brain 

regions.

Numerous recent studies using graph theoretical analysis have demonstrated group level 

differences between disease states; however, there are yet several barriers to clinical 

translation.6–8 Importantly, the test-retest reliability of any measure must be defined before 

incorporating it in trials or using it as a diagnostic test. Reproducibility of graph theory 

analysis in functional imaging has been studied in several prior works and summarized in 

two recent reviews.9,10 While the influence of various acquisition and processing factors 

have been studied, no study to our knowledge has evaluated the variability of graph 

theoretical networks across different MRI platforms.11–13 Cross-platform consistency is 

critical for conducting and comparing multi-institutional studies and for applicability to a 

heterogeneous clinical environment with many scanner types. The goal of this study is to 

evaluate the variability of graph theoretical metrics in normal subjects by performing three 

scanning sessions on each subject on different 3T MRI platforms.

Methods

Participants

This prospective study was approved by the local Institutional Review Board, and individual 

consent was obtained from each subject. Healthy volunteers aged 18 or older were recruited 

from the community to be included in the study. Exclusion criteria were known current or 

prior neurological or psychiatric disorder, current substance use disorder and 

contraindication to undergo MRI such as metallic implants. The median age of the patients 

completing the study was 35 (interquartile range 32 – 41), with 5 females and 4 males.

MR Scanning

Each patient underwent brain MRI on three 3T MRI scanners in separate sessions within 

approximately a week (Magnetom Trio, Magnetom Skyra, Magnetom Prisma, Siemens 

Healthineers, Erlangen, Germany). The three platforms differ in gradient performance, bore 

size, option of coils and electronic systems, and are the most commonly used 3-Telsa 

scanners for research purposes that are manufactured by Siemens. Seven of the 9 subjects 

completed all three sessions, while 2 subjects did not complete the scan on the Magnetom 
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Skyra due to software malfunction. Median intersession time was 3 days (interquartile range 

2–5 days).

RsfMRI was acquired with subjects remaining awake and eyes fixed on a stationary marker. 

Multiband echo planar imaging (EPI) blood oxygen level dependent (BOLD) acquisition 

was performed using 64 channel coils for both Prisma and Skyra scanners and a 32-channel 

coil for the Trio scanner with the following parameters. Scanner 1 (Magnetom Prisma), 

subjects 1–7: TR 720 msec, TE 37 msec, acquisition time 7.2 min, voxel size 2 mm, matrix 

104 × 104, FOV 208 × 208 mm, MB 8; subjects 8–9: TR 750 msec, TE 37 msec, acquisition 

time 8.25 min, voxel size 2.5 mm, matrix 88 × 88, FOV 220 × 220 mm, MB 6. Scanner 2 

(Magnetom Trio): TR 750 msec, TE msec 37, acquisition time 8.25 min, voxel size 2.5 mm, 

matrix 88 × 88, FOV 220 × 220 mm, MB 6. Scanner 3 (Magnetom Skyra): TR 747 msec, TE 

37 msec, acquisition time 8.25 min, voxel size 2.5 mm, matrix 88 × 88, FOV 220 × 220 mm, 

MB6. Additional MRI sequences were acquired at each session, including structural T1 

MPRAGE data using 1 mm isotropic voxels.

Pre-processing

Pre-processing of functional and structural data was performed using commonly used open-

source software as follows. First, EPI distortion correction of the functional data was 

performed on opposing phase encoding direction BOLD acquisitions using FMRIB 

Software Library Topup (FSL v6.0, FMRIB, Oxford, UK). Next, Statistical Parametric 

Mapping (SPM12, Wellcome Centre for Human Neuroimaging, London, UK), based pre-

processing pipeline in Conn Toolbox 2017 (McGovern Institute for Brain Research, MIT, 

Cambridge, MA) was used to perform functional realignment, motion estimation, structural 

segmentation and normalization, functional normalization to Montreal Neurologic Institute 

(MNI) space, functional outlier detection, band-pass filter of 0.01 to 0.1 Hz, and regression 

of confounding affects (white matter, CSF, realignment, artifact scrubbing).14 Processed 

region-wise BOLD times-series data from 116 brain regions as defined by the Automated 

Anatomic Labeling (AAL) atlas was exported for further analysis.15

Correlation matrix

Intrinsic brain connectivity between the regions in the AAL atlas were calculated from the 

extracted BOLD time-series data using partial correlations.16 Partial correlation measures 

the direct connectivity between two nodes by estimating their correlation after regressing out 

effects from all the other nodes in the network, hence avoiding spurious effects in network 

modeling. We estimated the partial correlation matrix using the DensParcorr R package 
which is based on an efficient and reliable statistical methods for estimating functional 

connectivity via partial correlation in large scale brain networks.17 Subject/scanner-specific 

connectivity matrix of the AAL atlas was estimated based on each subject’s rs-fMRI scans 

obtained at each of the 3 MRI scanners.

Graph theory analysis

A weighted undirected graph was constructed from the partial correlation matrix using Brain 

Connectivity Toolbox (Mikail Rubinov and Olaf Sporn) implemented in Matlab 

(Mathworks, Natick, MA). The nodes were defined by the AAL regions and edge weights 
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were defined by partial correlation coefficients, with a graph density of 0.4 (preserving the 

weights of the top 40% of partial correlations). We calculated common global network 

measures including global efficiency, transitivity and characteristic path length, and local 

network measures including local efficiency and clustering coefficient. Characteristic path 

length is the average of the shortest length between nodes in the network. Global efficiency 

is the average inverse shortest path length in the network, and local efficiency is the same 

metric calculated in node neighborhoods. Clustering coefficient is the fraction of triangles 

around a node and reflects how many of an individual node’s neighbors are neighbors of 

each other, whereas the related measure transitivity is the ratio of the triangles to triplets 

within the entire network.5

Intraclass correlation

We then assessed the agreement/reliability among the network measures across the 3 MRI 

scanners using intra-class correlation (ICC). Specifically, we used a two-way mixed single 

score ICC which is based on two-way ANOVA with the three scanners as fixed effects and 

subjects as random effects, and the unit of analysis is measurements obtained on every single 

scanner.18,19

Results

The overall ICC across three scanners for global efficiency, local efficiency, transitivity, 

clustering coefficient and characteristic path length ranged from good to excellent, and were 

0.79, 0.69, 0.71, 0.62 and 0.79 respectively. Table 1 includes overall as well as pairwise ICC 

results. Seven subject data were used to calculate overall ICC results and pairwise ICC for 

scanner1 vs 3 and scanner 2 vs 3, due to missing data from subjects 1 and 3. Data from all 

nine subjects were used to calculate pairwise ICC for scanner 1 vs 2.

To provide more detailed information on the variability of these measures, Figure 1 present 

the scatterplot of the estimated global network measures for each of the nine subjects using 

the three scanners. For variability of local network measures, Table 2 presents the top 20 

regions in the AAL atlas with the highest ICC for local efficiency and cluster coefficient. 

Figure 2 presents the ICC maps of the local efficiency and clustering coefficients for the 

regions in AAL atlas.

Discussion

Graph theoretical analysis of functional imaging is a promising tool for studying normal 

cognition and disease, and its variability both within and across scanner platforms is of 

paramount importance to its translation to clinical use. A recent review of 23 studies on the 

reproducibility of both functional and structural connectivity graph theory metrics found 

intersession agreement mostly reached good (ICC 0.60–0.74) and excellent (ICC>0.74) 

range.10 The implication of many methodological considerations on reproducibility have 

been evaluated by past studies, including scan interval and length, band-pass filter frequency 

range, global signal regression, correlation method, atlas choice, weighted or unweighted 

network, thresholding method for graph construction.13,20–24 While it is well known that 

these and other methodological factors will have significant impacts on rsfMRI results, a 
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recent meta-analysis found that only frequency band selection and length of acquisition had 

a significant impact on test-retest reliability.9

Our study is the first to study the variability of graph theoretical metrics in rsfMRI across 

different scanner platforms. To this end, our results show good to excellent test-retest 

reliability for commonly used global and local measures, in a similar range to those report 

by same-scanner studies. Our study has several limitations, one of which is the limited types 

of scanners used. We used only Siemens 3T scanners in this study due to availability and 

wish to maintain consistency in acquisition parameters, and this can affect our results and 

limit its generalizability to a mix of other scanner vendors, types and strengths. The design 

of our study did not allow us to isolate the across-scanner variability from inter-session 

variability. A future study that would address this question would require repeated scans on 

each scanner in different sessions. Our results are nevertheless important in that such high 

consistency was obtained with both potential sources of variability. Although direct 

comparison with prior studies that evaluated inter-session variability cannot be done due to 

various methodologic differences, the variability in our results tended to trend lower than 

previously reported. This is encouraging and adds another data point to the existing literature 

that supports the same-scanner reproducibility of graph theory metrics. We strived to 

maintain of the scanning parameters across three scanners, although subjects 1–7 scanned on 

scanner 1 (Prisma) were scanned at a higher spatial resolution and shorter time than the rest 

due to unintended protocol deviation. As our analysis was performed on ROI-level and not 

voxel-wise data, and the acquisition time differences were small, these deviations did not 

seem to affect the pair-wise variability between this and other scanners (Table 1). It was also 

not our goal to evaluate the effect of various pre- and post-processing methods, so we used 

commonly used public atlas (AAL) and post-processing pipelines (Conn and Brain 

Connectivity Toolbox).

From our results, we can conclude that by using fairly consistent scanning parameters and 

standard processing, good to excellent consistency of graph theory metrics can be achieved 

across three different Siemens 3T scanner platforms. Future studies including scanners from 

a broader range of vendors and of different magnet strengths, perhaps at multiple sites, 

would provide additional information about the generalizability of these findings.
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Figure 1: 
Scatterplot for global graph theoretical metrics (a) global efficiency, (b) transitivity, and (c) 

characteristic path length on three scanners. Subjects 1 and 3 did not complete scan on the 

Skyra.
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Figure 2: 
ICC maps of local graph theoretical metrics (a) local efficiency (b) and clustering coefficient 

for regions in the automated anatomic labeling atlas. The color of the regions correspond to 

the ICC values as indicated by the color bar.
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Table 1

Intra-class correlation between measures overall and pair-wise between each two scanners

Measure Overall Scanner 1 vs 2 Scanner 1 vs 3 Scanner 2 vs 3

Global efficiency 0.79 0.83 0.81 0.75

Transitivity 0.72 0.81 0.68 0.67

Characteristic path length 0.79 0.79 0.80 0.79

Local efficiency 0.69 0.76 0.67 0.66

Clustering coefficient 0.62 0.70 0.58 0.60

Scanner 1, Magnetom Prisma; Scanner 2, Magnetom Trio; Scanner 3, Magnetom Skyra.
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Table 2:

Top 20 regions in the Automated Anatomic Labeling atlas with highest intraclass correlation for the local 

network measures.

Local efficiency Clustering coefficient

Region ICC Region ICC

‘Occipital Mid L’  0.86 ‘Pallidum L’  0.86

‘Frontal Mid Orb L’  0.85 ‘Frontal Mid Orb L’  0.83

‘Pallidum L’  0.85 ‘Parietal Inf L’  0.80

‘Temporal Pole Sup L’  0.81 ‘Frontal Sup Orb L’  0.79

‘Frontal Inf Orb R’  0.81 ‘Olfactory R’  0.77

‘Temporal Sup R’  0.80 ‘Frontal Sup Med L’  0.77

‘Temporal Pole Sup R’  0.80 ‘Occipital Mid L’  0.77

‘Cerebelum 3 L’  0.80 ‘Cerebelum 3 R’  0.76

‘Lingual L’  0.79 ‘Frontal Inf Orb R’  0.76

‘Frontal Mid Orb R’  0.79 ‘Vermis 3’  0.74

‘Hippocampus L’  0.78 ‘SupraMarginal R’  0.74

‘Frontal Sup Orb L’  0.78 ‘Amygdala L’  0.74

‘Temporal Inf R’  0.78 ‘Fusiform L’  0.74

‘Fusiform L’  0.78 ‘Temporal Inf R’  0.73

‘Cerebelum 3 R’  0.78 ‘Cerebelum 3 L’  0.74

‘Amygdala L’  0.78 ‘Frontal Med Orb R’  0.73

‘Supp Motor Area L’  0.78 ‘Cerebelum Crus1 R’  0.73

‘Cerebelum 9 L’  0.77 ‘Temporal Pole Sup R’  0.72

‘Supp Motor Area R’  0.77 ‘Temporal Pole Sup L’  0.72

‘Cerebelum Crus1 R’  0.76 ‘Supp Motor Area L’  0.71

ICC, intraclass correlation; L, left; R, right; Sup, superior; Mid, middle; Inf, inferior; Orb, orbital; Supp, supplmental.
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