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Abstract

Radiologists are expected to expediently communicate critical and unexpected findings to 

referring clinicians to prevent delayed diagnosis and treatment of patients. However, competing 

demands such as heavy workload along with lack of administrative support resulted in 

communication failures that accounted for 7% of the malpractice payments made from 2004 to 

2008 in the United States. To address this problem, we have developed a novel machine learning 

method that can automatically and accurately identify cases that require prompt communication to 

referring physicians based on analyzing the associated radiology reports. This semi-supervised 

learning approach requires a minimal amount of manual annotations and was trained on a large 

multi-institutional radiology report repository from three major external healthcare organizations. 

To test our approach, we created a corpus of 480 radiology reports from our own institution and 

double-annotated cases that required prompt communication by two radiologists. Our evaluation 

on the test corpus achieved an F-score of 74.5% and recall of 90.0% in identifying cases for 

prompt communication. The implementation of the proposed approach as part of an online 

decision support system can assist radiologists in identifying radiological cases for prompt 

communication to referring physicians to avoid or minimize potential harm to patients.
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1. Introduction

A major challenge in current radiology practice is ensuring the communication of critical or 

unexpected findings in radiology exams to referring physicians [1]. Radiologists are 

expected to communicate critical and unexpected findings to referring clinicians in a timely 

manner to expedite patient diagnosis and treatment. Both the American College of 

Radiology (ACR) and The Joint Commission (TJC) have published practice guidelines and 

requirements that mandate both timely communication and documentation of such 

communications (e.g., typically within the radiology report). Still, communication 

breakdowns between radiologists and referring physicians remain problematic as a result of 

heavy workload and the lack of an automated system to communicate significant clinical 

findings. In fact, the World Alliance for Patient Safety, a World Health Organization (WHO) 

initiative to improve patient safety, has identified the poor communication of medical exam 

results as a serious problem affecting patient care and increasing the risk of missed or 

delayed diagnoses worldwide [2]. Data from medical malpractice insurance companies show 

that in the United States, failure to communicate critical and abnormal radiological findings 

in a timely fashion is estimated to be the second most common cause of litigation against 

radiologists [3].

The goal of the work presented in this paper is to build an effective and accurate system to 

automatically identify patients with radiological findings that need to be promptly 

communicated to their referring physicians based on their corresponding radiology reports. 

Our Natural Language Processing (NLP) methodology aims to classify whether a patient’s 

radiology report requires such prompt communication based on analyzing the free-text 

narratives in the report. Thus, our method could potentially be utilized as an online decision 

support system for radiologists to ensure appropriate communication with referring 

physicians to improve patient health outcomes.

Medical records and clinical notes, such as radiology reports, are recognized as a rich but 

difficult-to-analyze source of medical information [4]. Radiology reports contain a great 

amount of information that characterizes a patient’s medical condition and radiological 

findings. However, this information is mostly in an unstructured format, taking the form of 

free text, and is therefore difficult to search, sort, analyze, summarize, and present [5]. The 

free-text format and the ambiguities and variations of natural language hinder the extraction 

of reusable information from radiology reports for research and clinical decision support [6].

While the specifics of an urgent communication policy vary by institution, some examples of 

critical radiology findings that require prompt communication are as follows: pneumothorax, 

pulmonary embolism, and ectopic pregnancy [7,8]. Since institutional processes vary with 

regard to communicating critical findings, there is no definitive, complete list of specific 

findings that require prompt communication. The free-text nature of the radiology reports 

and the indeterminate nature of which findings necessitate prompt communication lend 

themselves toward an automatic document classification solution using machine learning – 

creating a computational model from the body of reports in a training set labeled for prompt 

communication that can then be used to classify whether new reports require prompt 

communication. The labeling of radiology reports as to whether or not they need to be 
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promptly communicated is a standard example of a documentation classification problem. In 

text classification, various syntactic and semantic features can be extracted as inputs for a 

machine learning framework to train a prediction model for a target outcome variable based 

on the document contents [9].

In the domain of biomedical informatics, text-mining and machine learning methods [10] 

have been developed and utilized to help researchers identify important clinical information 

from a medical narrative in a high throughput manner [11]. There are many examples of 

previous efforts to automatically analyze radiology reports and other medical records. For 

instance, Hobbs developed a system for information extraction based on domain-dependent 

patterns, mapping unstructured biomedical text to predefined structured templates [12]. 

MetaMap has been utilized to map radiology reports and other clinical note text to concepts 

from the Unified Medical Language System (UMLS) Metathesaurus [13]. In another work, 

an unsupervised machine learning approach has been built to group radiology reports from a 

large multi-institutional repository based on their contents in free-text narrative [6]. The 

clinical Text Analysis and Knowledge Extraction System (cTAKES), commonly used for 

information extraction from radiology reports and other medical records, combines rule-

based and supervised machine learning techniques to analyze clinical free text[14]. Medical 

Language Extraction and Encoding System (MEDLEE) was developed to extract 

information from Columbia-Presbyterian Medical Center’s chest radiology report repository 

by using a controlled vocabulary and grammatical rules to translate text into a structured 

database format [15]. Finally, a supervised text classification system was developed to 

annotate and extract clinically significant information from free-text radiology reports [16].

In addition to supervised machine learning approaches for text classification, which require 

a large amount of hand-labeled data for model development and training, semi-supervised 

approaches for text classification utilize small, labeled datasets along with large, unlabeled 

datasets. Banerjee et al. [17] proposed a semi-supervised model that combines a neural 

embedding method with a semantic dictionary mapping technique, creating a dense vector 

representation of unstructured radiology reports, to classify free-text reports of pulmonary 

embolisms. Gupta et al. [18] proposed an unsupervised model to extract relations and their 

associated named entities, using automated clustering of similar relations in narrative 

mammography radiology reports. Wang et al. [19] developed a semi-supervised set covering 

machine to detect ovarian cancer and coronary angiogram related results. Chai et al. [20] 

developed a semi-supervised statistical text classification model to automatically identify 

health information technology incidents in the USA Food and Drug Administration (FDA) 

Manufacturer and User Facility Device Experience (MAUDE) database.

Machine learning techniques have become increasingly common for biomedical information 

extraction and clinical decision support systems due to their scalability and accuracy. Recent 

efforts to develop automated systems for biomedical information extraction and text 

processing have been undertaken, but little work has been done to identify the characteristics 

in clinical notes and reports to determine the need for prompt communication in the clinical 

workflow, particularly with a limited amount of annotations. To tackle this problem, we 

present a semi-supervised learning approach that relies on a small amount of labeled data 

(i.e., seed data) in conjunction with a large amount of unlabeled data to develop a machine 
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learning system that can use the free-text content in radiology reports to identify the 

radiological cases that require prompt communication to referring physicians. Of note, none 

of the model training steps in our approach, including the development of the seed-labeled 

dataset, require manual data review and labeling by domain experts. We also tested the 

generalizability of the proposed approach across different healthcare organizations in our 

evaluation and we expect our methodology can be utilized to identify other characteristics of 

clinical notes by using a small amount of labeled data. The details of the proposed approach 

and its evaluation are presented in the rest of the paper.

2. Materials and methods

We can formalize the identification of cases that need to be promptly communicated by 

radiologists to referring physicians as a text classification problem, in which we classify a 

patient’s radiology report as positive or negative for “prompt communication” based on the 

corresponding radiology report contents. Generally, the need for prompt communication 

arises from a critical or unexpected diagnosis in a radiology finding, and it is an accepted 

practice that this communication should be documented [7,8]. A common practice is for the 

radiologist to document these non-routine, prompt communications using a pre-defined, 

free-text template within the radiology report, such as, “I < radiologist name > discussed 

these critical results with < referring physician name > on < date > at < time > and verified 

that (s)he understood these results,” but there is no widely-accepted standard for this 

template, nor is there uniform guidance on when a finding should be communicated. Thus, 

in practice, cases with urgent findings may not be communicated promptly to referring 

physicians or the communications may not be properly documented.

As mentioned in the Introduction section, generating labeled data to indicate whether or not 

findings in a radiology report need to be promptly communicated to a referring physician is 

the limiting factor in leveraging a supervised learning approach for this task. Therefore, in 

this paper, we propose a semi-supervised approach for solving this classification problem. 

Our approach uses unsupervised distributional representations [21] to extract reports we 

label as seed data, based initially on the common practice of radiologists documenting 

communication within a report. We then use the seed-labeled data and distributional 

representations to model a large dataset of free-text radiology reports. Two models are 

separately created using both nearest neighbor and k-means clustering [22] in iterative 

approaches to discover the structures around the seed-labeled data and these structures are 

then used to assign labels to unlabeled radiology reports. A smaller dataset (n = 180) of 

expert-labeled data is used to fine-tune the structure of our k-means cluster model. Both 

approaches (nearest neighbor and clustering-based methods) rely on an initial small set of 

labeled data (i.e., seed-labeled data), and both approaches iteratively expand the seed-labeled 

dataset to generate the final results. Therefore, both methods can be considered as semi-

supervised approaches. The nearest neighbor model and cluster model structures were then 

each used to label an evaluation dataset. This retrospective study is approved by the 

Dartmouth Institutional Review Board (IRB). An overview of these approaches is shown in 

Fig. 1.
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2.1. Datasets

Training Set: We extracted free-text radiology reports from the RadCore radiology report 

repository [16] to train our semi-supervised model. RadCore, with about 2 million radiology 

reports, is a multi-institutional corpus of radiology reports aggregated in 2007 from three 

major health care organizations: Mayo Clinic (Mayo), MD Anderson Cancer Center (MDA), 

and Medical College of Wisconsin (MCW). All RadCore radiology reports have been de-

identified by their source institutions. This dataset is described in full detail in our previous 

study [16].

Validation and Evaluation Sets: We constructed two smaller, fully-labeled sets of 

radiology reports for fine-tuning our models (i.e., validation set) and for evaluation (i.e., test 

set). These radiology reports were extracted from our institution, Dartmouth-Hitchcock 

Medical Center (DHMC), a tertiary academic care center in Lebanon, New Hampshire. Two 

radiologists (YYC and RTS) manually annotated the reports to establish the ground truth 

labels for these reports. In this manual annotation, a binary label was assigned to an 

individual report to indicate whether a prompt communication was needed on the basis of 

critical or unexpected radiological findings in the report. The disagreements were resolved 

through further discussions between annotators in an adjudication process, and reports with 

commonly agreed labels from the two radiologists were used for validation and evaluation. 

In these datasets, we utilized a balanced mixture of three imaging modalities: (1) Computed 

Tomography (CT); (ii) Magnetic Resonance Imaging (MRI); and (iii) X-ray. Of note, for a 

rigorous validation and evaluation in this study, we programmatically removed the standard 

tags in reports in our dataset that were used at the DHMC Radiology Department to indicate 

unexpected findings and communications to referring physicians. In this process, we 

removed the word “unexpected” and the sentences for “discussed critical results” from the 

DHMC radiology reports to generalize our approach across reports that do not contain 

specific documentation of prompt communication. Through this process, 480 radiology 

reports that balanced across positive and negative cases for prompt communication, and that 

also balanced across all three modalities, were randomly selected as our final test set for 

evaluation. Additionally, a 180-report dataset was selected from the reports not chosen for 

the test set, balanced across positive and negative cases for prompt communication, and was 

used to validate and fine-tune our structures from k-means clustering.

2.2. Learning distributional semantics

To capture the semantics and variability of the textual information, we trained an 

unsupervised distributional semantics neural network on the entire corpus of radiology 

reports in RadCore. This neural network constructed a semantic vector representation for 

each existing word in the texts. This distributional semantics neural network, known as the 

word2vec model [21], relies on the linguistic principle that the meaning of a word (i.e., 

semantics) can be inferred based on surrounding words (i.e., context). Word2vec training 

takes a large corpus of text as its input and produces a vector space, typically consisting of 

several hundred dimensions, with each unique word in the corpus being assigned a 

corresponding vector in the space. The word2vec model considers word distribution in the 

surrounding context windows for each word in the corpus. Word vectors are computed in the 

vector space in such a way that words that share common contexts in the corpus are located 
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in close proximity to one another in terms of vector space [21]. One of the most common 

measures of semantic similarity in NLP is the cosine similarity defined by the dot product 

between two vectors. Cosine similarity is an effective solution for measuring vector 

similarities in a high-dimensional space compared to other distance metrics because it does 

depend on the length of the vector. In particular, the word2vec neural network model is 

trained in an unsupervised fashion to maximize the cosine similarity between vector 

representations of words that have similar co-occurrence patterns. In this work, we tuned our 

parameters utilizing a grid search on the effect of different model architectures, such as 

continuous bag-of-words and skip-gram [21], semantic representation dimensions (from 200 

to 500 with step of 100), and context window sizes (from 3 to 10), for training our model 

through cross-validation on the loss function to select the best model configuration for our 

application. The best word2vec model configuration in our application was the skip-gram 

architecture with a semantic representation dimension of 300 and a context window size of 

8, which provides a tradeoff between the quality of the resulting word vectors and the 

computational complexity.

2.3. Extracting keywords to label seed data

To create a training set for our semi-supervised approaches, we label a small number of 

radiology reports as seed data by incorporating prior domain knowledge in regards to 

whether a report has been communicated. Through discussions with a domain expert (YYC), 

a board- certified academic radiologist with over 18 years of subspecialty practice, we 

recognized that if a radiology report explicitly contains the word “communicated”, the 

radiological findings were most likely communicated to a stakeholder, mainly to the 

referring physician and infrequently to the patient. Of note, the communication with the 

referring physician can happen either before or after the radiology report is finalized. If the 

communication occurs after the finalization of the report, the documentation of this 

communication usually is included in the report as an addendum. Therefore, radiology 

reports can contain the documentation of the radiologist’s communications regardless of the 

timing of the radiology reports.

Since these reports are free text, not all of the radiology reports that require prompt 

communication to referring physicians contain the word “communicated”, nor do all the 

reports that contain the word “communicated” require prompt communication. Due to 

variations in free-text reporting, there are many ways for radiologists to explicitly record 

their communication of critical or unexpected findings to referring physicians in radiology 

reports. In order to identify other possible keywords to build our seed-labeled dataset, we 

used distributional semantic representations to find other keywords highly similar to 

“communicated” in our training set corpus. The similarity to words in our corpus was 

calculated through cosine similarity [23]. Table 1 shows the top words in our corpus most 

similar to “communicated”. As shown in this table, the keywords most semantically similar 

to “communicated” according to our word2vec model are: (1) “relayed”, (2) “conveyed”, (3) 

“called”, (4) “phoned”, and (5) “discussed”. We discussed these words with our domain 

expert (YYC), who helped to verify the valid use of these words in radiology reports.
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To construct a seed-labeled dataset of cases requiring prompt communication to referring 

physicians, we extracted radiology reports from the RadCore repository that contained any 

of the six keywords identified for prompt communication under either the “findings” or 

“impression” section headings in these free-text reports. Focusing on these common sections 

in radiology reports narrows our attention to the current findings and filters out past or 

unrelated cases of communication.

In many cases, communications between radiologists and patients have nothing to do with 

critical findings. For example, the following report excerpt was typical communication 

between a radiologist and a patient: “The proposed procedure, comments, techniques, and 

possible complications were discussed in detail with the patient.” Also, radiologists may 

sometimes communicate their findings with other physicians on the patient’s care team, such 

as primary care providers, when the referring clinician is not available. Only 

communications between radiologists and referring physicians or other physicians on the 

patient’s care team are considered in our training. To remove likely false positive cases, 

where the keywords in radiology reports refer to communications with patients, we used a 

simple rule-based regular expression [24] approach to identify the co-occurrences of 

keywords communicated with “patient” in a sentence of the seed-labeled data. Through this 

approach, we excluded the reports with these “patient” co-occurrences to make sure the 

referred communications were performed with referring physicians instead of patients in our 

seed-labeled dataset.

This labeling of seed data resulted in 261 reports identified for prompt communication with 

referring physicians. Table 2 shows the distribution of the different keywords in the 

radiology reports of our labeled seed dataset. In this seed dataset, two cases contained two 

keywords each. Therefore, the total number of keyword occurrences in our dataset is 263. 

This seed-labeled dataset makes up only 0.013% of all the radiology reports in the 

repository. While the seed dataset contains cases in which the radiology reports contain 

explicit records of prompt communication with referring physicians, not all records with 

critical or unexpected findings, which require prompt communication, contain these 

keywords. Our proposed approaches aim at detecting cases in which the radiology reports do 

not explicitly include these keywords, but the communication is nonetheless necessary due 

to the nature of the radiological findings. As mentioned in the previous section, semi-

supervised learning can be instrumental in this case where there is far more unlabeled data 

than labeled data for training a machine learning model [25]. In the rest of this section, we 

describe our approach that builds upon this seed-labeled data to identify the unlabeled cases 

that require the radiologist to have prompt communication with the referring physician.

2.4. Radiology report representation

To develop our machine learning model, we require a mathematical representation of 

radiology reports. Among different sections of a radiology report, such as clinical history, 

indication, technique, findings, and impression [26], we focus on representing the text in the 

“impression” section. This is because the impression section contains information about 

diagnosis and follow-up recommendations. Therefore, the impression section is the most 

relevant part of a radiology report in identifying cases that require prompt communication to 
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referring physicians. Of note, instead of only focusing on particular sentences in identifying 

critical recommendations [27], in this study, we aim to make use of all the text in the 

impression section.

To represent this text, we leverage the distributional semantics of the words to convert the 

free-text narrative to a vector. To do that, we retrieve the corresponding semantic vector 

representations for words in an impression section through our word2vec model. 

Subsequently, the word2vec semantic vector representations of these words are aggregated 

to reflect the appropriate semantic representation of the full impression section by using the 

following formula:

Vimp = 1
Wimp

∑w ∈ Wimp
Vw

where Vimp is the semantic representation of the full impression section, w is each word in 

the impression section, Vw is the semantic representation of word w, Wimp is the set of 

words in the impression section, and ||Wimp|| is the number of words in the impression 

section. The effectiveness of this method for aggregating the vectors has been shown in 

previous work [18]. As discussed in Section 2.2, our best word2vec model was trained using 

the skip-gram architecture with a semantic representation dimension of 300 and a context 

window size of 8.

2.5. Nearest neighbor-based classification approach

The nearest neighbor algorithm [28] is a simple but effective non- parametric method for 

classification and has been widely used in different applications [29]. The nearest neighbor 

algorithm uses Euclidean distance to calculate a similarity measure between data points; in 

our approach, this is the distance between the vectors representing the impression section of 

different reports. Hence, the algorithm classifies an unlabeled report by assigning it to the 

class of its most similar impression section vector. Fig. 2 shows a conceptual overview for 

the application of this baseline approach on a sample dataset. We used the nearest neighbor 

approach as a method on the vector representations of seed-labeled and unlabeled radiology 

reports to identify the new cases that require prompt communication with referring 

physicians. Newly labeled cases that require prompt communication are added back into the 

seed-labeled dataset. We iteratively labeled new cases based on the extended seed-labeled 

dataset until it stopped growing. The seed-labeled dataset became stable after the 7th 

iteration in our experiment. Including the 261 initial seed reports and 657 newly labeled 

reports, a total of 918 reports were labeled for prompt communication in the training set 

using the nearest neighbor baseline approach.

2.6. Clustering-based classification approach

2.6.1. Clustering seed-labeled data—Clustering algorithms are used in an 

unsupervised fashion to identify the underlying structures in a dataset. Clustering methods 

partition a dataset according to a similarity measure between data points. In this work, we 

iteratively apply k-means clustering [22] on the vector representations of the impression 
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sections in radiology reports of the seed-labeled data. K-means clustering is a simple and 

efficient clustering algorithm that has been used in various applications [30].

To estimate the optimal number of clusters in the training set, we employed the gap statistic 

method [31], which compares the total intra-cluster variation for different values of k with 

their expected values under null reference distribution of the data. The gap statistic method 

aims to find an optimal number of clusters from a given range to relieve the bias caused by 

the initialization process of k-means clustering. We examined the potential range from ten to 

twenty for the number of clusters in our dataset based on a previous topic modeling study on 

the RadCore repository [6]. The optimal cluster was selected based on the largest gap 

statistic score. Similar to the nearest neighbor classification approach, we iteratively ran k-

means clustering to label new cases. This iterative approach added newly labeled cases for 

prompt communication back into the seed-labeled dataset until no more cases were added. 

In our experiment, our method stopped adding more new cases after the 39th iteration. For 

each iteration, we examined the gap statistic, evaluated the number of clusters (k) from ten 

to twenty, and used the k value, which yielded the largest gap statistic as the optimal k value 

for that iteration.

Fig. 3 shows the optimal number of clusters (k) generated by the gap statistic method for the 

seed data (iteration 0) and each of the 39 iterations. Nineteen was the most frequent optimal 

number of clusters generated by the gap statistic method, occurring 34 times. An optimal 

number of nineteen clusters was also verified by a domain expert radiologist in our previous 

topic modeling study performed on the RadCore dataset [6]. Including the 261 initial seed 

reports and 5855 newly labeled reports, a total of 6116 reports were labeled for prompt 

communication in the training set using the clustering approach.

Fig. 4 shows a comparison between the nearest neighbor approach and the clustering-based 

approach with regard to the number of newly labeled cases for prompt communication in 

each iteration throughout training.

2.6.2. Cluster-based classification—This approach uses the final nineteen k-means 

clusters of the training set, after iterating stopped adding new labels, as a basis to classify 

new, unlabeled radiology reports. Fig. 5 shows a conceptual overview of this cluster-based 

approach on a sample dataset.

In order to select optimal radii of these clusters, we employed a grid search for the best F-

score by labeling our validation dataset utilizing the clusters. We calculated the Euclidean 

distance between the impression section vector for reports labeled for prompt 

communication in a cluster from our training dataset and the cluster’s centroid to determine 

a radius for each report. For all of the nineteen clusters, we divided the difference between 

the shortest radius and the longest radius from the centroid in each cluster into twenty 

segments for grid search.

The grid search was performed on our validation dataset, and its overview is shown in Table 

3 and is described in Section 2.1. The impression sections of these reports were aggregated 

through our existing word2vec model as described in Section 2.4. For each of the twenty 
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cluster radius segment sets, we labeled each report in the validation dataset as positive for 

prompt communication if the vector representation for that report’s impression section fell 

within the radii for the clusters. The set of cluster radii that yielded the best F-score on this 

expert-labeled validation dataset was chosen as the “optimal radius” of the clusters; this 

validation result is shown in Table 4 and is graphed in Fig. 6. Subsequently, in our cluster-

based classification approach, the unlabeled cases, for which the vector representations of 

their impression sections in radiology reports fall within the optimal radius of any cluster, 

are labeled as positive for prompt communication with referring physicians, as is shown in 

Fig. 5.

3. Evaluation and results

The evaluation was performed based on our DHMC test dataset to compare the performance 

of the clustering-based approach to the nearest neighbor classification approach as our 

baseline. As described in Section 2.1, we randomly selected 480 reports with ground truth 

labels that were annotated by two radiologists as positive (240 reports) and negative (240 

reports) for prompt communication cases, balanced across the three imaging modalities of 

CT, MRI and X-ray (80 positive and 80 negative for each modality), as our test set for final 

evaluation (Table 5). The impression sections of these reports were aggregated through our 

word2vec model in this evaluation as described in Section2.4.

For the nearest neighbor approach, each report in the test set was assigned a label based on 

the label of its nearest neighbor from the labeled training set of the nearest neighbor method. 

For the clustering- based approach, we calculated the distance between each report vector in 

the test set and the centroid of each cluster in the training set and compared this distance to 

the optimal radius of the cluster as computed in Section 2.6.2. Cases that fell within the 

optimal radius of any cluster centroids were labeled as positive for prompt communication. 

Table 6 shows the results along with precision, recall, and F-score calculated based on the 

expert-labeled test set for both approaches.

4. Discussion

In this work, we presented a new machine learning pipeline as the first step toward a 

generalizable and accurate semi-supervised framework to assist radiologists in identifying 

cases that require prompt communication to referring physicians. This framework can 

potentially help with improving the communication between radiologists and referring 

physicians in the appropriate timeframe to avoid potential harm to patients. Our evaluation 

on an independent test set and the comparison of this clustering-based approach to a baseline 

nearest neighbor method showed our approach could achieve a considerably higher 

performance (F-score: 74.5%, recall: 90.0%, precision: 63.5%) in comparison to the nearest 

neighbor approach (F-score: 53.5%, recall47.5%, precision: 62.3%). Also, our evaluation on 

an internal dataset showed the generalizability of the proposed approach across different 

healthcare organizations. With a relatively low number of false negatives, our approach can 

potentially be utilized to help radiologists to identify critical cases that require prompt 

communication with referring physicians. Of note, our approach produced a considerable 

number of false positives in our evaluation, which may lead to alert fatigue in clinical 
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settings. In future work, we plan to further improve the precision of our model by extending 

our labeled dataset and leveraging ensemble learning to address this limitation. Such an 

ensemble learning approach can combine our cluster-based and nearest neighbor methods to 

improve the results and their balance between precision and recall for clinical applications. 

In addition, advances in electronic health record systems can lead to real-time tracking of 

communications between radiologists and providers and will be instrumental in collecting 

labeled data to improve the proposed model in this study.

Our proposed approach in this paper analyzes free-text radiology reports to provide a 

decision support system to help radiologists identify cases requiring prompt communication 

with referring physicians. These are cases that would be otherwise be missed or overlooked 

due to a radiologist’s heavy workload, lack of administrative support, or complex team 

dynamics within the radiology department as well as with other care groups. This approach 

leverages various machine learning and NLP techniques, such as distributional semantics 

and cluster analysis, to build a semi-unsupervised learning method to identify cases 

requiring prompt communication. The evaluation of our method showed that using only 

unlabeled free text in a semi-un-supervised learning approach along with a minimally 

labeled set for fine tuning can achieve high performance, which is often achievable only 

through access to a large amount of hand-labeled data for model development and training in 

supervised learning approaches. Furthermore, because this semi-unsupervised learning 

method does not require extensive effort to collect labeled training data manually, it can be 

easily extended to other data sources and institutions. To identify reports needing prompt 

communication, institutions with a large radiology report dataset available to train a 

word2vec model can extend the proposed mechanisms to identify seed data and to fine-tune 

cluster parameters. In future steps, we also plan to generalize this approach to classify 

reports based on change, important findings, and urgency.

We randomly sampled 10% of the errors made by our best model (cluster-based 

classification) in our evaluation to conduct an error analysis. In this error analysis, our senior 

radiologist collaborator (YYC) manually reviewed the radiology reports associated with 

each case to assess the potential causes of the errors made by our approach. Through this 

analysis, we observed several patterns in our errors that once remedied can help to improve 

the performance of our methods in future work. For example, some false negatives were 

caused due to explicit requests from referring physicians to radiologists to contact them. 

Therefore, these cases needed to be promptly communicated regardless of the characteristics 

of radiological findings. In some other cases, false negatives were due to the size of the 

radiological findings. For example, small incidental pulmonary nodules (< 6mm) mostly do 

not require prompt communication for low-risk patients, however, larger incidental 

pulmonary nodules can be considered urgent. Of note, in most of the false positive cases, 

although the clinical findings, such as malignancy or brain aneurysm, were significant, 

prompt communication with referring physicians was not needed because the radiology 

exams were performed on in-patients and showed stable or unchanged conditions. In other 

false positive cases, radiologists included recommendations for further actions or follow-ups 

in radiology reports, which were mislabeled for prompt communications by our method. 

This error analysis showed that although the overall performance of our approach is 

promising, careful consideration of the context for radiological exams, such as patient 
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clinical history and status, the nature of communication/follow-up requests, and change in 

radiological findings and their size, in our data modeling and classification can improve the 

performance of our methods.

In our cluster-based approach, we used the clusters from our seed-labeled data as a basis to 

classify unlabeled reports. Through cluster-based classification, unlabeled cases with 

radiology report vector representations that fell within the radius of our seed-labeled data 

cluster centroids were labeled as positive for prompt communication with referring 

physicians. These clusters help to identify different topics and substructures for the 

radiology report in our repository. Therefore, our approach could leverage different 

substructures in the dataset to increase the number of identified cases without compromising 

the accuracy. In future work, we plan to explore the use of other topic modeling approaches 

[32,33] to identify additional potentially helpful substructures in the dataset in an 

unsupervised fashion.

In this study, we used word2vec distributional semantic vectors to capture different findings 

in free text and to represent impression sections of radiology reports. However, the 

word2vec semantic vectors for the words in an impression section of a radiology report were 

aggregated in a bag-of-words model, without considering the dependency relationships 

among them and the sentence structures. In future work, we plan to leverage statistical 

parsers, such as Stanford Parser [34], and sentence representation models, such as Sent2vec 

[35], to include the grammatical structures of sentences and word dependencies in our text 

modeling. We expect that including these grammatical and dependency relationships in 

mathematical representations of radiology reports will improve the performance of our semi-

unsupervised learning approach. The presented approach in this manuscript includes a 

systematic search (i.e., grid search) mechanism to identify the optimal parameters to train 

our model for a given dataset. However, investigating the effects of the training set size and 

other parameters on the performance and stability of our models requires additional datasets 

and experiments that we will pursue in future studies.

Of note, as a post-processing step, to improve the quality of our extracted seed-labeled data, 

we relied on a simple rule-based regular expression method to filter out communications 

with patients in our dataset. This simple, regular expression approach may not be 

generalizable enough to filter out all false positive cases of communication that occurred 

with persons other than referring physicians. As future work, we plan to leverage current 

state-of-the-art co-reference resolution methods [36,37] to more accurately identify and filter 

out from our seed-labeled data the conducted communications that were not with referring 

physicians. Finally, as future work, we plan to leverage the cluster-based topic modeling 

approaches to identify subcategories among cases that we identify as positive for prompt 

communication with regard to their follow-up plans to further assist radiologists in their 

communications with referring physicians.

5. Conclusion

In this paper, we described a semi-unsupervised machine learning approach to identify cases 

that require prompt communication between radiologists and referring physicians based on 
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analyzing the corresponding radiology reports. Our method relies on an unsupervised 

distributional semantics neural network to model radiology report free-text narratives. In this 

work, we automatically identified 261 cases of prompt communication based on keywords 

generated through domain- expert knowledge and a distributional semantics neural network 

as seed-labeled data for our semi-unsupervised learning approach. We clustered this seed-

labeled dataset and used the underlying structure of the clustered seed data to classify 

unlabeled reports. We compared the results of this clustering-based, semi-supervised 

approach to a baseline nearest neighbor classification method. The evaluation showed that 

our clustering-based, semi-supervised approach achieved an F-score of 74.5%, recall of 

90%, and precision of 63.5% for identifying cases for prompt communication, 

outperforming the nearest neighbor approach. This clustering-based, semi-supervised 

approach could potentially be used as part of an online-decision support system in clinical 

settings to help radiologists identify cases for prompt communication with the referring 

physicians to avoid or minimize possible harm to patients.
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Fig. 1. 
Overview of the proposed semi-supervised learning approach.

Meng et al. Page 16

J Biomed Inform. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Conceptual overview of an iteration in the nearest neighbor approach in two-dimensional 

(2D) space (V1 and V2). For each unlabeled vector, we find the nearest neighboring vector 

(left); if the nearest neighbor is labeled (as a communicated report), we also label the 

unlabeled vector as communicated (right). Of note, the actual dimension of the vector space 

in our study is 300, and the 2D simplification is only for visualization purposes.
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Fig. 3. 
The optimal number of clusters (k) by the gap statistic method for each iteration.
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Fig. 4. 
Newly labeled cases as promptly communicated by iteration. Nearest neighbor approach 

became stable after 7 iterations; clustering-based approach became stable after 39 iterations.
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Fig. 5. 
Conceptual overview of an iteration in the clustering-based approach in two-dimensional 

(2D) space (V1 and V2). Clusters are created based on the seed-labeled dataset (left); if any 

unlabeled vector falls within the radius of any cluster, we label the unlabeled vector as 

communicated (right). Of note, the actual dimension of the vector space in our study is 300, 

and the 2D simplification is only for visualization purposes.
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Fig. 6. 
F-score, recall, and precision of our clustering-based method with different radii on the 

validation dataset. Radius 12 was selected as the optimal radius based on the highest F-

score.
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Table 1

Words most similar to “communicated” according to our word2vec model.

Word Similarity score

“relayed” 0.787

“conveyed” 0.775

“called” 0.670

“phoned” 0.616

“discussed” 0.596
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Table 2

Distribution of keywords in our extracted seed dataset.

Keyword # Keyword in the dataset Percentage of seed dataset (261 reports)

“discussed” 232 88.2%

“communicated” 11 4.2%

“called” 10 3.8%

“conveyed” 5 1.9%

“relayed” 4 1.5%

“phoned” 1 0.4%

Total 263 100%
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Table 3

An overview of the validation set from DHMC.

Expert Label Modality Total

Normal CT: 22 90

MRI: 36

X-ray: 32

Prompt Communication CT: 22 90

MRI: 36

X-ray: 32
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Table 5

An overview of the test set from DHMC.

Expert Label Modality Total

Normal CT: 80 240

MRI: 80

X-ray: 80

Prompt Communication CT: 80 240

MRI: 80

X-ray: 80
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