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Abstract

Purpose: This research aimed to automatically predict intelligible speaking rate for individuals 

with Amyotrophic Lateral Sclerosis (ALS) based on speech acoustic and articulatory samples.

Method: Twelve participants with ALS and two normal subjects produced a total of 1,831 

phrases. NDI Wave system was used to collect tongue and lip movement and acoustic data 

synchronously. A machine learning algorithm (i.e. support vector machine) was used to predict 

intelligible speaking rate (speech intelligibility × speaking rate) from acoustic and articulatory 

features of the recorded samples.

Result: Acoustic, lip movement, and tongue movement information separately, yielded a R2 of 

0.652, 0.660, and 0.678 and a Root Mean Squared Error (RMSE) of 41.096, 41.166, and 39.855 

words per minute (WPM) between the predicted and actual values, respectively. Combining 

acoustic, lip and tongue information we obtained the highest R2 (0.712) and the lowest RMSE 

(37.562 WPM).

Conclusion: The results revealed that our proposed analyses predicted the intelligible speaking 

rate of the participant with reasonably high accuracy by extracting the acoustic and/or articulatory 

features from one short speech sample. With further development, the analyses may be well-suited 

for clinical applications that require automatic speech severity prediction.
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Introduction

Amyotrophic lateral sclerosis (ALS), also referred to as Lou Gehrig’s disease, is a rapidly 

progressive, neurodegenerative disease that causes degeneration of both upper and lower 

motor neurons and affects various motor functions, including speech production. The typical 

survival time of individuals affected by ALS is 2 to 5 years from the symptom onset (Strong 

et al., 2003). ALS affects between 1.7 and 2.3 /100,000 individuals in the world, but the 

incidence is increasing at a rate that cannot be accounted for by population aging alone 

(Beghi et al., 2006). Although speech intelligibility decline may not be the initial symptom 

at disease onset, nearly all patients with ALS will develop speech (aka bulbar) impairment as 

the disease progresses (Beukelman, Fager, & Nordness, 2011).

The long-term goal of this research is to develop automated assessments of speech 

impairments in neurodegenerative diseases, specifically in ALS. This research is motivated 

by the need for objective, reliable, and accurate diagnostic tools for identifying symptom 

onset and for monitoring the progression of bulbar dysfunction in ALS (Green et al., 2013). 

Recent findings suggested that current best practices, which rely primarily on patient 

symptom reports or clinical ratings, are inadequate for the early detection and clinic 

monitoring of bulbar motor involvement (Allison, Yunusova, Campbell, Wang, Berry, & 

Green, 2017; Green et al., 2013). Current best practice for speech assessment typically 

include a clinician estimates of speech severity, speech intelligibility, and speaking rate 

(Green et al., 2013; Kent et al., 1991; Yunusova, Green, Greenwood, Wang, Pattee, & 

Zinman, 2012). Another motivating factor for the automated approach is to minimise patient 

and clinician burden. Bulbar motor assessments, such as the standard oral motor 

examination, can be time intensive to administer and fatiguing to patients.

One promising approach to automatic speech assessment is machine learning classification – 

a technique that forms the basis of automatic speech recognition and is now being used to 

detect abnormal speech patterns (Mitchell, 1997; Kim, Wang, & Kim, 2016). Widely used 

machine learning algorithms for speech analysis include support vector machine (SVM) 

(Cortes & Vapnik, 1995), artificial neural network (ANN) or simply neural network (Bishop, 

1995), and hidden Markov models (Rabiner, 1990). The basic concept of machine learning 

classification is to train a model using a subset of speech data (training data set) and then test 

the predictive accuracy of the model on a different subset of speech samples (testing data 

set). The model does not have prior knowledge associated with the prediction problem. 

Speech data are usually in the form of features that are extracted from speech recordings. A 

number of open-source algorithms, such as openSMILE (Schuller et al., 2015; Eyben, 

Wöllmer & Schuller, 2010), are now publicly available for extracting a large number of 

features from speech audio recordings. OpenSMILE extracts up to 6,373 acoustic features 

from the speech recordings. Prediction accuracy is, therefore, not only dependent on the 
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power of the classifier but on how well the selected features – either collectively or 

individually - represent speech patterns. Researchers are actively searching for the best 

acoustic speech features for detecting a variety of neurologic conditions including 

depression (Cummins, Scherer, Krajewski, Schnieder, Epps, & Quatieri, 2015; Quatieri & 

Malyska, 2012), traumatic brain injury (Falcone, Yadav, Poellabauer, & Flynn, 2013), and 

Parkinson’s disease (Hahm & Wang, 2015; Tsanas, Little, McSharry, & Ramig, 2011; Little, 

McSharry, Hunter, Spielman & Ramig, 2009; Sapir, Ramig, Spielman, & Fox, 2010; 

Skodda, Grönheit & Schlegel, 2011; Vásquez Correa, Orozco Arroyave, Arias-Londoño, 

Vargas Bonilla, & Noth, 2014).

Two long-standing challenges for leveraging the power of acoustic features for speech 

diagnostics have been (1) difficulties extracting them reliably from disordered speech (Kim, 

Wang, & Kim, 2016; Kim, Kim, Yoo, Wang, & Kim, 2017) and (2) the large number of 

speech samples often required for model building, which may be challenging for patients 

with ALS who experience fatigue while speaking.

To address these limitations, investigators have begun to explore the (1) added value of 

articulatory features that are extracted directly from recordings of speech movements (Wang, 

et al., 2016b) and (2) methods of machine classification that require only a small number of 

training samples. Although only a few studies have been conducted on the diagnostic 

efficacy of oral-articulatory kinematic features (Green et al., 2013; Rong et al., 2016), our 

preliminary study on nine patients suggested that the most robust detection of abnormal 

speech due to ALS is obtained when the machine learning regression model is provided 

speech acoustic and oral-articulatory kinematic data (Wang, et al., 2016b).

The current study extends this previous, preliminary work in several significant ways. First, 

the data set is twice as large (e.g. compare 9 to 14 subjects and 944 to 1,831 phrase samples) 

and the subjects range substantially in the degree of their speech intelligibility impairment. 

Second, the number of acoustic and articulatory feature groups used in the model is much 

more exhaustive than the previous. Wang et al., 2016b only compared three groups of data, 

acoustics, acoustics + lip, and acoustics + lip + tongue; while this study compare up to seven 

groups, acoustic, lip, tongue, lip + tongue, acoustics + lip, acoustics + tongue, acoustics + lip 

+ tongue. This exhaustive comparison provided a powerful experimental design to evaluate 

the effectiveness of both acoustics and articulatory features in the automatic prediction of 

abnormal speech decline due to ALS.

In this paper, we used acoustic and articulatory features as inputs to a machine learning 

algorithm for automated prediction of intelligible speaking rate based on a single, short 

speech sample. Intelligible speaking rate, also called communication efficiency, is the 

multiplication of speech intelligibility score and the speaking rate (Yorkston & Beukelman, 

1981). Speech acoustic and articulatory samples were collected when a subject produced 

short common speech phrases (e.g. how are you doing?). A machine learning algorithm (i.e. 

SVM regression) was used to predict/estimate an individual’s intelligible speaking rate. The 

prediction performance was measured by the coefficient of determination (R2) and the 

difference (root mean squared error, RMSE) between the actual and predicted intelligible 

speaking rates. To determine if the added value of articulatory information contributed to 
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speech impairment prediction, experiments were conducted on exhaustive combinations of 

subset of data (e.g. acoustic, lip movement, tongue movement, and their combinations).

Method

Participants

Twelve individuals with ALS (6 females) participated in the data collection. The subjects 

were selected with a distribution of intelligible speaking rate from zero to more than 200. 

The average age of these participants was 58 (Standard Deviation = 10), with ranges from 44 

to 72 years. To provide a better distribution of intelligible speaking rate scores across all data 

sessions, two healthy controls (females, N01 and N02) were included (ages 65 and 63, 

respectively). Data collected from a total of 25 sessions were used.

Table I lists all sessions with speaking rate, speech intelligibility, and intelligible speaking 

rate scores by participant and session. Subject IDs starting with letter “A” denote patients 

with ALS; subject IDs starting with letter “N” denote those who are healthy. Seven patients 

provided data in multiple sessions. Five patients and the two healthy subjects had a single 

recording session. The speech intelligibility scores ranged from 0 to 100%; the speaking rate 

ranged from 33.3 to 235 words per minute (WPM); the intelligible speaking rate ranged 

from 0 to 235 WPM (Table I).

Articulatory motion tracking device

An electromagnetic articulograph (Wave Speech Research System, Northern Digital Inc., 

Waterloo, Canada; see Figure 1) was used for the collection of articulatory and acoustic data. 

The voltage induced in the sensor coils by alternating magnetic field is recorded and 

translated into position and orientation data. The spatial accuracy of motion tracking using 

Wave is 0.5 mm when sensors are in the central space of the magnetic field (Berry, 2011). 

Sampling rate was set at 100 Hz for articulatory recording and 22 kHz for acoustic 

recording. The acoustic data was synchronously recorded with the articulatory data using a 

microphone. Figure 1(b) illustrates the positions of the five sensors attached to a 

participant’s head, tongue, and lips. The head centre (HC) sensor was on the bridge of the 

glasses. We used glasses, rather than taping the sensor to the skin directly, to avoid skin 

movement artefact during speaking. The movement data of HC were used to calculate the 

head-independent data of other sensors. Tongue tip (TT) and tongue body back (TB) sensors 

were attached at the mid-line of the tongue (Wang, Green, Samal, & Yunusova, 2013). TT 

was 5–10 mm from the tongue apex. TB was as far back as possible and about 30 to 40 mm 

from TT (Wang et al., 2013). Lip sensors were attached to the vermilion borders of the upper 

lip (UL) and lower lip (LL) at mid-line. The four-sensor set was found optimal for this 

application (Wang, Green, & Samal, 2013; Wang, Hahm, & Mau, 2015; Wang, Samal, Rong, 

& Green, 2016c). Here, optimal means the set has the minimum number of sensors but 

contains no less information than other sets with more sensors. Figure 1(b) also shows the 

3D Cartesian coordinate system derived for our articulatory data movement. Here, x is left-

right, y is vertical, and z is front-back.
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Procedure

After signing the consent forms, participants were seated with their head within a calibrated 

magnetic field. Five sensors were attached to the surface of each articulator using dental glue 

(PeriAcryl 90, GluStitch) or tape, following the layout of Figure 1(b). A three-minute 

training session helped the participants to adapt to the wired sensors before the formal data 

collection.

All participants were asked to read a list of 20 common phrases, often used in alternative and 

augmentative communication (AAC) technologies. Example phrases are “how are you 
doing?”, “good afternoon”, and “I need to make an appointment”. The phrases were 

repeated sequentially multiple times by all subjects.

Additionally, speech intelligibility and speaking rate were measured by a certified Speech-

Language Pathologist using the software Sentence Intelligibility Test (SIT) (Yorkston, 

Beukelman, Hakel, & Dorsey, 2007). In each session, the SIT software generated a random 

list of eleven sentences with increasing length from five to fifteen words. Participants were 

asked to read sentences once, and the audio was recorded. A certified speech-language 

pathologist who was unfamiliar to the speakers transcribed the words by typing what she 

heard in the SIT software after the session. The SIT software then calculated speech 

intelligibility (percentage of correctly perceived words) by comparing how many words were 

understood correctly and speaking rate by how many (correct or incorrect) words were 

produced per minute. Finally, the intelligible speaking rate was calculated by multiplying the 

speech intelligibility score by the speaking rate. Intelligible speaking rate is the percentage 

of correctly perceived words per minute, which was used as the measure for speech severity 

of individuals with ALS in this project.

Data processing

Prior to analysis, the quality of each kinematic recording was visually inspected. Sixty-eight 

invalid samples (e.g. dropped recording frames in the articulatory movement recordings, 

incorrect pronunciations, sensor falling off) were disregarded. Only recordings with both 

valid acoustic and articulatory data were considered for this experiment. Each continuous 

recording of 20 phrases was parsed into 20 individual data files containing both the acoustic 

and articulatory information. A total of 1,832 valid phrase samples were collected.

A preprocessing procedure was applied on articulatory movement data before data analysis, 

which included head movement correction and low pass filtering (i.e. with a cut-off 

frequency 20 Hz). The head translations and rotations were subtracted from tongue and lip 

sensor trajectories to obtain head-invariant tongue and lip movements. This correction was 

performed automatically by the NDI Wave system. Low pass filtering was done off-line by 

the software SMASH (Green, Wang, & Wilson, 2013).

Data analysis

The automatic prediction of intelligible speaking rate from acoustic and articulatory data 

involved three steps: (1) feature extraction, (2) feature selection, and (3) regression (i.e. 

prediction of the intelligible speaking rate from the selected features). The goal of feature 
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extraction was to obtain statistical acoustic and articulatory features from the data samples 

(i.e. acoustic and articulatory signals obtained from each phrase). Feature selection was 

employed to reduce the dimensionality of the feature set by choosing the best feature set for 

regression analysis. Regression aimed to predict a target score (intelligible speaking rate) 

from features that were extracted and selected from a single phrase. Figure 2 gives a 

schematic description of the data analysis flow, where acoustic and articulatory signals 

relative to a single phrase were used as input for feature extraction. The best features were 

then selected and fed into a machine learning algorithm (SVM regression) to predict the 

intelligible speaking rate.

Feature extraction.—Acoustic and articulatory features were extracted from the acoustic 

and articulatory signals of each phrase, respectively, by using the publicly available tool 

openSMILE (Eyben, Wöllmer & Schuller, 2010; Schuller et al., 2015).

The acoustic feature set was composed of 6,373 pre-defined statistical measures (e.g. mean, 

standard deviation) of acoustic parameters such as Jitter, Shimmer, MFCC, logHNR 

estimated within small temporal windows (e.g. 35 ms length). For an exhaustive description 

of the acoustic feature set, please refer to Eyben Wöllmer & Schuller, 2010 and Weninger, 

Eyben, Schuller, Mortillaro, & Scherer, 2013.

Likewise, openSMILE was used for the extraction of the articulatory features from sensor 

trajectories. However, given the small frequency range of articulatory movements (10’s Hz) 

with respect to the acoustic signal (10000’s Hz), the estimation of several parameters typical 

of the speech signal (Jitter, Shimmer, logHNR, Rfilt, Rasta, MFCC, Harmonicity, and 
Spectral Rolloff) was disabled. A set of 1,200 measures for each coordinate (x, y, and z) of 

each sensor (TT, TB, UL, and LL) was extracted, for a total of 14,400 articulatory features.

Thus, 20,773 features (6,373 acoustic + 14,400 articulatory features) were extracted for a 

phrase sample.

Feature selection using gradient boosting.—The goal of feature selection is to select 

the most important features for the regression analysis (prediction). This step is essential 

because it helps avoiding overfitting, removing redundant and irrelevant information 

(features). The gradient boosting algorithm (Friedman, 2002) was used to reduce the 

dimension of the feature set. Our preliminary work suggested that gradient boosting works 

well for this task when compared to other approaches, such as standard decision trees (Wang 

et al., 2016b).

Gradient boosting is an ensemble machine learning algorithm used for regression, 

classification, and feature selection composed of several decision trees as a base learner (i.e. 

non-linear classification/regression models that perform recursive partitioning on the data by 

separating them into disjoint branches) added sequentially. Specifically, each decision tree is 

fitted on the residuals of the previous one, rather than on the variable to predict (in our case, 

intelligible speaking rate). The residuals give a measure of how the previous tree correctly 

performed the prediction: the higher the residuals, the worse was the prediction. This 

procedure allows the new added trees to focus more on those instances that previous models 
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found difficult to predict, in order to reduce the variance and improve the stability of the 

whole model in the prediction.

Despite its wide use in classification / regression problems (Breiman et al., 1984), gradient 

boosting can also be used for feature selection, choosing those features that were more 

useful in the construction of trees within the whole model. In this work, features were 

selected based on a feature importance score (in percentage) that depends on the total 

reduction of the variance brought by that feature (Breiman et al., 1984). The features with 

the highest importance score whose sum was 100% were selected.

Intelligible Speaking Rate Prediction using SVM regression.—SVM is a machine 

learning algorithm extensively used for classification and regression (the latter is also called 

support vector regression - SVR) (Drucker et al., 1996). We used SVM because SVM is a 

widely used machine learning classifier that can be rapidly implemented and showed great 

performance in our previous studies (e.g. Wang, Green, Samal, & Yunusova, 2013; Wang et 

al., 2015, 2016a, 2016b), where we used SVM, neural networks, decision tree, Gaussian 

mixture model (GMM), hidden Markov model (HMM), and other classifiers. The goal of 

SVM for classification is to find the best hyperplane in the feature space that allows the 

maximum margin separation between data samples of two classes. If data are not linearly 

separable in the original feature space, they are mapped (using a so-called “kernel function”) 

into a higher-dimensional space where the linear separation can be performed. The concept 

of SVR is similar: data samples are mapped into a higher-dimensional feature space where a 

linear model can be fitted in order to describe the data accurately.

In this study, we used a variation of the standard SVR called ν-SVR, where an extra 

parameter ν is used to control the maximum deviation from the actual intelligible speaking 

rate. This choice was based on preliminary tests where ν-SVR outperformed or was 

comparable to other SVR variants, such as ε-SVR (unpublished).

A radial basis function (RBF) was used as the kernel function for the algorithm. Consistently 

with our previous studies (Wang, Green, Samal, & Yunusova, 2013; Wang, Samal, Rong, & 

Green, 2016), preliminary tests confirmed that RBF outperformed other kernels including 

linear and polynomial functions. The implementation of SVR in the open access machine 

learning tool Weka was used (Hall, Frank, Holmes, Pfahringer, Reutemann, & Witten, 

2009).

Regression (Prediction) experimental setup.—To understand how the prediction 

performance changed using different types of information (acoustic and/or articulatory 

information), seven combinations of the three groups of selected features were tested: (1) 

acoustic, (2) lips, (3) tongue, (4) acoustic + lips, (5) acoustic + tongue, (6) lips + tongue, and 

(7) acoustic + lips + tongue.

Three-fold cross validation strategy was used for testing our regression model performance. 

The dataset was divided into three parts: two-third considered for training and the remaining 

one-third for testing. The procedure was repeated three times, so that each third of the 
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dataset was considered as test set (once) and training set (twice). In each execution, every 

single phrase sample was used as the input for prediction.

For measuring the performance of our regression model, we used the coefficient of 

determination (R2 value) between the actual and predicted (intelligible speaking rate) values. 

In addition, Root Mean Squared Error (RMSE) values, sample standard deviation of the 

differences between predicted values and observed values, were used to quantify the 

difference between the predicted scores and the true values. Lower RMSE indicated a better 

performance. We did not use false negative and positives as the additional measures, because 

the goal in the project is to predict continuous values, rather a binary outcome. Although we 

could possibly use a ROC curve analysis to set a criterion value (cut point for prediction 

errors) to determine false positives and negatives, it is beyond the scope of the current 

analyses with a page limitation. Thus, we will leave it as a future direction for exploration.

The overall prediction performance was obtained by averaging the values of R2 and RMSE 

obtained during the three executions of the cross-validation.

Result

Selected features

A total of 499 acoustic and articulatory features were selected by the gradient boosting 

algorithm. Two hundred and sixty-six of them were selected from acoustic data; 117 were 

selected from lip movement data; and 116 were selected from tongue movement data. Table 

II gives three examples (the best three) of the selected features with explanations (Eyben et 

al., 2010) and selection weights. Those features were selected from the combined acoustic 

and articulatory data. The features selected from articulatory data are accompanied by the 

sensor name and in dimension in parentheses; otherwise, the features are selected from 

acoustic signals. Selection weight (the third column) gives how much information the 

individual feature account for (in percentage) among all the selected features.

More descriptive explanations of these selected feature are given under the name in the first 

column; The second column gives detailed explanation about these terminologies used in the 

feature name. For example, shimmerLocal_sma_de_quartile1 is the 25% percentile of the 

delta value for the local pitch period deviations that was smoothed using an averaging filter 

with window length 3, where quartile1 means the 25% percentile, de denotes delta value, 

sma denotes an averaging filter with window length 3, and shimmerLocal means the local 

pitch period deviations. A ranked list of the top 40 selected features and detailed explanation 

are provided in the online supplementary material.

Intelligible Speaking Rate Prediction (Regression)

Figure 3 gives the results of the regression experiments using the selected 390 acoustic + lip 

+ tongue movement features. The R2 was 0.712 (p < 0.0001). The 390 features were further 

selected from the initially selected 499 features (Gradient Boosting was applied again on the 

499 features, which returned 390 features). The R2 was 0.680 if using all 499 features.
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Detailed results of the regression experiments using different combinations of data sources 

(acoustic, lip, and tongue motion data) are reported in the online supplemental materials.

Figure 4 summarises the all the results (R2 values in Figures 3 - 9) of the regression 

experiments using individual or combined acoustic, lip movement, and tongue movement 

features. A higher R2 value indicated a higher correlation between the predicted intelligible 

speaking rate and the actual intelligible speaking rate. When using only individual source of 

information (acoustic, lip, or tongue), tongue information yielded the highest R2 value 

(0.678); acoustic information only yielded the lowest R2 value (0.652), which was lower 

than that obtained using lip information only (0.660). When two sources of information were 

combined, lip and tongue together obtained the highest R2 value (0.702). The best 

performance (R2 = 0.712) was obtained when all the three sources of information (i.e. 

acoustic, lip, and tongue movement information) were used together.

Figure 5 summarises the all the RMSE values (in WPM) in the regression experiments using 

individual or combined acoustic, lip movement, and tongue movement features. A smaller 

RMSE value indicated the predicted intelligible speaking rate is closer to the actual 

intelligible speaking rate. When using only individual source of information (acoustic, lip, or 

tongue), tongue movement information yielded the lowest (best) RMSE value (39.86); lip 

movement information yielded the highest (worst) value RMSE (41.17), which was higher 

than that obtained using acoustic information only (40.10). When two sources of 

information were combined, acoustic and tongue together obtained the lowest (best) RMSE 

value (39.49). The best performance (RMSE = 37.51) was obtained when all the three 

sources of information (i.e. acoustic, lip, and tongue movement information) were used 

together.

Discussion

This study used a machine learning-based approach (feature selection + SVM regression) to 

predict intelligible speaking rate of patients with ALS based on a single speech acoustic and 

articulatory sample. Acoustic and articulatory data were collected from twelve participants 

with ALS and two healthy controls. Results revealed that by extracting the acoustic and/or 

articulatory features from one short speech sample, our approach predicted the intelligible 

speaking rate of the participant with a reasonable high accuracy (a high R2 and a low RMSE 

value).

Selected features

In this project, we used data features extracted by openSMILE, a widely used data-driven 

approach without a priori assumption about their feature connection to physiological 

functions. The ranked, top 40 selected features are given as Supplementary materials. The 

findings about the relative importance of these features were somewhat consistent with the 

literature on voice changes due to ALS (Tomik, Tomik, Wiatr, Składzień, Stręk, & 

Szczudlik, 2015; Wang, Kothalkar, Cao, & Heitzman, 2016; Wang, Kothalkar, Kim, 

Yunusova, Campbell, Heitzman, & Green, 2016) and other neurological disorders including 

Parkinson’s disease (Cummins, Scherer, Krajewski, Schnieder, Epps, & Quatieri, 2015; 

Quatieri & Malyska, 2012; Vásquez Correa, Orozco Arroyave, Arias-Londoño, Vargas 
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Bonilla, & Noth, 2014; Tsanas, Little, McSharry, & Ramig, 2011). For example, the above 

literature found that hoarseness, voice range, amplitude of vibration showed significant 

abnormalities with repeated examination of patients with ALS. In addition, Tomik and 

colleagues (2015) found jitter and NHR (noise-to-harmonic ratio) in women with ALS were 

increased in all longitudinal examinations. Our study cohort was comprised of more than 

half female participants.

Almost half of the selected feature were associated with the articulatory subsystem (tongue 

or lips), which is consistent with prior findings demonstrating that, among the four speech 

subsystems (i.e. articulatory, phonatory, resonatory, respiratory), impairment to the 

articulatory subsystem has the greatest impact on speech intelligibility (Rong et al., 2016). 

As indicated in the list of top ranked features, one feature from lower lip (LLy) was ranked 

up as high as third, which suggested lip movement features provided complementary 

information that acoustic data did not contain. More interestingly, multiple features (33rd, 

38th and 39th) in the list were from the x dimension of upper lip (ULx), lower lip (LLx) and 

tongue back (TBx) respectively. Although x (left-right) movement is not a major component 

of speech movements in healthy talkers (Wang, Green, Samal, & Yunusova, 2013; Westbury, 

1994), the current findings suggest that movement in this dimension may become more 

prominent in persons with ALS.

Intelligible Speaking Rate Prediction

The experimental results demonstrated the effectiveness of automatic estimation of 

intelligible speaking rate from single speech acoustic and articulatory samples. The results 

demonstrated that adding articulatory (lip and/or tongue movement) information could 

significantly improve the prediction performance. These findings are consistent with the 

literature that speech motor function decline (particularly in the articulatory subsystem) may 

be an early indicator of the bulbar deterioration in ALS (Allison et al., 2017; Green et al., 

2013; Rong et al., 2015) and adding articulatory information significantly improved the 

performance of automatic detection of ALS through speech samples (Wang et al., 2016a).

When compared the prediction performance using acoustic, lip, and tongue motion data 

separately, tongue data yielded the highest R2 value (0.678) and lowest (best) RMSE value 

(39.86). The finding that tongue movement information yielded the best performance was 

somewhat incongruous with the fact that the top three selected features (see details in the 

previous sub-section) were not tongue features (but rather, two acoustic features and one lip 

feature from LLy). However, we think these low-level features (on small segments) may not 

be statistically comparable with the descriptive, high-level articulators.

The RMSE was as low as 37 words per minute when using both acoustic and articulatory 

information in prediction. This level of performance is encouraging considering the large 

distribution of the intelligible speaking rate (0 to more than 200) included in our cohort. 

Further research is required to identify features and classifiers that will lower the RMSE 

values. We did not directly compare the RMSE number with that in our prior study (Wang et 

al., 2016b), because the prior study was preliminary. However, findings in this work were 

consistent with these in Wang et al., 2016b. For example, data from more articulatory flesh 

points yielded better performance (lower RMSE).
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This approach is theoretically (phrase) content independent because the features were low-

level and are not relevant with the content. This means the technique is not dependent on the 

list of phrases. In other words, if a smaller set of unique phrases (i.e. one unique phrase) was 

used, the prediction performance could be even better. However, the predictability of the 

phrases (different intelligibility levels on the same phrases) may affect the prediction 

performance in practice. Further work is needed to confirm if the predictability variation 

would cause the prediction measure variation.

The current approach was purely data-driven and used a large number of low-level acoustic 

and articulatory features. Additional insights into the physiologic mechanism that drive 

speech decline will require the extraction of more interpretable speech features such as 

formant centralisation ratio (Fletcher, McAuliffe, Lansford, & Liss, 2017; Sapir et al., 2010), 

articulation entropy (Jiao et al., 2017), intonation (Skodda et al., 2011), prosody (Skodda, 

Rinsche & Schlegel, 2009), formants (Horwitz-Martin et al, 2016), and speech pauses 

(Rong, Yunusova, Wang, Zinman, Pattee, Berry, & Green, 2016).

Future work will explore other powerful feature selection techniques and machine learning 

classifiers. Better feature selection will provide more information for the purpose of 

prediction. A more powerful machine learning classifier (e.g. deep neural network) may be 

better able to capture the abnormal speech patterns that is more related to speech decline due 

to ALS.

Limitations and potential clinical application

Although the present study yielded promising results with a novel technology, the data set 

contains a relatively small number of patients. A future study with a larger number of 

patients will further refine and validate this approach.

Another limitation is that we used the manual marking from only one SLP as the reference/

gold standard, which may have a bias when compared to the machine prediction results. 

Measures from multiple SLPs will be added in the future direction of this work.

In this study, we used 3-fold cross validations. A larger number of folds (e.g. 6 folds) may be 

helpful to reduce the bias. A further analysis on the variance of these individual validations 

is needed to explore the effects by the number of folds, although we believe the number of 

folds may not play a critical role because the final, reported performance was the average of 

all validations.

Although recording articulatory data in clinical setting is currently logistically difficult, new 

low-cost motion capture systems are rapidly proliferating. For example, many of the next 

generation of smart phones will be equipped with 3D depth sensing technology, which can 

be used to record lip and jaw motion data. With further development, the proposed analyses 

will be well-suited for clinical applications that require automatic speech severity prediction. 

For example, acoustic and lip motion information will be collected easily using a portable 

device such as mobile phones, which will be a fit for future wide-scale clinical 

implementation. The mobile app will also serve as a convenient tool for visual display of the 

prediction results.
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Conclusion

This paper investigated the automatic estimation/prediction of speech severity (measured by 

intelligible speaking rate) in ALS from single speech acoustic and articulatory samples. 

Gradient boosting was used as the feature selection technique. A machine learning algorithm 

(support vector machine) was used to predict intelligible speaking rate from speech acoustic 

and articulatory (tongue and lip movement) samples. Experimental results showed that 

reasonably accurate estimates of intelligible speaking rate can be generated from acoustic 

samples only. Tongue and lip motion information yielded a higher accuracy than using 

acoustic information only. Furthermore, combining acoustic and articulatory (tongue and lip 

movement) information obtained the best prediction performance. These findings provided 

preliminary support for employing machine learning models for predicting speech 

performance (measured by intelligible speaking rate) in individuals with ALS.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Data collection setup. The left picture shows the Wave Speech Research System. The right 

picture illustrates sensor locations. Sensor labels are described in text.
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Figure 2. 
Schematic description of the data analysis flow.
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Figure 3. 
Scatter plots of actual intelligible speaking rate (words per minute) and the predicted values 

using 390 acoustic + lip + tongue movement features. The 390 features were further selected 

from the initially selected 499 features.
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Figure 4. 
R2 values in the intelligible speaking rate prediction using individual or combined values of 

acoustic + lip + tongue movement features.
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Figure 5. 
RMSE values in the intelligible speaking rate prediction using individual or combined 

values of acoustic + lip + tongue movement features.
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Table I:

Speech Intelligibility, Speaking Rate, and Intelligible Speaking Rate of the subjects in each recorded session

Subject ID Session ID Speech Intelligibility (%) Speaking Rate (WPM) Intelligible Rate (WPM)

A01
S01 95.45 136.36 130.16

S02 96.36 123.60 119.10

A02 S03 80.00 147.98 118.38

A03

S04 100.00 182.33 182.33

S05 96.36 218.54 210.59

S06 100.00 235.71 235.71

A04

S07 98.18 172.54 169.40

S08 97.27 146.67 142.67

S09 79.09 121.10 95.78

A05

S10 99.09 164.18 162.69

S11 98.18 110.47 108.46

S12 0.00 41.05 0.00

A06

S13 94.55 111.11 105.05

S14 80.91 108.20 87.54

S15 23.64 80.29 18.98

A07
S16 99.00 108.73 107.64

S17 92.73 100.61 93.3

A08 S18 96.36 33.33 32.12

A09 S19 79.09 71.88 56.85

A10 S20 100.00 216.16 216.16

A11
S21 13.00 76.31 9.92

S22 40.00 76.92 30.77

A12 S23 100.00 212.90 212.90

N01 S24 100.00 194.12 185.29

N02 S25 99.09 200.61 198.78

Int J Speech Lang Pathol. Author manuscript; available in PMC 2019 November 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 22

Table II:

Example selected features

Feature (Explanation in parenthesis) Detailed Explanation Selection Weight (%)

shimmerLocal_sma_de_quartile1
(25% percentile of the delta value for the local pitch period 
deviations that was smoothed using an averaging filter with 
window length 3)

shimmerLocal: the local (frame-to-frame) 
Shimmer (pitch period amplitude deviations)
Suffix sma appended to the names of the low-
level descriptors indicates that they were 
smoothed by a moving average filter with window 
length 3.
de: delta
quartile1: the first quartile (the 25% percentile)
quartile2: the second quartile (the 50% percentile)
quartile3: denotes the third quartile (the 75% 
percentile)

1.47083

pcm_fftMag_fband1000-4000_sma_percentile1.0
(the outlier-robust minimum value of contour, represented by the 
1% percentile of the pulse-code modulation magnitude after fast 
Fourier transform using frequency band between 1000 and 4000 
hz)

pcm: pulse-code modulation, the standard digital 
representation of analog signals
fft: fast Fourier transform
Mag: magnitude
fband: frequency band
percentile1.0: the outlier-robust minimum value 
of the contour, represented by the 1% percentile
percentile99.0: the outlier-robust maximum value 
of the contour, represented by the 99% percentile

1.39430

pcm_fftMag_spectralFlux_sma_lpgain (LLy)
(spectralFlux of the pulse-code modulation amplitude after fast 
Fourier transform and smoothed by moving average on linear 
predictive coding energy)

lpgain implies the linear predictive coding gain.
Gain means the energy of the frame.
Explanation and calculation of spectral flux is 
given in the Appendix.
This feature was calculated from LLy data (y 
coordinate of Lower Lip)

1.32485
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