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Abstract

In spite of the significant progress made in recent years, the use of thermography to derive biologically relevant traits 
remains a challenge under fluctuating conditions. The aim of this study was to rethink the current method to process 
thermograms and derive temporal responses of stomatal conductance (gsw) using dynamic energy balance equations. 
Time-series thermograms provided the basis for a spatial and temporal characterization of gsw responses in wheat 
(Triticum aestivum). A leaf replica with a known conductance was used to validate the approach and to test the ability 
of our model to be used with any material and under any environmental conditions. The results highlighted the im-
portance of the co-ordinated stomatal responses that run parallel to the leaf blade despite their patchy distribution. 
The diversity and asymmetry of the temporal response of gsw observed after a step increase and step decrease in light 
intensity can be interpreted as a strategy to maximize photosynthesis per unit of water loss and avoid heat stress in 
response to light flecks in a natural environment. This study removes a major bottleneck for plant phenotyping plat-
forms and will pave the way to further developments in our understanding of stomatal behaviour.

Keywords:   Boundary layer, energy balance, patchy stomata, phenotyping, stomatal conductance, thermal imaging, 
transpiration.

Introduction

After a period of increased crop production over the past 
50 years (Wik et al., 2008; Pingali, 2012; Tillman et al., 2015), 
increases in yield have fallen to ~1% per annum (Fischer 
and Edmeades, 2010; Ramankutty et  al., 2018). To meet the 
increasing food demand, crop yield needs to increase at a rate 
of 2.4% per annum over the next few decades (Tilman et al., 
2011; Ray et al., 2012, 2013; Long et al., 2015). The expand-
ing gap between crop production and demand will drive more 
acute food insecurity across the globe that will only inten-
sify with global population growth (Long et  al., 2015; FAO 
et al., 2018). Along with new agronomic practices, the devel-
opment of innovative breeding techniques and novel trait 

discoveries are required to improve yield. Many of the current 
commercial wheat cultivars have been bred with yield as the 
main target trait, an approach that is now reaching its limit in 
term of potential improvement (Fischer and Rebetzke, 2018). 
Breeding for yield has resulted in a loss of diversity in wheat 
(Haudry et al., 2007) and in the indirect selection for traits that 
contribute to higher yields (Reynolds et  al., 1999; Richards, 
2000; Fischer and Rebetzke, 2018). The natural genetic diver-
sity between cultivars or landraces provides the opportunity 
to discover desirable traits (e.g. resistance to pest or stress; high 
water use efficiency) that, when crossed with high-yielding 
varieties, could produce progenies with improved performance 
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and yield under a given environment. However, identifying 
individuals with the desired eco-physiological and agronomic 
responses and traits requires the development of appropriate 
phenotyping tools (Furbank and Tester, 2011; Reynolds et al., 
2018).

Plant phenotyping to characterize diversity in physiological 
traits often requires measuring large numbers of plants ideally 
under controlled (e.g. glasshouse) and sometimes under non-
controlled environmental (e.g. field) conditions to identify 
those plants with specific allelic combinations that result in 
the phenotypes with increased agronomic value (Fiorani and 
Schurr, 2013; Fahlgren et  al., 2015). In the last decade, sig-
nificant advances have been made in genomics resources and 
tools that have greatly increased our capacity to understand 
and detect genetic diversity. However, phenotyping approaches 
have not advanced at the same pace and have been reported 
in the literature as a major technical bottleneck (Furbank and 
Tester, 2011; Fiorani and Schurr, 2013; Fahlgren et al., 2015). 
High-throughput phenotyping platforms have been developed 
to address some of this shortfall, but can still be limited in the 
type and rapidity of the measurement that can be undertaken 
(Li et al., 2014; Rahaman et al., 2015). Further improvements 
in plant phenotyping methods to match the progress made 
in genetics are required to identify new traits increasing crop 
yield in the near future (Furbank and Tester, 2011; McCouch, 
2013; Prashar and Jones, 2014).

High-throughput phenotyping of leaf traits often exploits 
imaging techniques that permit rapid and remote measure-
ments of plants, to assess differences in development, mor-
phological features, pigment concentration, and responses to 
the environment. Phenotyping platforms typically use a com-
bination of monochromatic, RGB, thermal, and multispectral 
cameras providing signals that are often an indirect measure of 
the physiological plant response/traits (e.g. chlorophyll fluor-
escence as an indicator of the photosynthesis rate). In most 
cases, interpretation of the raw measurement signal requires 
extra steps to convert the raw data into biologically signifi-
cant findings or responses (Fahlgren et al., 2015; Ghanem et al., 
2015). For example, leaf temperature measured using therm-
ography requires leaf energy balance equations to derive leaf 
transpiration (E) and stomatal conductance to water vapour 
(gsw) (Jones, 2013). Leaf stomatal conductance is often con-
sidered an important trait for future yield improvements and 
is of great interested to physiologists, as stomatal behaviour in-
fluences traits such as photosynthetic CO2 uptake, water loss, 
and leaf temperature (Reynolds et  al., 1999; Richards, 2000; 
Rebetzke et al., 2001; Munns et al., 2010; Fischer and Rebetzke, 
2018), all of which impact crop performance. Recent studies 
examining stomatal behaviour have highlighted that slow sto-
matal responses to changing environmental stimuli can limit 
photosynthesis rates (A) and result in unnecessary water losses, 
decreasing productivity and plant water use efficiency (Lawson 
et al., 2010; Lawson and Blatt, 2014; McAusland et al., 2016; 
Matthews et al., 2018). Reduced stomatal limitation of photo-
synthesis under a dynamic environment has been shown to 
impact plant growth and biomass significantly (Pearcy and Way, 
2012; Way and Pearcy, 2012;McAusland et  al., 2016; Vialet-
Chabrand et al., 2017b), and therefore could provide a novel 

breeding target to improve yield (Lawson and Blatt, 2014). 
However, currently there are limited phenotyping tools cap-
able of exploring variation in stomatal behaviour and kinetic 
responses (McAusland et al., 2013). Although leaf temperature 
and thermography have been used successfully in the past to 
identify mutants with altered stomatal apertures in response to 
drought, air relative humidity, [CO2], or light intensity (Merlot 
et al., 2002; Wang et al., 2004; Costa et al., 2015; Takahashi et al., 
2015), these studies have focused on steady measurements of 
leaf temperature. Deriving gsw from leaf temperature kinetics 
under a dynamic environment is a challenge that has currently 
not been addressed, but is crucial to understand time-inte-
grated variations of plant carbon and water budget.

Despite the excellent reports on the practical use of infrared 
thermometry to estimate E and gsw (Jones, 1999; Leinonen et al., 
2006; Guilioni et al., 2008; Maes et al., 2016; Jones et al., 2018), 
these are limited to steady-state assumptions that are difficult 
to support under a dynamic environment (Jones and Leinonen, 
2003). Deriving gsw from thermography is generally performed 
by applying a reworked version of the Penman–Monteith 
equation describing the sum of radiative energy received or 
lost by the leaf, as well as mass transfer processes to the atmos-
phere (Monteith and Unsworth, 2012). Simplifications have 
been proposed in the literature that involve using reference 
material (dry/wet leaf replica with similar optical properties) 
to eliminate the need for longwave radiation and/or humidity 
measures (Leinonen et al., 2006; Guilioni et al., 2008). Although 
energy balance equations are a mechanistic description of the 
processes involved in changes of leaf temperature, some energy 
fluxes (e.g. longwave radiation from the surrounding environ-
ment) and properties of the material studied (e.g. absorbance 
and emissivity) are difficult to evaluate, particularly in the con-
fined space of a phenotyping platform. A significant step toward 
the use of thermal imaging to derive stomatal behaviour would 
be to redefine the Penman–Monteith combination equation 
for use under dynamic environmental conditions and associate 
it with a statistical approach to estimate the parameters that 
cannot be assessed without specific laboratory equipment.

To simplify the usage of energy balance equations, the differ-
ence in temperature between a transpiring and non-transpiring 
leaf can be used to calculate the amount of energy lost by tran-
spiration (latent heat). Several methods have been investigated 
to measure the temperature of a non-transpiring leaf using 
dry reference materials that replicate the leaf optical proper-
ties (green paper or fabrics) or application of grease to the leaf 
surface to prevent transpiration (Leinonen et al., 2006; Guilioni 
et al., 2008). Although these methods appear as an interesting 
option, there is no guarantee that the reference material has 
the same optical (e.g. absorbance and reflectance) and ther-
mal properties (e.g. specific heat capacity and emissivity) as 
the intact leaf. This means that under changing environmental 
conditions, the leaf and reference material temperatures could 
behave differently, introducing bias and error in estimating gsw 
from thermographs (Jones and Leinonen, 2003; Jones, 2013). 
Instead of attempting to mimic leaf properties, a more robust 
approach would be to directly include differences in thermal 
and optical properties in the energy balance model and predict 
leaf thermal kinetics from a reference material.



Dynamic leaf energy balance  |  2841

The energy balance model allows an estimation of energy 
loss by transpiration, which is dependent on the gradient of 
water vapour from the leaf to the atmosphere and the total 
conductance to water vapour (gtw, the ease with which water 
vapour diffuses through stomatal pores and the boundary 
layer). As gtw is the combination of two conductances in series, 
gsw and the boundary layer conductance (gbw), it is possible to 
derive gsw from gtw if gbw is known. A common method used 
to estimate gbw consists of applying a cycle of heating/cooling 
to a leaf replica (similar shape) resulting in an exponential in-
crease or decrease in temperature from which gbw can be de-
rived using the value of the slope (see details in Jones, 2013). 
Although this method provides an estimate of the boundary 
layer, it can only provide a value after several minutes of re-
sponse when the environmental conditions are relatively stable 
(Leuning et al., 1989; Leuning and Foster, 1990; Brenner and 
Jarvis, 1995; Stokes et  al., 2006; Katsoulas et  al., 2007). Here, 
we propose the use of a passive method relying only on the 
difference in energy balance observed under a dynamic en-
vironment of references with different thermal properties to 
estimate the boundary layer conductance.

Rearranging and solving the Penman–Monteith com-
bination equation for gsw supposes that the energy budget is 
closed (i.e. that all the fluxes are taken into consideration in the 
thermal budget), and integrates the error on each thermal flux 
in the calculation of gsw. An alternative approach is to predict 
leaf temperature using an energy balance model with an in-
built dynamic model of gsw, which, once fitted on the observed 
temperature, will provide the temporal kinetics of gsw, as well 
as key parameter values related to the leaf thermal response. 
Using Bayesian inference, the probability of each parameter 
value included in the energy balance model and the prediction 
errors can be characterized for different individuals, enabling 
a more precise quantification of the trait diversity associated 
with the parameters.

The aim of this study was to provide a method to process 
thermograms describing leaf temperature kinetics under fluc-
tuating conditions and derive temporal responses of stomatal 
conductance (gsw), using a new interpretation of energy bal-
ance equations. The results deliver important information on 
the diversity of the leaf responses to changes in light intensities, 
providing a breakthrough in data processing for phenotyping. 
Model performance and its application for plant phenotyping 
are presented, as well as a description of the biological import-
ance of the response traits estimated.

Materials and methods
The Penman–Monteith equation (Penman, 1948; Monteith, 1965) com-
bines the surface energy balance with mass transfer (the transport of water 
vapour from the leaf to the atmosphere) and was originally developed to 
compute transpiration from cropped surfaces using commonly measured 
weather data (solar radiation, air temperature, vapour content, and wind 
speed). Under the assumption of steady-state environmental conditions, 
the Penman–Monteith combination equation can be solved for leaf sto-
matal conductance (Monteith and Unsworth, 2012; Jones, 2013) and is 
therefore widely used in association with thermography to study plant 
response. Here, we further develop this equation by including temporal 
effects that affect thermal exchange between the leaf and its environment 

using differential equations. Although such equations are more complex 
to use and solve, they are essential to understand the dynamics of leaf 
temperature and water loss under a changing environment.

Energy balance model under steady-state environmental 
conditions
Under steady-state environmental conditions, leaf temperature is at equi-
librium and therefore the sum of the radiative energy received and lost by 
the leaf is null (Fig. 1; see Table 1 for symbol description and units). Any 
imbalance in the energy fluxes due to change in environmental condi-
tions impacts the energy stored by the leaf, and results in variation in leaf 
temperature. Neglecting any metabolic storage (heat stored as chemical 
bond energy, e.g. photosynthesis), the energy balance equation reduces to:

Rn − C − λE = S� (1)

where Rn is the net radiation (W m–2), C is the sensible heat transfer (W 
m–2), λ is the latent heat of evaporation of water (J kg–1), E is the evap-
orative flux (kg m–2 s–1), and S is the net physical storage (W m–2, causing 
a change in leaf temperature and equal to 0 under steady-state condi-
tions). After a change in environmental conditions, a delay is required to 
reach a new equilibrium depending on the material utilized, and there-
fore Equation 1 may over- or underestimate leaf temperature during the 
transition from one equilibrium to another.

Fig. 1.  Schematic of a leaf and an aluminium reference energy budget 
in the enclosed area of a phenotyping platform. The aluminium reference 
was painted black and had an emissivity (ε) of 0.96 to act as a reference 
for leaf energy balance assessment. Each arrow represents an energy 
flux, with the arrow direction representing either an input or output of 
energy. Symbol definition: σ, Stefan–Boltzmann constant; Tleaf, leaf 
temperature; Twall, wall temperature; Tref, aluminium reference temperature; 
Tair, air temperature; I(dir), direct irradiance; I(dif), diffuse irradiance; αl, 
leaf absorbance to shortwave irradiance; αr, reference absorbance to 
shortwave irradiance; gbh, boundary layer conductance to heat transfer; 
ρ, air density; Cs, specific heat capacity of humid air; E, leaf transpiration. 
Factor 2 in the equations represent the input or output energy for the two 
sides of the leaf/reference.
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Energy balance model under dynamic environmental conditions
Under dynamic environmental conditions, temperature kinetics of an object 
depend on the thermal and optical properties of the object, which describes 
how efficiently the energy is captured, exchanged, and stored. A differential 
equation describing the time dependency of temperature kinetics is avail-
able from the literature (Monteith and Unsworth, 2012; Jones, 2013):

dT
dt

=
Rn − C − λE

ρ∗C∗
pl∗� (2)

where ρ* and C*p are the density (kg m–3) and specific heat capacity  
(  J kg–1 K–1), respectively, of leaf tissue and l * is the leaf thickness (m). 
Steady-state energy balance equations are generally simplified by using 
the temperature of a reference material mimicking a leaf without tran-
spiration, as described by Jones and colleagues (Leinonen et  al., 2006; 
Guilioni et al., 2008; Jones et al., 2018). The difference in energy balance 
between the leaf and the reference material (placed in the same orienta-
tion as the leaf) allows a simplification of the energy fluxes (see below) 
to remove most of the effects due to the surrounding environment (e.g. 
longwave radiation). Including the thermal properties of the material (ρ*, 
C*p, l *) in the energy balance model can improve the accuracy of the 
model but also results in different denominators complicating the equa-
tion. Solving the differential equation that describes the difference in 

energy balance between the leaf and a reference material using Equation 
2 can enable the use of any material with known properties as a reference. 
An advantage of this proposed approach is that instead of trying to mimic 
the properties of the leaf, the differences in thermal and optical properties 
between the two objects are directly included in the equations. It is possi-
ble to predict the temperature (T1, °K) of any material (e.g. leaf) using the 
temperature kinetics of a reference (T2, °K; e.g. black painted aluminium 
sheet) with knowledge of the optical and thermal properties of the mate-
rial. Under a given environment, the temperature kinetics of an object are 
predicted using the difference in energy balance between the object and 
the reference, which is described by the following equations:

dT1

dt
=
Rn1 − C1 − λE1

ρ∗1C∗
p1l∗1

with ρ∗1C∗
p1l∗1 = k1� (3)

dT2

dt
=
Rn2 − C2 − λE2

ρ∗2C∗
p2l∗2

with ρ∗2C∗
p2l∗2 = k2� (4)

where ρ*1 and ρ*2 are the density (kg m–3), C*p1 and C*p2 are the specific 
heat capacity (J kg–1), and l*p1 and l*p2 are the thickness (m) of the objects 
measured. Therefore, k1 and k2 represent the amount of energy per unit 

Table 1.  Energy balance parameters, environmental variables, and physical constants

Symbol Description Unit

Gas exchange
A Net CO2 assimilation rate µmol m–2 s–1

gsw Stomatal conductance to water vapour mol m–2 s–1

gbw Boundary layer conductance to water vapour mol m–2 s–1

gbh Boundary layer conductance to heat transfer m s–1

gtw Total conductance to water vapour mol m–2 s–1

E Transpiration rate kg m–2 s–1

VPDl Leaf to air vapour pressure deficit Pa
g1, g2, g3 Steady-state targets for gsw for the dark/light/dark periods mol m–2 s–1

ϕi, ϕd Time lag for an increase (i) or a decrease (d) in gsw s

τi, τd Time constant for an increase (i) or a decrease (d) in gsw s–1

Sl Slope of the linear variation of gsw during the light period µmol m–2 s–2

Energy balance
Tleaf Leaf temperature °C/°K
Rn Net radiation W m–2

C Sensible heat transfer W m–2

λ latent heat of evaporation of water J kg–1

S Net physical storage W m–2

αl, αb, αw Short-wave absorbance of the leaf (l), black reference (b), and white reference (w)  

εl, εb, εw Emissivity of the leaf (l), black reference (b), and white reference (w)  

k Amount of energy per unit area required to change the temperature of the material by 1 °K J m–2 K–1

ρ, ρ* Density of air and leaf tissue (*) kg m–3

Cs Specific heat capacity of humid air J kg–1 K–1

Cp* Leaf specific heat capacity J kg–1 K–1

l* Leaf thickness m

Environment
Is Incident shortwave radiations W m–2

PPFD Photosynthetic photon flux density µmol m–2 s–1

RH Air relative humidity  
Tair Air temperature °C/°K
Patm Atmospheric pressure Pa
es, ea Leaf internal (s) and air (a) vapour pressure Pa
Constant

θ Stefan–Boltzmann constant W m–2 K–4

R Gas constant m3 Pa K−1 mol−1
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area required to change the temperature of the material by 1 °K (J m–2 
K–1). It is important to note that a factor of 2 can be applied to the latent 
heat term (λE1/2) if the object is transpiring from both surfaces.

Rearranging the equation by moving the denominator to the left-hand 
side results in:

k1
dT1

dt
− k2

dT2

dt
= Rn1 − C1 − λE1 − (Rn2 − C2 − λE2)� (5)

This configuration allows further simplification by regrouping similar 
energy fluxes:

k1
dT1

dt
− k2

dT2

dt
= Rn1 − Rn2 + C2 − C1 + λE2 − λE1� (6)

If E2 is for a non-transpiring reference material (e.g. an aluminium rep-
lica) and therefore has a value of 0, the equation would be:

k1
dT1

dt
− k2

dT2

dt
= Rn1 − Rn2 + C2 − C1 − λE1� (7)

The net radiation (Rn) for a horizontal two-sided object is defined by 
its longwave and shortwave radiation exchanges with its environment 
(Fig. 1):

Rnx = αxIs − 2θεxTx
4 + Ld� (8)

where subscript x is either 1 or 2, αx is the absorbance to shortwave ra-
diations (incident and diffuse; Is, W m–2), θ the Stefan–Boltzmann con-
stant (W m–2 K–4), εx the emissivity, Tx the temperature of the object 
studied (°K), and Ld the longwave radiation (W m–2) received from the 
surrounding environment (e.g. soil, wall). The factor of 2 in 2θεxTx

4 cor-
respond to the longwave radiation energy lost by each side of the object. 
Using a reference material placed under similar conditions to the object 
measured removes the need to quantify Ld as it disappears from the equa-
tion when the difference in energy flux is calculated (see below). This as-
sumption is valid when the reference material and the leaf are surrounded 
by a similar thermal environment, with an increasing risk of error when 
the distance between the two objects increases (e.g. large imaging area).

The sensible heat is the energy lost by conduction and convection and 
is defined as:

Cx = 2gbhxρCs (Tx − Ta)� (9)

where gbhx is the one-sided boundary layer conductance to heat transfer (m 
s–1), ρ the air density (kg m–3), Cs the specific heat capacity of humid air (J 
kg–1 K–1), and Ta is the air temperature (°K). The factor of 2 in the equation 
correspond to the energy lost by each side of the object. Air properties such 
as ρ and Cs are described in Supplementary Table S1 at JXB online.

Substituting Equations 8 and 9 in Equation 7 gives:

�

k1
dT1

dt
− k2

dT2

dt
=α1Is − 2θε1T1

4 − α2Is − 2θε2T2
4

+2gbh2ρCs (T2 − Ta)− 2gbh1ρCs (T1 − Ta)− λE1

� (10)

Details required to calculate the different terms are provided in 
Supplementary Algorithm S1.

Temperature kinetics can be predicted using the following generic 
equation:

dT1

dt
=

k2
dT2

dt
− Is (α2 − α1) + 2θ

(
ε2T2

4 − ε1T1
4
)

+ 2ρCs [ gbh2 (T2 − Tair)− gbh1 (T1 − Tair)]− λE1

k1
�

(11)

where: k2 dT2
dt  is the change in energy of the reference material per unit of 

time; Is(α2–α1) the difference in absorbed shortwave radiations; 2θ(ε2T2
4–

ε1T1
4) is the difference in energy lost by longwave radiations; 2ρCs[gbh2 

(T2–Tair)–gbh1 (T1–Tair)] is the difference in energy exchange by conduc-
tion and convection with the atmosphere; and λE1 is the energy lost by 
transpiration.

Such an equation can be used to calculate T1 at any given time 
using an ordinary differential equation (ODE) solver. The solver re-
quired Equation 11 to be calculable at any time t supposing that the 
derivative of the reference temperature kinetics (dT2/dt) and the dis-
crete estimates of the environmental variables [Is, relative humidity 
(RH), Tair, Patm] can be interpolated as a function of time. Using a 
smooth spline on recorded values of T2 and each environmental vari-
able removes high-frequency noise (making the ODE solver more 
efficient) and provides functions that for any time t return a value 
and its derivative (Supplementary Fig. S1). Using an ODE solver re-
quires an initial value for the predicted temperature that was included 
as an estimated parameter in the Bayesian inference described below. 
Equation 11 is a ‘stiff ’ equation requiring a solver with variable step 
size (e.g. ‘cvode’ at https://computation.llnl.gov/projects/sundials), 
as standard methods such as Runge-kutta were orders of magnitude 
slower to solve this equation.

Leaf transpiration model
In response to changes in leaf energy balance, leaf transpiration varies, 
regulating leaf temperature to, for example, maintain an optimal range for 
photosynthesis. Leaf transpiration (E) can be calculated using Equation 12:

	 E =
0.622ρ
Patm

RTleaf

Patm
gtw (es − ea)	 (12)

with 0.622ρPatm  a conversion factor from Pa to kg m–3 and RTleaf
Patm  a conver-

sion factor from mol m–2 s–1 to m s–1, and where Patm is the atmospheric 
pressure (Pa), Tleaf the leaf temperature (°K), gtw the total conductance to 
water vapour (mol m–2 s–1), es the leaf internal vapour pressure, and ea the 
air vapour pressure (Pa).

Total conductance to water vapour (gtw, mol m–2 s–1) is the sum in 
series of the boundary layer conductance to water vapour (gbw, mol m–2 
s–1) and stomatal conductance to water vapour (gsw, mol m–2 s–1):

gtw =
1

1
gbw

+
1
gsw

� (13)

where gbw depends on leaf morphology and wind speed, and gsw depends 
mainly on the number of stomata and change in aperture in response to 
the surrounding environment.

Substituting Equations 12 and 13 in Equation 11 allows us theor-
etically to solve Equation 11 for gsw, assuming that the different de-
rivatives included in Equations 11 can be extrapolated using splines 
adjusted on the temperature kinetics. Although estimating the deriva-
tive at different time points using a spline is an approach that could 
be considered, it should be done with caution as it can give unstable 
gsw values due to the sensitivity to measurement noise of the method. 
Indeed, errors in estimating the derivatives of temperature kinetics 
from noisy data will propagate in the estimation of gsw. In the case of 
the temperature kinetics of the reference material, this error is min-
imized, as the pattern of variation (exponential increase) is simple to 
approximate, which is not always the case for the leaf temperature 
kinetics. Therefore, the approach chosen here was to directly include 
a model to predict gsw in the energy balance equations to calculate 
the derivative and solve it using an ODE solver, leaving the errors 
propagated to the predicted temperatures. The prediction errors of 
the model can thus be taken into consideration when fitting to the 
observed data.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
https://computation.llnl.gov/projects/sundials
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Stomatal conductance model
The temporal response of stomatal conductance to water vapour (gsw, mol 
m–2 s–1) can be predicted using a previously described dynamic model 
(Vialet-Chabrand et al., 2017b). In the case of a continuous variation in 
light intensity, differential equations are required to model gsw (Vialet-
Chabrand et al., 2013, 2016). However, for a step change in light intensity, 
such an equation can be solved analytically, resulting in a sigmoidal equa-
tion, which is simpler and faster to calculate as a function of time (t, s):

gsw = (G + sl · t − g0)
e−e

φ− t
τ

+1

− e−e

φ

τ
+1

1− e−e

φ

τ
+1

+ g0
� (14)

Where g0 is the initial value of gsw at t0=0, G is the steady-state target of 
gsw, τ the time constant of the response (s), ϕ the initial time lag (s), and 

sl the slope of the slow decrease/increase in gsw (mol m–2 s–2). The term Å
e−e

φ−t
τ

+1
− e−e

φ
τ

+1
ã
/

Å
1− e−e

φ
τ

+1
ã

 has been included to ensure a 

proper scaling of the sigmoidal equation between g0 and G even when 

ϕ is positive. Without this correction at t=0, the term e−e
φ

τ+1
 would be 

positive when ϕ was positive, introducing an offset in the estimation of 
g0 and changes in the scale of the response. Plants can biologically control 
the energy lost by leaf transpiration by dynamically adjusting gsw or by 
adjusting the boundary layer conductance by changing the leaf shape (e.g. 
curling) over a longer period of time.

Boundary layer conductance
Using two non-transpiring references mimicking leaf shape and having 
identical thermal properties (same material), but different optical proper-
ties (e.g. black and white) enables Equation 9 to be simplified to deter-
mine the boundary layer conductance:
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k
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where Tw and Tb are the temperature (°K) of the white and the black 
references, respectively. Knowing the thermal (k, εw, εb) and optical (αw, 
αb) properties of the references, it is possible to derive gbh (m s–1) from 
Equation 15 by adjusting its value to fit the predicted white reference 
temperature kinetics to the measured data. Depending on the experi-
mental conditions, it is possible to assume that gbh is stable over the meas-
urement period and therefore only one value needs to be estimated. For 
field applications, it is also possible to include a model predicting the 
boundary layer conductance from wind speed measurements and the di-
mensions of the references (Jones, 2013). This enables us to take into 
consideration the effect of wind speed on leaf energy balance under a 
dynamic field environment.

Predicting leaf temperature kinetics and stomatal conductance 
to water vapour
Model implementation
Stomatal conductance kinetics were predicted by fitting a model com-
bining Equations 9–13 on leaf temperature kinetics under a dynamic 
environment. Using environmental variables as inputs [photosynthetic 
photon flux density (PPFD), µmol m–2 s–1; RH, %; Tair, °C; Patm, Pa], 
the model predicted stomatal conductance kinetics (Equation 12) in re-
sponse to changes in light intensity, which, combined with estimation 
of leaf boundary layer conductance (Equation 13), was used to calculate 
the transpiration rate (Equations 10–11). The latent heat of evaporation 
was then calculated and included in the leaf energy balance (Equation 
9) to predict leaf temperature variations. Equation 9 was applied twice 

using two different references (black and white) to calculate leaf tempera-
ture kinetics, constraining the estimation of gbh as in Equation 13. The 
two different predictions of leaf temperature were compared simultan-
eously with the observed lead temperature using Bayesian inference (see 
Supplementary Algorithm S1).

Bayesian inference
Bayesian inference was used to tune parameter values to fit model pre-
dictions to observed data. Estimating parameter values of such a model 
is challenging because each parameter has a range of values that can pro-
duce equivalent model outputs depending on the precision of observa-
tions and the interaction with other parameters. Using Stan, a statistical 
modelling platform (http://mc-stan.org/), intervals representing 95% of 
the probable parameter values (credible interval) were estimated for each 
parameter. The credible interval included the correlation between par-
ameter and the error due to the noisy data. The model outputs were 
fitted on the observed data by exploring the parameter space using three 
Markov chain Monte Carlo (MCMC) with 500 iterations (250 iterations 
without adaption). All chains converged without divergent transition to 
the same parameter values (Rhat <1.1), with effective sample size values 
>200 (Carpenter et al., 2017). Further information on the use of Bayesian 
inference to find parameter values of ordinary differential equations can 
be found online at http://mc-stan.org/events/stancon2017-notebooks/
stancon2017-margossian-gillespie-ode.html. Originally, Stan did not in-
clude the possibility to use spline functions in the Bayesian model. The 
function was included as an external C++ function wrapping the spline 
function available from the Boost Library into the template system used 
by Stan.

A possible problem during the model fitting could come from com-
paring observed leaf temperature kinetics with predicted temperatures 
using two different references, which could result in bimodal parameter 
distributions. However, the convergence toward the observed tempera-
ture of both sets of predicted temperatures is mainly dependent on the 
value of the boundary layer conductance (gbh, Equation 13), which is 
adjusted during the Bayesian inference, constraining the value of gbh. 
Measurements of gbh at different times of the day did not differ signifi-
cantly and a constant gbh was assumed for both references during the 
experiment to predict leaf gas exchange. Moreover, the conditions that 
generally influence the boundary layer conductance (e.g. air mixing pro-
vided by the fan) were relatively constant within our imaging area.

Model validation using a leaf replica with constant gsw

Under similar conditions to those experienced by plants under step 
changes in light intensity, accuracy and precision of the model out-
puts (leaf temperature and conductance) were tested using a reference 
built to mimic leaf transpiration with a constant conductance to water 
vapour (Fig. 2). The aim was to compare the conductance predicted by 
the model, measured using gas exchange and calculated using a physi-
cal diffusion equation (Lehmann and Or, 2015). The replica was located 
at the same position and with the same orientation (horizontal) as the 
leaves and therefore received the same light intensity (430 μmol m–2 s–1) 
as the measured leaves, whilst the aluminium references (black and white) 
were at a lower location and to one side of the image, and therefore 
received a slightly lower light intensity of 300 μmol m–2 s–1. The replica 
was an aluminium plate covered on one side by black electrical tape with 
known absorbance and emissivity, and on the other side with a felt fab-
ric enclosed in a plastic microporous sheet. The microporous sheet had 
pores of a known and standard diameter of 0.5 mm and 40 µm depth, 
arranged in a grid of 3 mm pitch (density: 160 pores inch–2). When the 
felt was saturated with water, transpiration was dictated by the size and 
density of the pores, and the variation in environmental conditions (e.g. 
RH and wind speed). Conductance was calculated using pore dimension 
and a one end correction (Brown and Escombe, 1900; Cowan, 1978; 
Weyers and Meidner, 1991). The values from two thermocouples were 
used to measure the internal temperature of the replica attached on each 
side and compared with direct measurements from thermal imaging 
(Supplementary Fig. S2). Temperature measured using thermal imaging 
resulted in average temperature kinetics from both sides and was used to 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://mc-stan.org/
http://mc-stan.org/events/stancon2017-notebooks/stancon2017-margossian-gillespie-ode.html
http://mc-stan.org/events/stancon2017-notebooks/stancon2017-margossian-gillespie-ode.html
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
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fit the energy balance model and predict the conductance. The value of 
conductance determined by fitting the energy balance model on a step 
increase and decrease in light intensity was validated on an independent 
data set. In addition, the value was compared with conductance measured 
using a Li-Cor 6800 (Li-COR Biosciences, Lincoln, NE, USA) and a 
9  cm2 chamber under steady-state conditions (PPFD, 0  µmol m–2 s–1; 
[CO2], 400 µmol mol–1; Tair, 20 °C; RH, 60%; flow, 500 µmol s–1), and 
calculated from the anatomy of the transpirating surface (density and size 
of the pores).

Thermal imaging
Thermal images were recorded using bespoke designed software that 
continuously records the environmental variables, as well as the tem-
peratures, and performed an emissivity correction for the regions of 
interest (see below). Black and white references were cut from the same 
piece of aluminium (width, 2 cm; length, 10 cm; thickness, 0.95 mm) 
and used as references in each captured picture. The temperature of the 
black reference was also measured with a surface thermocouple, allowing 
a comparison of the precision and accuracy of the estimates provided 
by the thermal camera. A temperature correction was performed using 
the method described in the manual of the thermal camera in which a 
crumbled piece of aluminium foil was used to correct each image for 
the influence of the reflected thermal emission from ambient sources. 
Images were saved every 3 s and each was an average of 100 raw images 
on a pixel-by-pixel basis, removing random noise. Leaf isolation was 
performed by thresholding the leaf area on the captured picture with the 
highest temperature difference between the air and the black reference 
(i.e. contrast).

Set-up validation
The thermal camera used in these experiments was a FLIR A655sc 
(FLIR system AB, Täby, Sweden) including an uncooled microbolometer 
detector (resolution, 640×480 pixels; spectral range, 7.5–14.0 µm; noise 
equivalent temperature difference, <30 mK) and autocalibrates with sur-
rounding temperature. The light was provided by two identical LED 
light sources (LX601C, Heliospectra AB, Göteborg, Sweden) located on 
each side of the thermal camera. After a step change in light intensity, 
air temperature increased and induced artefact in temperature measure-
ments using the thermal camera. To compensate for temperature drifts, a 
process called non-uniformity calibration was performed every minute, 
which calculated a new table of correction factors using a miniature black 
body that moved in front of the detector (Olbrycht and Więcek, 2015). 
Additionally, temperature from a black aluminium reference was meas-
ured using the thermal camera and compared with surface thermocouple 
measurements to check if the thermal kinetics were accurately captured 
(Supplementary Fig. S3).

Plant material
Winter wheat (Triticum aestivum L.) plants were grown in 20-well propa-
gators under well-watered conditions in peat-based compost (Levingtons 
F2S; Everris) for 2 weeks, and were vernalized for 6 weeks in a cold room 
at 5 °C. Plants were potted in 200 ml pots and moved to a controlled-
environment chamber (Photon Systems Instruments, Brno, Czech 
Republic) with 300  µmol m–2 s–1 of light intensity (10  h/14  h) pro-
vided by white LEDs, temperature of 22/18 °C, and an RH of 50/65% 
(day/night). The third fully developed leaf of the main tiller was used for 
measurements.

Thermal kinetics in response to a step change in light intensity
Plants were dark acclimated for 1  h and then thermal pictures were 
recorded for 10 min. After this period, plants were subjected to a step 
change in light intensity from 0 µmol m–2 s–1 to 430 µmol m–2 s–1 for 
1 h, followed by an opposite step from 430 µmol m–2 s–1 to 0 µmol m–2 
s–1 also for 1  h. Photon flux was determined with a quantum sensor 
(SKP 215; Skye Instruments Ltd, Llandrindod Wells, UK) placed near the 
reference materials, and was converted to energy using a radiation con-
version factor measured with a spectroradiometer (model SR9910-PC, 
Macam Photometrics Ltd, Livingstone, UK). During the experiments, air 
temperature and RH (Supplementary Figs S3, S5) were recorded simul-
taneously with the thermal measurements. To ensure even illumination, 
leaves were attached to a support (length/width, 13/34  cm) that held 
them flat and horizontal to the light source ensuring no contact with 
support material. A mixing fan was installed inside the room to provide 
good air mixing and rapid thermal exchanges, and to prevent creation of 
local temperature and humidity gradients. The air mixing also increased 
boundary layer conductance and improved the reactivity of thermal 
changes, enabling the more efficient capture of temperature variations 
with the thermal camera.

Results

Validation of the energy balance equation and 
experimental approach

Various materials (e.g. white reference and leaf replica) were 
used to validate the experimental approach by evaluating the 
error between modelled and observed temperature kinetics. 
Figure 3 shows how close the temperature kinetics predicted 
using the black reference were to the observed responses from 
the different materials subjected to a step increase and decrease 
in irradiance. The thermal kinetics of the white and black ref-
erences displayed stable temperature during the initial dark 
period, followed by an exponential increase after the increase 

Fig. 2.  Schematic of the leaf replica used to validate the energy balance 
equations and experimental set-up. The black tape had an emissivity of 
0.97 and an absorbance of 0.96, the aluminium plate provides support 
with a rapid thermal response, the felt was used as water storage to 
maintain transpiration through time, and the porous plastic resulted 
in a constant conductance. The conductance was only dependent 
on the size of the pores and their distribution across the surface. Two 
thermocouples were integrated to measure the temperature of the plate 
on each side.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
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in light intensity and an exponential decrease when light was 
returned to zero (Fig. 3A). The energy balance model accurately 
described the thermal kinetics of the white reference [root 
mean square error (rmse) 0.05 °C] and the observed difference 
between the white and black temperature during the illumina-
tion period that was due to the difference in energy absorbed 
by the two references. The temperature kinetics of the dry leaf 
replica followed the same pattern of temperature variations and 
was accurately predicted by the energy balance model using the 
same black reference (Fig. 3B, rmse 0.05 °C). The differences in 
temperatures values observed here were due to differences in 
light intensity received by the two objects located at different 
positions under light (300 µmol m–2 s–1 for the black reference, 
430 µmol m–2 s–1 for the dry leaf replica) rather than absorb-
ance as for the references. Transpiration from the wet leaf replica 
resulted in a large decrease in measured (and predicted) temper-
ature compared with the dry leaf replica; however, a conserved 
pattern of temperature variations was observed (Fig. 3C). The 
energy balance model accurately described the thermal kinetics 
of the wet leaf replica by including energy loss by transpiration 

(Fig. 3C, rmse 0.05 °C). Parameter values of the energy bal-
ance equations were estimated by fitting the predicted tempera-
ture kinetics of the wet leaf replica on observed data. Using an 
independent data set and the same parameter values, the model 
accurately predicted the wet leaf replica thermal kinetics, vali-
dating the model predictions (Fig. 3D, rmse 0.08 °C). The pore 
conductance of the leaf replica was calculated from the size and 
distribution of the pores at 0.207 mol m–2 s–1, and was con-
firmed by infrared gas analysis at 0.210±0.0008 SD mol m–2 s–1. 
Pore conductance derived from thermal kinetics using Bayesian 
inference had a value of 0.207±0.0008 SD mol m–2 s–1 (Fig. 
3C, D), demonstrating the predictive power and accuracy of the 
energy balance model.

Spatiotemporal variability of thermal kinetics in 
response to a step change in light intensity

Description of leaf temperature kinetics
Large spatiotemporal variation in leaf temperature kinetics 
was observed between and within leaves of wheat (Fig. 4). 

Fig. 3.  Temperatures of the reference materials and leaf replica observed (solid black line) and modelled (solid red line) in response to a step change 
in light intensity from dark to light (0–300 µmol m–2 s–1 at the site of the aluminium references and 0–430 µmol m–2 s–1 at the site of the leaf replica). 
Modelled temperatures were derived from the temperature kinetics of a black reference (Tblack, dashed black line). Observations described the 
temperature kinetics of (A) a white reference, (B) a dry leaf replica, and (C) and (D) a wet leaf replica. Parameter values were adjusted using Bayesian 
inference to minimize the error between observed and modelled data in (A), (B), and (C). Parameter values estimated in (C) were used to predict the 
temperature kinetics in (D) to test model predictions using an independent data set. The root mean square error (rmse) was calculated as an estimator of 
the quality of the model outputs.
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A  false-colour pallet with a continuous gradient in colour 
(black to white; see Fig. 4) was used to highlight the temporal 
changes in temperature that were observed following a step 
increase in light intensity. Both leaves examined behave differ-
ently, with areas reaching the highest and lowest temperature 
at different times within the response. A second false-colour 
scale separating data into discrete (colour) bands illustrates the 
large spatial heterogeneity within the leaves and revealed that 
different parts of the leaf behaved differently over time. To 
assess the spatial variation in temperature kinetics over the leaf, 
the leaves were divided into four separate areas from the tip 
to the bottom of the leaf. The selected areas displayed differ-
ences in temperature of between ~0.5 °C and 1.5 °C during 
the experiment, as well as significant differences in the tem-
poral responses (Fig. 5A). During the initial dark period (first 
10 min), leaf temperature differences (as high as 0.7 °C) were 
mainly influenced by the amount of transpiration, whereas the 
initial temperature increased when the light was switched on 
(first 5 min), and depended on light intensity and leaf charac-
teristics (i.e. thickness, density, and specific heat capacity). This 
increase in temperature was only counterbalanced once sto-
mata started to respond to the light, opening and increasing leaf 
evaporative cooling by transpiration. Towards the end of the 
light period, leaf temperature was mainly influence by the sur-
rounding environmental conditions, tracking the decrease in 
air RH and increase in air temperature that together influence 
the leaf to air vapour pressure deficit (VPDI; Supplementary 
Fig. S4). During the second dark period (last hour), the large 
differences in leaf temperature were due to the level of leaf 
transpiration achieved during the light period and the rapidity 
of stomatal closure.

Description of stomatal conductance kinetics
Using an energy balance model fitted on the previously 
described leaf temperature kinetics (Fig. 5A; Supplementary 
Fig. S5A), gsw was derived (Fig. 5B; Supplementary Fig. S5B) 
precisely for all areas and leaves assessed (Supplementary Fig. 

Fig. 4.  Time-series of thermal images displaying leaf temperature spatiotemporal differences for two leaves (A and B) subjected to changes in light 
intensities (grey background, 0 μmol m–2 s–1; white background, 430 μmol m–2 s–1). Two different colour scales are used to highlight either temperature 
kinetics or heterogeneity over the leaf surface. Average temperature kinetics for (A) leaf 4 and (B) leaf 5 are visible in Fig. 5

Fig. 5.  Spatial and temporal response of (A) leaf temperature (Tleaf) and (B) 
stomatal conductance (gsw) to step changes in light intensity. Dark areas 
represent a period where light intensity was 0 µmol m–2 s–1 and the white 
area a period where light intensity was 430 µmol m–2 s–1. Each colour 
represents a leaf, and each curve represents a different leaf position.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
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S6, rmse 0.069 °C). During the experiment, differences in sto-
matal behaviour and regulation of transpiration were observed 
within and between the leaves (Fig. 5B). During the initial 
dark period, gsw values ranged between 0.001 mol m–2 s–1 and 
0.092 mol m–2 s–1, and at the end of the light period gsw ranged 
between 0.346 mol m–2 s–1 and 0.733 mol m–2 s–1, illustrating 
the large diversity in the regulation of transpiration. During 
the second dark period, gsw continued to increase for some 
individuals at the beginning and did not return to its original 
values, displaying a general decrease, with values ranging from 
0.004 mol m–2 s–1 to 0.051 mol m–2 s–1.

Interpretation of stomatal conductance kinetics using an 
energy balance model
By fitting the energy balance model on the observed leaf tem-
perature kinetics, parameter values describing the temporal 
response of gsw and the thermal exchanges between the leaf 
and atmosphere were estimated using Bayesian inference (Fig. 
6). Leaf-level boundary layer conductance (gbw) was estimated 
at 1.284±0.007SD mol m–2 s–1 and no significant variation 
between leaves was observed. Boundary layer conductance 
values were sufficiently high so as not to be the main limiting 
process for gas diffusion during the experiment. An important 
physiological parameter to understand the thermal response 
of the leaf was the amount of energy per unit area required 

to change its temperature by 1  °K (k) which displayed sig-
nificant differences but was within a contained range of val-
ues (775–1002 J m–2 K–1). The leaf shortwave absorbance (αl) 
was significantly different between leaves, with values rang-
ing between 0.59 and 0.75, respectively, for leaf 1 and 4. The 
credible intervals of the estimated parameter were such that 
it was possible to study the variation of stomatal behaviour 
not only between leaves but also within individual leaves. 
Steady-state targets of gsw were defined for each dark/light/
dark period (g1, g2, and g3) and showed significant variation 
within and between the leaves (Fig. 6A–C). The initial steady-
state gsw values during the first dark period (g1) were signif-
icantly different between leaves, with up to 10-fold higher 
values observed for leaf 4 compared with leaf 1 (Fig. 6A). In 
the second dark period, values of g3 showed less variation 
between individuals, with an average value of ~0.025 mol m–2 
s–1. Spatial differences in g1 and g3 of ~0.020 mol m–2 s–1 were 
observed within individual leaves. During the light period, g2 
values showed significant differences between leaves (Fig. 6B), 
including a positive gradient (~0.1 mol m–2 s–1 increase) along 
the leaf lamina (between the tip and base of the leaf) for leaves 
2–4 and a negative gradient for leaves 1 and 5 (~0.02 mol m–2 
s–1 decrease).

In general, temporal responses of gsw displayed an ~2-fold 
faster increase (Fig. 6D–E) than decrease (Fig. 6G–H), with 

Fig. 6.  Parameter values (A–K) derived from the leaf energy balance model using Bayesian inference. Steady-state target for the stomatal conductance 
to water vapour (gsw, presented on a different scale for dark and light periods) (A) during the initial dark period (g1), (B) the light period (g2), and (C) the 
final dark period (g3). (D) Time lag and time constant for (D and E) an increase (ϕi and τi) and (G and H) a decrease (ϕd and τd) in gsw. (F) The slow increase 
or decrease in gsw over time (sl), with the dotted line representing 0. (I) The amount of energy per unit area required to change the temperature of the 
material by 1 °K (k). (J) The leaf shortwave absorbance (αl). The model was fitted on observations from five leaves, each divided into four areas (K). Error 
bars represent the 95% credible interval. Colours represent the different leaf positions.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
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significant differences observed between leaves. Initial lag time 
(ϕi and ϕd) showed greater within-leaf variability than between 
leaves. Interestingly, leaves with low time constant values for 
an increase in gsw (τi) also showed low time constant values 
for a decrease in gsw (τd). The slow increase or decrease of gsw 
(Sl) observed at the end of the first exponential response after 
the light was switched on displayed large differences between 
leaves (Fig. 6F), with positive values (increase) for leaves 1, 2, 
and 5, and negative values (decrease) for leaf 4. This behaviour 
was relatively conserved across the leaf lamina.

Thermal kinetics under rapidly changing environmental 
conditions

To illustrate the robustness of the proposed model to variation in 
environmental conditions, five leaves were assessed under fluc-
tuating air temperature and relative humidity (Supplementary 
Fig. S7) to produce complex leaf evaporative demand and 
temperature kinetics (Fig. 7A). Despite the more complex 
leaf temperature fluctuations and the fact that the gsw model 
was developed to consider mainly variation in light intensity, 
model predictions showed a similar precision (Supplementary 
Fig. S8, rmse 0.098 °C) to the predicted leaf temperature kin-
etics previously described in Fig. 5 (Supplementary Fig. S6, 
rmse 0.069 °C). Estimation of gsw showed a rapid increase after 
the light was switched on, followed by a plateau or a slow 
decrease, and a relatively slow decrease of gsw when the light 
was switched off (Fig. 7B). In general, parameter values de-
rived from the energy balance model in Fig. 8 were within 
the same range as those observed previously in Fig. 6. The 
steady-state targets for gsw for each period of the kinetics (g1, 
g2, and g3) showed no consistent pattern but significant differ-
ences between leaves. All leaves presented a slow decrease in gsw 
after the initial exponential increase, with one leaf exhibiting 
a 4-fold lower value of sl. Shortwave absorbances were slightly 
higher than those displayed in Fig. 6, with values ranging from 
0.76 to 0.89. Time constants for an increase in gsw (τi) were 
about half the values of those estimated for a decrease in gsw 
(τd), with significant differences between leaves. Lag times (ϕ) 
for the increase or the decrease of gsw had a similar magnitude 
in both cases. The amount of energy per unit area required to 
change the temperature of the material by 1 °K (k) was only 
significantly different between leaf 2 and 3, with an average for 
all leaves of 1018 J m–2 K–1 (Fig. 8J).

Parameter importance for dynamic energy balance 
predictions

Under dynamic environmental conditions, variations in 
parameter values in the energy balance equations impact leaf 
temperature kinetics with a different magnitude at different 
periods throughout the kinetics. The impact of these values 
on temperature kinetics is displayed in Fig. 8, and illustrates 
how much parameter values need to be adjusted to achieve a 
±0.5 °C temperature variation within the step changes in light 
intensity. The results illustrated the relative importance of the 
boundary layer conductance (gbw, Fig. 9A), which influenced 
the entire temporal response of leaf temperature when changed 

by about ±50%. Leaf shortwave absorbance (αl) impacted leaf 
temperature during the light period but required variations in 
value that were biologically improbable, as alterations of 50% 
were required to drive a 0.5 °C change in temperature. Steady-
state targets for gsw (g1, g2, and g3) impacted leaf temperature 
kinetics during the period for which they are defined as well 
as the initial part of the following period, with variations that 
were within the observed range of values shown in Figs 6 and 
8. During the light period, increasing the leaf temperature 
by 0.5 °C required a 3-fold increase in the value of the slow 
increase or decrease in gsw (sl). Parameters influencing the tem-
poral response of gsw (Fig. 9G–J) only had a transient impact on 
leaf temperature but did not require large variations in values. 
For example, increasing the initial time lag (ϕi) or the time 
constant (τi) by ~1  min after a step increase in light inten-
sity resulted in a 0.5  °C increase in leaf temperature, which 
lasted for 10 min (Fig. 9G, H). During the second dark period, 
increasing the initial time lag (ϕd) or the time constant (τd) by 
~3 min resulted in a 0.5 °C decrease in leaf temperature, which 
lasted for at least 30 min (Fig. 9I, J).

Discussion

Despite the success of thermometry in selecting plants with 
improved yield or altered response to drought (Raskin and 
Ladyman, 1988; Reynolds et al., 1999; Merlot et al., 2002), a 
major limitation of this technique is the need for stable envi-
ronmental conditions to interpret the temperature differences 
(Reynolds et al., 1999; Jones et al., 2009; Rischbeck et al., 2017; 
Prado et  al., 2018).The results presented here provide strong 
evidence that thermography can be used to derive gsw under 
a dynamic environment, opening up a new avenue for plant 
phenotyping and selection. This is particularly relevant given 
the growing evidence that temporal responses of gsw limit 

Fig. 7.  Temporal response of (A) leaf temperature (Tleaf) and (B) stomatal 
conductance (gsw) to step changes in light intensity under fluctuating 
environmental conditions (air temperature and relative humidity). Dark 
areas represent a period where light intensity was 0 µmol m–2 s–1 and 
the white area a period where light intensity was 430 µmol m–2 s–1. Each 
colour represents a leaf, and each curve represents a leaf section.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz068#supplementary-data
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photosynthesis and potentially impact yield (McAusland et al., 
2016; Taylor and Long, 2017; Vialet-Chabrand et al., 2017b).

Our approach to describe the combination of leaf energy 
balance and mass transfer does not depend on any specific 
reference material or environmental conditions, making this 
method a versatile tool for thermography. The equations 
described in this study have been applied using aluminium 
references to predict, with high accuracy, leaf temperature 
kinetics in wheat, allowing gsw to be derived under a fluctu-
ating light environment. Model outputs were validated using 
a leaf replica with a known conductance to water vapor sub-
jected to the same fluctuating conditions. Although leaf rep-
licas have been used in the past to study the importance of 
mass transfer in leaf energy balance (Zwieniecki et al., 2016; 
Schymanski and Or, 2017; Schymanski et  al., 2017), our 
results highlight the potential of the low-cost leaf replica and 
references to validate leaf temperature predictions obtained 
using energy balance equations. The ability to derive gsw 
from thermography under a fluctuating environment using a 
relatively simple set-up opens the way to field measurements 
in the future, but will require further improvements to take 

into consideration parameters such as leaf orientations and 
local variations in Ld. In this context, our approach could 
be combined with hemispherical references placed at dif-
ferent positions in the field (Jones et al., 2018) to take into 
account the different leaf angles and surrounding thermal 
conditions present in a field canopy. Indeed, our model can 
be easily adapted to an existing experimental set-up or used 
to reprocess existing data if enough information is available. 
Previous work has attempted to use dynamic energy balance 
equations (taking into consideration the temporal dimen-
sion) but are often incomplete in their implementation or 
use approximations to describe the continuous interactions 
between the leaf and a fluctuating environment (Bajons et al., 
2005; Schymanski et al., 2013; Page et al., 2018). The ability 
of the model presented here to operate under any environ-
mental condition is mainly due to the unique combination 
of equations integrating the continuous variations of the 
environmental variables, the impact of stomatal behaviour, 
and ultimately leaf temperature.

Combining stomatal conductance and energy balance mod-
els opens up new possibilities to use leaf temperature kinetics 

Fig. 8.  Parameter values (A–J) derived from the leaf energy balance model using Bayesian inference. Steady-state target for the stomatal conductance 
to water vapour (gsw) (A) during the initial dark period (g1), (B) the light period (g2), and (C) the final dark period (g3). (D) The slow increase or decrease in 
gsw over time (sl), with the dotted line representing 0. (E) The leaf shortwave absorbance (αl). The time lag and the time constant for (F and G) an increase 
(ϕi and τi) and (H and I) a decrease (ϕd and τd) in gsw. (J) The amount of energy per unit area required to change the temperature of the material by 1 °K 
(k). The model was fitted on observations from five leaves. Error bars represent the 95% credible interval. Colours represent the different leaf areas.
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to improve our understanding of the mechanisms involved in 
stomatal responses to the surrounding environment. However, 
combining both models requires an estimate of boundary 
layer conductance (gbw) that dictates part of the gas and heat 
exchange. Therefore, our model simultaneously estimates gsw, 

gbw, and leaf temperature in fluctuating environmental con-
ditions using a set-up that is easy to use and low cost, while 
providing precise estimates. The values of gbw used to calcu-
late gsw from the energy balance equations produced gsw values 
that were close to those of the leaf replica, suggesting that our 

Fig. 9.  Sensitivity analysis representing the variation of parameter values required to change leaf temperature by ±0.5 °C during step changes of light 
intensity. Parameter values from leaf 2 and area 1 were used as an illustration (Fig. 5). Dark areas represent a period where light intensity was 0 µmol 
m–2 s–1 and the white area a period where light intensity was 430 µmol m–2 s–1. Differences in leaf temperature were only achieved over parts of the 
temperature kinetics depending on the parameter (red shaded area) and reached during these periods a maximum of ±0.5 °C. Original parameter values 
and corresponding curves (solid black line) are displayed in each plot, with the achieved temperature differences (Tdiff) and the corresponding parameter 
values (θ). In some cases (C, E, F, G, I), the maximum temperature deviation of ±0.5 °C was not reached due to a parameter value reaching a boundary 
(e.g. 0); the value achieved was shown instead of ±0.5 °C.
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estimates of gbw were accurate enough to derive a valid gsw 
value. Numerous research studies has been published on meas-
uring leaf boundary layer conductance (Leuning et al., 1989; 
Leuning, 1990; Brenner and Jarvis, 1995; Stokes et  al., 2006; 
Katsoulas et  al., 2007) and although our method is derived 
from a similar theoretical basis, it does not require specific 
equipment (e.g. power source, heating element) and relies on 
environmental variations, making it simple to operate. In the 
case of portable gas exchange chambers, investigating stomatal 
responses requires artificial conditions that alter the thermal 
exchange between leaf and atmosphere (e.g. influence of wall 
temperature) and often use high boundary layer conductance 
to simplify the measurements. Using thermography enables 
the determination of gsw without artificially altering the con-
ditions surrounding the leaf, meaning that measurements of 
leaf responses are closer to those observed in the field. The 
outcomes from our modelling approach included the temporal 
response of gsw, a biological trait that has attracted significant 
attention in recent years (Lawson et al., 2010; Lawson and Blatt, 
2014; McAusland et al., 2016; Meinzer et al., 2017; Matthews 
et al., 2018; Deans et al., 2018) because of its impact on both 
photosynthesis and water use efficiency.

Nocturnal stomatal conductance (observed after dark accli-
mation) was significantly different between individuals, sug-
gesting differences in the regulation of water loss during the 
night period. Nocturnal transpiration is involved in essential 
physiological processes such as nutrient transport (Zeppel et al., 
2014) and could represent 30% of daytime water consumption 
in crops (Claverie et al., 2018). The initial gsw values observed 
here under dark conditions represented up to ~10% of the value 
reached under the light period, confirming its importance for 
the regulation of plant water budget. Nocturnal regulation 
of gsw has been shown to be developmentally and genetically 
controlled in wheat (Claverie et  al., 2016; Schoppach et  al., 
2016) and has been proposed as a breeding target to produce 
plants with improved tolerance to drought (Schoppach et al., 
2014, 2016; Coupel-Ledru et al., 2016). These results highlight 
the potential of our method for future breeding programmes 
aiming to screen populations with differences in nocturnal 
transpiration.

Under the light period, gsw values were similar to those 
reported previously in the literature for wheat (McAusland 
et  al., 2016; Taylor and Long, 2017). However, stomatal 
responses reported here were more rapid than those reported 
for wheat by McAusland et  al. (2016) and displayed a slow 
decrease in gsw after the initial exponential response, which 
was also significantly different between leaves. These two 
independent estimations of the temporal response of gsw for 
wheat were performed under different environmental condi-
tions (controlled versus uncontrolled) and we believe that the 
rapid increase of leaf temperature after the light was switched 
on (due to the increase in incident energy), simultaneously 
with a decrease in air RH and an increase in air temperature 
experienced by the whole plant in the imaging area, may have 
contributed to this change in stomatal behaviour. Interestingly, 
Franks and Farquhar (2007) observed similar enhancement in 
wheat of the initial rate of increase in gsw and a lower final value 

at high VPDI (2 kPa) compared with low VPDI (1 kPa). Mott 
et al. (1999) proposed that the difference in response depends 
on hydraulic interactions among stomata that are mediated 
by transpiration-induced changes in epidermal turgor, which 
could explain our observations. In addition, after a step increase 
in light intensity, we observed an initial lag (~2–3 min) before 
gsw changed significantly, confirming the observations in wheat 
made by Taylor and Long (2017). This initial lag has been 
shown to impact photosynthesis in different species (Vialet-
Chabrand et al., 2013; McAusland et al., 2016; Taylor and Long, 
2017) but also leads to a rapid increase in leaf temperature 
due to the limited cooling by transpiration. Schymanski et al. 
(2013) highlighted the potential heat damage and hydraulic 
failure a leaf may experience during the first minutes of a sun 
fleck, which could be avoided by maintaining gsw at a relatively 
high value when the leaf returns to shade conditions. During 
our experiment, the lag time and rapidity of response for a 
decrease in gsw were substantially larger than for an increase in 
gsw, ensuring that gsw remained at a high value for a longer time 
period. Additionally, the sensitivity analysis performed on the 
model revealed that a small increase in parameter values ϕi/d 
and τi/d, controlling the rapidity of gsw variation, resulted in 
maintaining a low leaf temperature for a greater duration after 
a decrease in light intensity. These observations are compat-
ible with a conservative strategy to maximize carbon fixation 
by unit of water loss (Ooba and Takahashi, 2003) and limit 
heat damage (Schymanski et  al., 2013) under a fluctuating 
light environment. Even if there is asymmetry in the response 
between the rapidity of increase and decrease in gsw, it is inter-
esting to note that leaves with a slow increase in gsw also had 
a slow decrease, suggesting a co-ordination of both responses 
as proposed by McAusland et  al. (2016). Overall, the diver-
sity observed here for only a few individuals is a promising 
result that could be used as breeding targets to improve yield 
by reducing the stomatal limitation on photosynthesis as sug-
gested by Lawson and Blatt (2014), as well as to enhance ther-
mal regulation and water-saving strategies to limit heat damage 
and increase drought tolerance in hot and dry environments.

Under a dynamic environment, thermograms revealed vari-
ation in temperature kinetics over the leaf lamina that could be 
attributed to patchy stomatal behaviour (Weyers and Lawson, 
1997; Lawson and Weyers, 1999). Compared with previous re-
search studying the spatial heterogeneity of gsw using thermo-
grams (Jones, 1999; Saudreau et al., 2017; Sweet et al., 2017; 
Page et al., 2018), we assessed the temporal response of gsw for 
different sections of wheat leaves following a step increase in 
light intensity to characterize the rapidity and the magnitude 
of the stomatal response. The spatial gradient observed for the 
magnitude of the gsw response (up to an ~50% increase from 
the base to the tip of the leaf) stressed the importance of meas-
uring gsw at a similar leaf position for each individual when 
using a portable gas exchange chamber (Lawson and Weyers, 
1999). Estimations of the rapidity of the stomatal response are 
less influenced by the position on the leaf blade, suggesting 
that at this scale in wheat, any patchy effect is mainly due 
to variation of stomatal density rather than different stomatal 
behaviour. Prytz et al. (2003) monitored spatial and temporal 
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stomatal conductance of Avena subject to low humidity and 
suggested that the synchronicity of stomatal behaviour at dif-
ferent leaf positions may be a result of the anatomy of mono-
cotyledonous leaves in which the main veins running parallel 
with the leaf blade transport a hydraulic signal synchronizing 
different areas of the leaf in the longitudinal direction. More 
specifically, in wheat, Buckley and Mott (2000) provided 
strong evidence for long‐distance hydraulic interactions co-
ordinating the stomatal response in different areas of the leaf 
that could explain our observations. Previous research using 
infrared gas exchange to measure stomatal behaviour has 
shown that the temporal response of gsw displayed significant 
variations within (Matthews et  al., 2018) and between spe-
cies (McAusland et  al., 2016) with comparable responses to 
our results. Previous studies using thermal signatures to assess 
stomatal kinetics have been limited to the first few minutes 
of a response to a step change in light intensity (Bajons et al., 
2005; Page et al., 2018) or have only interpreted the relative 
changes in temperature (Prytz et al., 2003). Overall, the model 
presented here allowed us to investigate the parameters con-
trolling the temporal response of gsw (τ, ϕ, Sl) that have been 
related to guard cell metabolism (Hills et al., 2012; Wang et al., 
2014; Vialet-Chabrand et al., 2017a), and provided strong evi-
dence of a co-ordinated rapidity of response across the leaf 
lamina in wheat despite the local variation in the magnitude 
of the response.

The findings and experimental approaches presented here 
have the potential to remove a major bottleneck in high-
throughput phenotyping of stomatal-related traits, by allowing 
the interpretation of thermograms under a fluctuating en-
vironment. Time-series of thermograms associated with our 
new energy balance approach provided spatial and temporal 
characterization of stomatal conductance (gsw) responses in 
wheat, highlighting the importance of co-ordinated stomatal 
responses across the leaf blade. The diversity and asymmetry of 
the temporal response of gsw observed after a step increase or 
decrease in light intensity can be interpreted as a strategy to 
maximize photosynthesis per unit of water loss and avoid heat 
stress under a fluctuating environment. Improving these aspects 
of stomatal behaviour is thought to be an important breeding 
target for future yield improvement, to which our work will 
directly contribute by allowing screening of large numbers 
of plants for biologically relevant traits. The techniques and 
methods presented here provide significant evidence for the 
accuracy of predicted gsw from leaf temperature kinetics, that 
can be easily transferred to existing equipment and will pave 
the way for further development in our understanding of sto-
matal behaviour in future field studies.
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