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Abstract

Chaperonin containing T-complex polypeptide-1 (CCT) is an evolutionarily conserved chaperonin multi-subunit 
complex that mediates protein folding in eukaryotes. It is essential for cell growth and survival in yeast and mam-
mals, with diverse substrate proteins. However, only a few studies on plant CCT have been reported to date, due to 
the essentiality of CCT subunit genes and the large size of the complex. Here, we have investigated the structure 
and function of the Arabidopsis CCT complex in detail. The plant CCT consisted of eight subunits that assemble to 
form a high-molecular-mass protein complex, shown by diverse methods. CCT-deficient cells exhibited depletion 
of cortical microtubules, accompanied by a reduction in cellular α- and β-tubulin levels due to protein degradation. 
Cycloheximide–chase assays suggested that CCT is involved in the folding of tubulins in plants. Furthermore, CCT 
interacted with PPX1, the catalytic subunit of protein phosphatase 4, and may participate in the folding of PPX1 as its 
substrate. CCT also interacted with Tap46, a regulatory subunit of PP2A family phosphatases, but Tap46 appeared to 
function in PPX1 stabilization, rather than as a CCT substrate. Collectively, our findings reveal the essential functions 
of CCT chaperonin in plants and its conserved and novel substrates.

Keywords:  CCT chaperonin, PP4 catalytic subunit, Tap46, TOR signaling pathway, tubulin biogenesis, virus-induced gene 
silencing.

Introduction

Chaperonin containing T-complex polypeptide-1 (CCT), also 
known as T-complex polypeptide-1 ring complex (TRiC), is a 
eukaryotic cytosolic group II chaperonin and the homolog of 
archaeal thermosome (Yébenes et al., 2011). Chaperonins medi-
ate protein folding by encapsulating nascent polypeptides inside 
their central chamber and providing a sequestered environment. 
As shown by studies in yeast and mammals, CCT chaperonin is 
a large hetero-oligomeric complex of approximately 1000 kDa, 

which consists of eight subunits (CCT1–CCT8) located at 
fixed positions to form double rings stacked back to back (Hartl 
et al., 2011; Joachimiak et al., 2014). An ATP-driven conforma-
tional cycle of CCT mediates the opening and closing of the 
lid to encapsulate and release the substrate (Meyer et al., 2003; 
Cong et al., 2012; Reissmann et al., 2012).

The cortical microtubules (MTs) that line the cortex of 
interphase plant cells are essential in guiding the cellulose 
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synthase complex and for regulating cell morphogenesis (Chen 
et al., 2016). In addition to dynamic polymerization and depo-
lymerization to form various MT structures, tubulins undergo 
a complex process of autoregulation through transcription, 
post-translational modification, and degradation (Lundin et al., 
2010). Furthermore, nascent tubulin polypeptides cannot fold 
spontaneously; thus, tubulin biogenesis requires various chap-
erone factors that have co-evolved with tubulins in eukaryotes 
(Szymanski, 2002; Bertrand et al., 2005).

It has been demonstrated that CCT chaperonin is essen-
tial for the folding of tubulin and actin in yeast and mam-
mals (Llorca et al., 2000; Muñoz et al., 2011). Tubulin and actin 
are among the most abundant proteins in eukaryotic cells, and 
cells exhibit dramatic phenotypes when they are deficient. 
Therefore, a search for additional substrate proteins of the CCT 
complex has been hindered by the predominant cytoskeletal 
defects in CCT-deficient mutants. Nevertheless, an estimated 
7% of nascent polypeptides have been reported to bind to the 
CCT complex after or during synthesis from ribosomes, sug-
gesting that CCT likely has many other substrates (Yam et al., 
2008). Indeed, recent studies have shown that CCT is involved 
in the folding of cell cycle regulators (CDC20 and CDH1), 
tumor suppressors (VHL and p53), and a telomerase cofactor 
(TCAB1), suggesting a vital role for the CCT chaperonin in 
animal cell growth and survival (Feldman et al., 1999; Camasses 
et  al., 2003; Trinidad et  al., 2013; Freund et  al., 2014; Lopez 
et  al., 2015). In contrast to the extensive characterization of 
CCT’s structure and functions in other eukaryotes, informa-
tion on plant CCT and its de novo substrates is scarce, partly 
due to the difficulty in obtaining loss-of-function mutants 
since CCT’s functions are essential for cell survival. Earlier 
studies in maize and oats using anti-CCT antibodies showed 
co-sedimentation of tubulin and CCT subunits in sucrose frac-
tionation and co-immunoprecipitation of CCTε (CCT5) with 
β-tubulin (Himmelspach et al., 1997; Moser et al., 2000). More 
recently, Xu et  al. (2011), after analysing weak cct8 mutant 
alleles, reported that CCT is essential for cell-to-cell trafficking 
and stem cell function of the KNOTTED1 homeobox fam-
ily of transcript factors. The difficulty in purifying the CCT 
complex has hindered identification of new CCT substrates 
in plants.

Plant Tap46 and its homologs, Tap42 and α4/IGBP1, in 
yeast and mammals, respectively, are regulatory subunits of 
PP2A family phosphatases (PP2A, PP4, and PP6), which act 
by direct association with the phosphatase catalytic subunits 
to form a heterodimer (Chen et al., 1998; Wang et al., 2003; 
Ahn et  al., 2011). Tap46, Tap42, and α4 are all essential for 
cell survival. In yeast, Tap42 is phosphorylated by the target of 
rapamycin (TOR) kinase, and Tap42-regulated protein phos-
phatase activities constitute a major mechanism for regulation 
of the downstream effectors of the TOR pathway (Düvel and 
Broach, 2004). In plants, TOR phosphorylated recombinant 
Tap46 protein in vitro, and Tap46 depletion reproduced the 
signature phenotypes of TOR inactivation, supporting a func-
tional link between Tap46 and TOR (Ahn et al., 2011). Tap46 
has a particularly strong interaction with the PP4 catalytic 
subunit (PP4c), among the PP2A family members (Ahn et al., 
2011). Kong et al. (2009) reported that α4 plays a critical role 

in maintaining cellular PP2A activity by stabilizing PP2A fam-
ily catalytic subunits. It was proposed that α4 acts as a scaffold/
chaperone protein and protects the catalytic subunits from 
degradation until the assembly of the functional phosphatase 
complex is finished.

Interestingly, tandem affinity purification tagging and mass 
spectrometry indicated that PP4c and α4 interact with multi-
ple CCT subunits in mammals (Gingras et al., 2005; Herzog 
et al., 2012). However, a functional role of those interactions 
has not been elucidated. In this study, we investigated the com-
plex formation and in vivo functions of CCT chaperonin in 
Arabidopsis. The CCT complex, made of eight subunits, is 
essential for plant growth. The CCT complex is involved in 
the folding of tubulins, and silencing of the CCT subunit genes 
resulted in cortical MT defects among other pleiotropic phe-
notypes. Furthermore, our results suggest that PPX1 (PP4c) 
may be a novel substrate of plant CCT. Tap46, which interacts 
with PPX1 and CCT, may play a role in stabilization of PPX1. 
Thus, CCT appears to link to the TOR signaling pathway 
through biogenesis of PP4 catalytic subunits.

Materials and methods

Plant materials and growth conditions
Arabidopsis plants (ecotype Col-0) were grown in a 22°C growth cham-
ber under long-day conditions (16 h light–8 h dark) with light intensity 
of 100–150 μmol m−2 s−1. Nicotiana benthamiana plants were grown in a 
23°C growth chamber under long-day conditions (16 h light–8 h dark) 
with 80  μmol m−2 s−1 light intensity. GFP–TUB6 OE (CS6550) and 
GFP–TUA6 OE seeds (CS6551) were obtained from the Arabidopsis 
Biological Resources Center (ABRC).

Bimolecular fluorescence complementation
Protein coding regions were PCR-amplified and cloned into the 
pSPYNE vector containing the N-terminal region (amino acid residues 
1–155) of yellow fluorescent protein (YFP) or into pSPYCE vector con-
taining the C-terminal region (residues 156–239) of YFP. The pSPYNE 
and pSPYCE fusion constructs were agroinfiltrated together into the 
leaves of 3-week-old N.  benthamiana plants as described (Walter et  al., 
2004). After 48  h, protoplasts were generated and the YFP signal was 
detected using a confocal microsope (Zeiss LSM510).

Transient protein expression in N. benthamiana plants
One-month-old N.  benthamiana seedlings were used for transient infil-
tration. Agrobacterium cells carrying constructs of interest and p19 were 
grown overnight in selective YEP medium (rifampicin/kanamycin) at 
28°C. After centrifugation at 200 g for 15 min, cells were resuspended in 
the induction medium (10 mM MgSO4, 10 mM MES–KOH, pH 5.7, and 
1 mM acetosyringone) and incubated for 1–2 h. Agrobacterium contain-
ing the expression constructs was mixed with Agrobacterium containing 
p19, and the final OD600 value of each strain was set to 1~1.5. The mixed 
media were then infiltrated into N. benthamiana seedlings with a needle-
less syringe. Leaf samples were harvested at 2 d after infiltration (DAI).

Virus-induced gene silencing in Arabidopsis plants
Virus-induced gene silencing (VIGS) was performed in Arabidopsis 
plants as described previously (Ahn et al., 2015b). TRV2 vectors (Burch-
Smith et al., 2006) harboring fragments of CCT2, CCT3, TUA6, ACT2, 
Tap46, and PPX1/2 cDNA were used for VIGS. Agrobacterium trans-
formed with the cloned TRV2 vectors and Agrobacterium containing 
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TRV1 (pBINTRA) vectors were inoculated in LB medium with 10 mM 
MES–KOH (pH 5.7) and 20 μM acetosyringone and grown overnight in 
28°C. After centrifugation at 200 g for 15 min, cells were harvested and 
resuspended in the infiltration medium (10 mM MgCl2, 10 mM MES–
KOH, pH 5.7, and 200 μM acetosyringone). Then TRV2 and TRV1 infil-
tration media were mixed at a 1:1 ratio at OD600=1 and incubated for 
3–4 h, followed by infiltration into Arabidopsis seedlings at approximately 
10 d after germination (DAG) using needle-less syringes. Phenotypes 
were observed at 15–18 DAI.

Trichome isolation
Trichomes were isolated from TRV2 and TRV2:CCT2 sample leaves 
using previously published methods (Marks et  al., 2008). Five to six 
rosette leaves were harvested and put into 50 ml tubes. Fifteen millilit-
ers of trichome isolation buffer (1× PBS, 50 mM EGTA, pH 7.5) with 
0.01 g of 425–600 μm glass beads (Merck) was added to the tubes. The 
tubes were vortexed four times at the maximum speed for 30 s, and dur-
ing the intervals the tubes were kept on ice. After vortexing, the superna-
tant was transferred to new tubes. The remaining beads and leaves were 
rinsed with PBS to isolate the trichomes still attached to the beads and 
the leaves. The supernatant was then passed through a 70 μm cell strainer 
(SPL Life Sciences), trapping the trichomes inside the cell strainer. Then 
the cell strainer containing the trichomes was inverted in a new cell 
culture dish. Ten milliliters of PBS was added to detach the trichomes 
from the cell strainer. PBS solution containing the trichomes was then 
transferred to 15 ml tubes and centrifuged at 100 g for 5 min to remove 
supernatants. The number of branches in each trichome were counted 
using a light microscope.

Microtubule density measurement
Microtubule density was determined by measuring green fluorescent 
protein (GFP) signal intensity in rosette leaf cells of GFP–TUB6 over-
expression (OE) lines as previously described (Kirik et al., 2012). First, 
microtubule array images of leaf epidermal cells were collected using a 
confocal microscope (LSM 700, Carl Zeiss) with 1.5 μm sections. For 
imaging, a pinhole was set to 77.1, and 9–10 optical sections were taken 
for each sample, which were then Z-stacked to create a three-dimensional 
image. The stacked images were analysed using ImageJ. Background noise 
signals were subtracted using a 15-pixel diameter rolling ball filter, fol-
lowed by passing through a Fourier bandpass filter limited to 3–4 pixels. 
Then the Otsu algorithm was applied for blind thresholding. Ten cells 
were analysed for each sample, and the percentage of the cell area occu-
pied by the GFP signal was measured.

Sucrose density gradient sedimentation
Sucrose density gradient sedimentation was performed as described in 
Cho et al. (2013) with modifications. Frozen seedlings (0.2 g) of Flag–
CCT2 OE, Flag–PPX1 OE and HA–Tap46 OE lines were ground into 
fine powder in liquid nitrogen and thawed without vortexing in 1 ml 
fractionation buffer (FB) (200 mM Tris-Cl, pH 8.4, 50 mM KCl, 25 mM 
MgCl2, and half concentration of protease inhibitor cocktail). Cell debris 
was removed by centrifugation at 10 000 g for 8 min. Supernatants were 
filtered through a layer of nylon mesh, and were then loaded onto 11.6 ml 
of 10–30% sucrose gradient in FB. Then the samples were centrifuged at 
150 000 g for 3.5 h in 4°C. Fractions (400 μl) were collected, followed 
by protein precipitation using methanol–chloroform (Wessel et al 1984). 
Then the proteins in each fraction were analysed by immunoblotting.

Size exclusion chromatography
GFP–CCT2 was transiently expressed in N. benthamiana leaves by agroin-
filtration. At 2 DAI, samples were harvested, and proteins were extracted 
using 2 ml of gel chromatography buffer as described (Kim et al., 2017). 
After centrifugation at 21 000 g for 15 min twice, samples were passed 
through a layer of nylon mesh, and subsequently filtered through a 
0.22  μm filter (MILLEX-HP; Merck). A  Sephacryl s300 gel filtration 

column (Hiprep 16/60; GE Healthcare) was equilibrated with filter-
passed equilibration/washing buffer (50 mM Tris-Cl, pH 7.5, 100 mM 
NaCl, 1 mM MgCl2, 2 mM EDTA, and 1 mM phenylmethylsulfonyl 
fluoride). After equilibration, 1 ml of samples was loaded onto the gel 
filtration column. Fractions of 1 ml were collected, and the proteins in 
the fractions collected between 41 ml and 51 ml elution volumes were 
precipitated by the methanol–chloroform method. After elution of the 
precipitated proteins in 2× SDS sample buffer, samples were loaded onto 
SDS-PAGE gels for immunoblot analyses.

MG132 treatment
GFP–TUB6 OE or Flag–PPX1 OE plants were infiltrated with 
Agrobacterium cells containing TRV2, TRV2:CCT2 or TRV2:TUA6, and 
their rosette leaves were collected at DAI 15. The leaves were submerged 
in 20 μM MG132 with 0.01% Tween-20 for 4 h. Proteins were extracted 
from these samples and subjected to immunoblotting.

Immunoblotting
Plant samples were ground in liquid nitrogen and proteins were extracted. 
After native- or SDS-PAGE, separated proteins were transferred to poly-
vinylidene difluoride (PVDF) membranes. After blocking with 5% skim 
milk for 30 min, immunoblotting was performed. The following antibod-
ies were used for immunoblotting analyses: anti-Myc (1:5000, cat. G019, 
abm; 1:10000, cat. A5598, Merck), anti-HA (1:5000, cat. G036, abm), 
anti-GFP (1:500 for immunoprecipitation, cat. G095, abm; 1:5000 for IB, 
cat. 632381, Clontech), anti-Flag (1:5000, cat. G191, abm), anti-RPN6 
(1:5000, cat. BML-PW8370-0025, Enzo Life Sciences), anti-α-tubulin 
(1:5000, T9026, Merck), anti-β-tubulin (1:5000, cat. ab15568, Abcam), 
anti-chloroplast HSP70 (1:10000, cat. AS08 348, Agrisera), anti-Flag con-
jugated resin (cat. F2426, Merck), anti-Myc conjugated resin (cat. E6654, 
Merck), anti-PP2Ac (1:5000, cat. 2038S, Cell Signaling Technology), and 
anti-PP4c (1:2000, cat. A300-835A, Bethyl Laboratories).

Native PAGE
Native-PAGE was performed as described (Frydman et al., 1992) with 
minor modification. Proteins were extracted using the native-PAGE 
buffer (50 mM HEPES–KOH, pH 7.4, 50 mM KCl, and 2 mM DTT). 
After centrifugation, samples were mixed in 2× native-PAGE loading 
buffer (Freund et  al., 2014) and run at 120 V for 120  min in 4°C in 
native-PAGE gels. Proteins were then transferred to PVDF membranes 
by the wet transfer method (65 V, 50 min) at 4°C, followed by immuno-
blotting. For two-dimensional PAGE (2D-PAGE), native-PAGE (1D) gel 
strips were cut and incubated for 1 h in 1× SDS buffer containing 1% 
β-mercaptoethanol. The strips were rinsed several times with 1× SDS 
buffer and mounted on SDS-PAGE running gels. 2D-PAGE gels were 
transferred onto PVDF membranes via the semi-dry transfer method (75 
V, 45 min) for immunoblot analysis.

Cycloheximide–chase assay
Seedlings were grown in MS medium for 5 d after germination. The 
seedlings were harvested and treated with 2  mg ml−1 cycloheximide 
(CHX) for 4 h at 25°C. Proteins were extracted from the samples with 
native-PAGE buffer and subjected to native-PAGE. SDS-PAGE was also 
performed with the identical extracts.

Results

Identification of eight CCT subunits in Arabidopsis

CCT is a conserved chaperonin complex in eukaryotes, con-
sisting of eight paralogous subunits (CCT1 to CCT8) with 
mutual sequence identity of ~30% (Archibald et al., 2001). We 
analysed sequence similarity in the CCT subunit genes from 
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Arabidopsis, soybean (Glycine max), maize (Zea mays), rice 
(Oryza sativa), tomato (Solanum lycopersicum), Nicotiana benthami-
ana, budding yeast (Saccharomyces cerevisiae), and human (Homo 
sapiens) (see Supplementary Table S1 at JXB online). The phylo-
genetic tree was generated by the maximum likelihood method 
using the CCT subunit sequences (Supplementary Fig. S1). The 
paralogous CCT subunits of different species were clustered 
together. The strong paralogy of CCT subunits indicates that 
CCT subunits diverged very early, prior to eukaryotic specia-
tion. However, isoforms of each CCT subunit were clustered 
together within species, suggesting diversification of each iso-
form after the speciation event. Collectively, these results suggest 
that CCT subunits are highly conserved in plants, but species-
specific modifications have occurred during plant evolution. 
The conservation of the CCT subunits in eukaryotic organisms 
suggests conserved functions of the CCT chaperonin.

Detection of the high-molecular-mass CCT complex in 
plant cells

We observed that all CCT subunits are mainly localized to the 
cytosol, but were also detected in the nucleoplasm, but not in 
the nucleolus (see Supplementary Fig. S2). To detect the whole 
high-molecular-mass CCT complex in plant cells, diverse exper-
imental techniques were employed. First, we performed size 
exclusion chromatography to determine the approximate size of 
the plant CCT complex (Fig. 1A). GFP–CCT2 was expressed 
in N. benthamiana leaves via agroinfiltration, and the leaf protein 
extract was separated by gel chromatography, followed by immu-
noblotting with anti-GFP antibody to detect GFP–CCT2. GFP–
CCT2 was mainly detected in fractions 5 and 6 between the two 
size markers of 669 and 2000 kDa, consistent with the predicted 
size (943 kDa) of the plant CCT complex.

Second, we performed sucrose density gradient sedimentation 
using transgenic Arabidopsis plants that expressed Flag-fused 
CCT2 under the control of the 35S promoter (Flag–CCT2 
OE) (Fig 1B; Fig. S3A, B). The transgenic plants exhibited no 
visible phenotypes under normal growth conditions. RT-PCR 
showed that CCT2 transcript levels increased in the plants, but 
expression of other CCT subunit genes remained unchanged. 
The leaf extract of the Flag–CCT2 OE plants was fraction-
ated on a 10–30% sucrose density gradient, and fractions were 
subjected to immunoblot analyses with anti-Flag antibody (Fig. 
1B). As the control for fractionation, immunoblotting was also 
performed with antibody against RPN6, a component of the 
26S proteasome. Flag–CCT2 was most abundant in fractions 2 
and 3, whereas RPN6 was most strongly detected in fraction 
4. Thus, the Arabidopsis CCT2 complex was distributed in frac-
tions lighter than those containing 26S proteasomes, consistent 
with the observation that the yeast CCT complex migrates at 
20S through the sucrose gradient (Camasses et al., 2003).

Third, we performed native-PAGE analysis. Flag-tagged 
CCT subunits were expressed in N.  benthamiana leaves, and 
the leaf protein extracts were subjected to native-PAGE on a 
4–10% gradient gel, followed by immunoblotting with anti-
Flag antibody. All CCT subunits were detected as a slow-
migrating band in the upper position of the native gel (asterisk), 
and also as smeared bands (bracket) at the lower position of the 

gel (Fig. 1C, upper). The upper single band may represent the 
CCT complex, while the lower smeared bands may represent 
the monomeric form of each subunit. SDS-PAGE and immu-
noblotting detected each CCT subunit in the molecular mass 
range of 60–70 kDa (Fig. 1C, lower).

To determine that the slow-migrating band in native-PAGE 
consists of the CCT subunits, two-dimensional PAGE was per-
formed (Fig. 1D). Flag–CCT2 and Flag–CCT4 were expressed 
in N. benthamiana leaves, and the proteins were first resolved 
by native-PAGE (1D-PAGE). The 1D gel strip was horizon-
tally loaded onto a SDS-PAGE gel (2D-PAGE) to separate the 
individual proteins. The gels were then subjected to immuno-
blotting with anti-Flag antibody. In 1D-PAGE, three protein 
bands were detected: the CCT complex form (Fig. 1D, upper, 
arrow), and monomeric Flag–CCT2 (Fig. 1D, upper, white 
arrowhead) and Flag–CCT4 (Fig. 1D, upper, black arrowhead). 
The migration rate of monomeric Flag–CCT4 was lower 
than that of monomeric Flag–CCT2 due to its high isoelec-
tric point (pI 7.8), although Flag–CCT4 was slightly smaller 
than Flag–CCT2 in molecular mass. The monomeric forms 
of Flag–CCT4 and Flag–CCT2 in 1D-PAGE were separated 
in 2D-PAGE according to their sizes, with Flag–CCT4 (Fig. 
1D, lower, black arrowhead) migrating faster than Flag–CCT2 
(Fig. 1D, lower, white arrowhead). In 2D-PAGE, two protein 
bands of different sizes were detected at the position of the 
CCT complex (Fig. 1D, lower, black arrow), and the two bands 
resolved from the CCT complex matched in size with those of 
the monomeric Flag–CCT4 and Flag–CCT2 (Fig. 1D).

If the CCT complex requires all the CCT subunits, then the 
depletion of one of the subunits may result in loss of the whole 
complex. To test this hypothesis, we performed virus-induced 
gene silencing (VIGS) of CCT3 in Flag–CCT2 OE Arabidopsis 
plants (Fig. 1E–G; Supplementary Fig. S3A). We cloned a 450-
bp cDNA fragment of Arabidopsis CCT3 into the tobacco 
rattle virus 2 (TRV2) vector, and infiltrated the leaves of the 
Flag–CCT2 OE plants with Agrobacterium containing this plas-
mid. VIGS of CCT3 caused growth arrest in the plants at 15 d 
after infiltration (DAI), accompanied by a reduction in CCT3 
mRNA levels to approximately 8% of the TRV2 levels, as deter-
mined by RT-qPCR (Fig. 1E, F; Supplementary Table S2). The 
leaf protein extracts prepared from the VIGS plants were divided 
into two halves for native-PAGE and SDS-PAGE, followed by 
immunoblotting with anti-Flag antibody to detect Flag–CCT2 
(Fig 1G). Ponceau-stained Rubisco large subunit (rbcL) was used 
as the control. CCT3 silencing did not change Flag–CCT2 pro-
tein levels, as detected by SDS-PAGE, but significantly decreased 
the level of CCT complex (Fig 1G, asterisk) in native-PAGE, 
suggesting that the CCT3 subunit is essential for CCT com-
plex formation. Collectively, these results suggest that plant CCT 
subunits form a high-molecular-mass complex, and the size of 
the whole complex is similar to that of the complex in other 
eukaryotic organisms (approximately 1000 kDa).

VIGS of CCT subunit genes results in pleiotropic 
phenotypes in Arabidopsis

Null mutations of CCT subunits are lethal in Arabidopsis (Xu 
et al., 2011), as in yeast and mammals (Horwich et al., 2007). 
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To circumvent the absence of available null mutants, we used 
VIGS for the silencing of CCT2 (TRV2:CCT2) and CCT3 
(TRV2:CCT3) in Arabidopsis WT plants. VIGS of CCT2 

and CCT3 resulted in a similar phenotype of retarded plant 
growth and the formation of necrotic lesions at 15 DAI (Fig. 
2A). These lesions were formed in new leaves near the leaf base 
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at 15 DAI, and the inflorescence failed to elongate (Fig. 2B). 
Interestingly, the petioles of TRV2:CCT2 and TRV2:CCT3 
leaves showed a right-handed twist at 21 DAI (Fig. 2C). The 
handedness of petioles and cell files in hypocotyls and roots are 
indicative measures of microtubule defects (Ishida et al., 2007).

VIGS of CCT2 and CCT3 also caused trichome defects. 
Trichomes were isolated from the leaves and the number of 
their branches was counted under a light microscope (Fig. 
2D). In TRV2 control leaves, the vast majority of trichomes 
(87.47%) contained three branches, and 4.43% and 8.10% of 
trichomes had two and four branches, respectively (Fig. 2E). 
However, TRV2:CCT2 and TRV:CCT3 trichomes showed 
larger variations in branch number; in particular, higher 
amounts of two-branched trichomes and occasional five-
branched trichomes were notable. It is well known that corti-
cal microtubules play a role in trichome cell morphogenesis 
(Mathur and Chua, 2000; Tian et al., 2015). Indeed, trichome 
branch number is affected in various mutants with micro-
tubule defects, such as mutants of tubulin-folding cofactors 
(Kirik et al., 2002a, b). The right-handed twist of the petioles 
and the abnormal trichome branch number suggest microtu-
bule defects in CCT VIGS plants.

RT-qPCR analyses demonstrated that CCT2 and CCT3 
mRNA levels were reduced to 25% and 7% of the TRV2 con-
trol level in TRV2:CCT2 and TRV2:CCT3 plants, respectively 
(Fig. 2F, G). However, VIGS of CCT2 and CCT3 genes did 
not decrease mRNA levels of other CCT subunit genes based 
on semi-quantitative RT-PCR, suggesting specificity of the 
gene silencing (Fig. 2H). The only significant anomaly was 
CCT6-1 mRNA levels that were elevated in TRV2:CCT2 and 
TRV2:CCT3 plants, although the reason for this was unclear. 
The similar silencing phenotypes of CCT2 and CCT3 suggest 
that their encoded proteins function together as subunits of the 
CCT complex.

CCT silencing causes defects in cortical microtubule 
organization and tubulin accumulation in Arabidopsis

To investigate how the deficiency of CCT function affects 
cortical MT organization, silencing of CCT2 was performed 
in transgenic Arabidopsis plants that expressed β-tubulin iso-
mer 6 in GFP fusion (GFP–TUB6 OE). In these transgenic 
plants, the GFP-tagged β-tubulin isoform was incorporated 
into cortical MTs, making them visible under confocal micros-
copy (Fujita et al., 2013). Control VIGS was performed with 
TUA6 encoding Arabidopsis α-tubulin isoform 6 and TRV2 
vector in the GFP–TUB6 OE plants. Multiple α-tubulin 
genes were expected to be simultaneously silenced by VIGS 
of TUA6 due to high sequence homology between α-tubulin 
isoforms. Silencing of TUA6 caused severe growth arrest with 
tiny leaves being developed around the shoot apex at 15 DAI 
(Fig. 3A). Inflorescences did not form and flower develop-
ment was aborted in these plants. Unlike TRV2:CCT2 plants, 
TRV2:TUA6 plants did not develop necrotic lesions in the 
leaves, suggesting that MT deficiency is not the cause of 
necrotic lesion formation. RT-qPCR indicated that TUA6 
mRNA levels were reduced to 8% of TRV2 control levels in 
TUA6 VIGS plants (Fig. 3B).

Confocal microscopy revealed that TRV2 control plants 
contained ordered MTs in puzzle-shaped pavement cells in the 
leaf epidermis (Fig. 3C). TRV2:TUA6 plants with α-tubulin 
deficiency lacked visible cortical MTs, because αβ-tubulin 
dimers are required to form MT protofilaments. It was noted 
that the pavement cells of TRV2:TUA6 plants were small 
and had a simpler structure. TRV2:CCT2 pavement cells also 
showed reduced MT arrays. The MT density was quantified by 
measuring GFP signal intensity in the form of strands within a 
cell. MT signal coverage was reduced to 68% and 22% of TRV2 
control in TRV2:CCT2 and TRV2:TUA6, respectively (Fig. 
3D). These results suggest that CCT chaperonin is required for 
normal cortical MT array organization.

To examine cellular tubulin levels in the VIGS plants, immu-
noblotting was performed with anti-GFP and anti-α-tubulin 
antibodies using Coomassie-stained rbcL as the control (Fig. 
3E). The results showed that both GFP–TUB6 and α-tubulin 
levels were reduced in TRV2:CCT2 and TRV2:TUA6 plants. 
We next tested whether the reduced accumulation of tubulins 
is caused by protein degradation. Leaves were treated with the 
proteasome inhibitor MG132 (20 μM) or control DMSO for 
4 h. MG132 treatment restored the reduced cellular levels of 
β-tubulin (GFP–TUB6) and α-tubulin in TRV2:CCT2 plants 
back to TRV2 control levels (Fig. 3E). These results suggest that 
CCT depletion in a cell results in the accumulation of mis-
folded nascent tubulin polypeptides, which are subsequently 
eliminated by 26S proteasome-mediated protein degrada-
tion. However, GFP–TUB6 and α-tubulin levels were con-
stant following MG132 treatment in TRV2:TUA6 plants. It 
is noteworthy that GFP–TUB6 levels in TRV2:TUA6 plants, 
in which multiple α-tubulin genes are silenced, were lower 
than that of the TRV2 control in the absence of MG132 treat-
ment. The reason for this is unclear, but we speculate that the 
reduction of cellular α-tubulins may have affected β-tubulin 
expression, since αβ-tubulins are obligate heterodimers for 
MT assembly (Lundin et al., 2010).

To confirm the results obtained with GFP–TUB6 OE lines, 
we performed VIGS of CCT2 in WT Arabidopsis plants, fol-
lowed by immunoblotting with anti-α- and anti-β-tubulin 
antibodies using chloroplast heat shock protein 70 (cpHSP70) 
as the loading control (Fig. 3F). The endogenous levels of α- and 
β-tubulin proteins were significantly reduced in TRV2:CCT2 
leaves as compared with TRV2 control leaves, consistent with 
the results in GFP–TUB6 OE plants. Collectively, these results 
suggest that CCT chaperonin may be required for protein 
folding of newly synthesized α- and β-tubulins in plants.

Tubulins are conserved substrates of plant CCT 
complex

To determine whether tubulins are substrates of CCT chap-
eronin in plants, we first examined the association of tubulins 
with the CCT complex in vivo using native-PAGE. Flag–CCT2 
was co-expressed with Myc-fused TUA6, TUB5, or cytosolic 
eukaryotic translation initiation factor eIF4A-1 in N. bentha-
miana leaves by agroinfiltration. The leaf protein extracts were 
then subjected to native-PAGE analysis using a 4% gel; the 
extracts were divided into two halves and each was loaded on 
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the same gel for immunoblotting with anti-Flag and anti-Myc 
antibodies. Anti-Flag antibody detected the CCT complex as 
an upper slow-migrating band (asterisk) and CCT2 monomers 

as a lower smeared band in each lane (Fig. 3G, left). TUA6–Myc 
and TUB5–Myc were detected by anti-Myc antibody as single 
upper bands that exactly coincided with the CCT complex 
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(Fig. 3G, right). Low-molecular-mass monomeric tubulins ran 
out of the gel due to the long running time. Conversely, con-
trol eIF4A-1–Myc was detected only as a fast-migrating band 
in the lower part of the gel. These results suggest the associa-
tion of α- and β-tubulins with the CCT complex.

Native-PAGE and immunoblotting in GFP–TUB6 OE 
plants showed that CCT2 silencing caused a significant 
decrease in both the CCT-associated (asterisk) and monomeric 
forms (black arrowhead) of GFP–TUB6 proteins, suggesting 
the possibility that CCT chaperonin is required for folding 
of GFP–TUB6 (Fig. 3H). We thus performed a cyclohex-
imide (CHX)–chase assay (Fig. 3I). CHX is a protein trans-
lation inhibitor. A brief CHX treatment would decrease the 
production of nascent polypeptides for a short period of time, 
and if a nascent polypeptide is a substrate of the CCT com-
plex, the treatment may reduce the CCT-associated form of 
the substrate. GFP–TUB6 OE and Flag–CCT2 OE seedlings 
were treated with CHX (2  mg ml−1) or water control for 
4  h, and then subjected to native- and SDS-PAGE analyses. 
Immunoblotting with anti-Flag antibody revealed that the 4 h 
CHX treatment did not change total CCT2 or CCT complex-
associated CCT2 levels (Fig. 3I, left). CHX treatment also did 
not change the total TUB6 levels in SDS-PAGE, but visibly 
decreased CCT complex-associated TUB6 levels (Fig. 3I, mid-
dle). A CHX–chase assay in GFP–TUA6 OE plants expressing 
α-tubulin isomer 6 in GFP fusion also showed similar results 
(Fig. 3I, right). Combined with the results described above, 
these results suggest that tubulins are folding substrates of CCT 
chaperonin in plants, similar to the findings in yeast and mam-
mals (Dekker et al., 2008; Muñoz et al., 2011).

CCT complex interacts with PP4 catalytic subunit and 
Tap46, which are components of the TOR signaling 
pathway

Multiple CCT subunits have been pulled down with PP4c 
or α4 (the mammalian homolog of Tap46) as bait by tandem 
affinity purification (Gingras et al., 2005; Herzog et al., 2012). 
Furthermore, CCT interactions with PP4c and Tap42 (the 
yeast homolog of Tap46) have been suggested by the yeast 
interactome study (Breitkreutz et  al., 2010). However, it is 
unknown whether such an interaction network is conserved in 
plants, and furthermore, the nature of the interactions between 
the CCT complex and these protein phosphatase subunits 
has not been revealed yet in any eukaryotic system. Tap46 is a 
component of the TOR signaling pathway in plants and inter-
acts with PP4 catalytic subunits with high affinity (Ahn et al., 
2011). RT-qPCR analyses suggested that CCT gene expres-
sion under normal conditions and in response to sugar feeding 
is modulated by TOR (see Supplementary Fig. S4A, B).

We first performed sucrose density gradient sedimenta-
tion (10–20%) to determine whether PPX1 and Tap46 are 
co-fractionated with the CCT complex (Fig. 4A). Arabidopsis 
PP4c is encoded by PPX1 and PPX2 (Pujol et al., 2000). We 
previously generated transgenic Arabidopsis lines that express 
HA-fused Tap46 and Flag-fused PPX1 under the control of the 
CaMV35S promoter. HA–Tap46 OE lines exhibited enhanced 
early plant growth (Ahn et  al., 2015a), but Flag–PPX1 OE 

lines showed no visible phenotypes under normal growth 
conditions (see Supplementary Fig. S3C, D). Whereas Flag–
CCT2 was most abundant in fractions 2–4, Flag–PPX1 and 
HA–Tap46 were most abundant in fractions 1 and 2, but also 
detected in fractions 3 and 4, thus overlapping with the distri-
bution of Flag–CCT2.

To test CCT interaction with PP4c or Tap46, we performed 
bimolecular fluorescence complementation (BiFC) using the 
pSPYNE and pSPYCE vectors that contain YFPN (1–155 
aa) and YFPC (156–239 aa), respectively (Walter et al., 2004). 
Various YFPN- and YFPC-fused proteins were expressed in 
N.  benthamiana leaves via agroinfiltration, and leaf epidermal 
cells were observed for yellow fluorescence under a confocal 
microscope (Fig. 4B). BiFC suggested that Tap46 interacts with 
CCT subunits, including CCT2, CCT3, CCT5, CCT6-1, and 
CCT8, in the cytosol; however, PPX1 (PP4c isoform) does not 
interact with any of those CCT subunits, despite the high pro-
tein expression in leaves (Fig. 4B; Supplementary Figs S5, S6).

To confirm the results, we next performed co-immuno-
precipitation (co-IP) (Fig. 4C, D). Myc-tagged PPX1 and 
Flag-tagged CCT6-1, CCT6-2, CCT7, and CCT8 were co-
expressed in N. benthamiana leaves using agroinfiltration. Flag-
tagged CCT subunits were immunoprecipitated from leaf 
extracts using anti-Flag antibody-conjugated resin, followed by 
immunoblotting with anti-Myc antibody to detect co-immu-
noprecipitated PPX1–Myc proteins. PPX1–Myc was clearly 
detected in all immunoprecipitates, suggesting the interaction 
of PPX1 with CCT subunits (Fig. 4C), despite the negative 
BiFC data. To confirm the data, we performed another set of 
co-IP experiments (see Supplementary Fig. S7). PPX1–Myc 
and eIF4A-1–Myc were co-expressed with Flag–CCT2 and 
Flag–CCT7 in N. benthamiana leaves. Immunoprecipitation was 
performed with anti-Myc antibody-conjugated resin, followed 
by immunoblotting with anti-Myc and anti-Flag antibodies 
to detect immunoprecipitated and co-immunoprecipitated 
proteins, respectively. CCT2 and CCT7 were immunoprecipi-
tated with PPX1–Myc, but not with eIF4A-1–Myc (asterisks), 
despite its abundant expression and successful immunoprecipi-
tation (Supplementary Fig. S7). These results suggest specific 
interactions between PPX1 and CCT subunits.

We performed co-IP with full-length Tap46, its N-terminal 
region (1–223 residues, Tap46-N), and its C-terminal region 
(224–405 residues, Tap46-C) (Fig. 4D). Myc-tagged eIF4A-1 
was used as a negative control. Myc-tagged proteins were 
immunoprecipitated from leaf extracts using anti-Myc anti-
body-conjugated resin, followed by immunoblotting with 
anti-Flag antibody. Flag–CCT2 was immunoprecipitated with 
full-length Tap46 and Tap46-C proteins, but not with Tap46-N 
or eIF4A-1 (Fig. 4D). It has been reported that the N-terminal 
region of α4 interacts with PP2A catalytic subunits in mam-
mals (LeNoue-Newton et al., 2011). These results suggest that 
Tap46 interacts with CCT2 via the C-terminal region.

To elucidate the association of PPX1 and Tap46 with the 
CCT complex, native-PAGE and immunoblotting were per-
formed. Both Flag–PPX1 and HA–Tap46 were detected in 
two forms in the native gel: as a slow-migrating band coincid-
ing with the CCT complex (asterisk) detected in Flag–CCT2 
OE samples, and as a lower fast-migrating band corresponding 
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to their mature forms (Fig. 4E, F). SDS-PAGE and immuno-
blotting detected the expression of CCT2, PPX1, and Tap46 
proteins in the corresponding OE lines. Taken together, the 
data suggest that PPX1 and Tap46 interact with the CCT 
complex in vivo. Since proteins must be fully folded to emit 
fluorescence in BiFC, some substrates of CCT may not be 
detected by BiFC, but could be still associated with CCT 
complex. Thus, we next explored the possibility of PPX1 and 
Tap46 as substrates of CCT chaperonin.

PP4c may be a novel substrate of plant CCT complex

We performed VIGS with TRV2 vector and TRV2:CCT2 
constructs in WT, Flag–PPX1 OE, and HA–Tap46 OE 
plants. There were no significant differences in CCT2 VIGS 
phenotypes in different plant backgrounds (Fig. 5A, B). 
Immunoblotting using Coomassie-stained rbcL as the control 
showed that CCT2 silencing significantly decreased PPX1 
protein levels (Fig. 5C). However, HA–Tap46 protein lev-
els were slightly increased or remained constant after CCT2 
silencing (Fig. 5D). To examine PP4c-deficient phenotypes, we 
performed VIGS in Arabidopsis (Fig. 5E–G). To silence both 
PPX1 and PPX2 genes encoding PP4c, partial cDNA frag-
ments of PPX1 (250 bp) and PPX2 (265 bp) were fused and 
inserted into the TRV2 vector. Silencing using this fusion con-
struct reduced the PPX1/2 transcript levels to approximately 
38% of the TRV2 control levels, based on RT-qPCR using 
primers recognizing both genes (Fig. 5F). Semi-quantitative 
RT-PCR with gene-specific primers detected reductions in 
PPX1 and PPX2 mRNA levels in PPX1/2 VIGS plants (Fig. 
5G), although the plants showed no visible phenotypes under 
normal conditions (Fig. 5E).

Native-PAGE and immunoblotting showed that CCT2 
silencing caused the disappearance of both CCT-associated 
(asterisk) and mature Flag–PPX1 protein bands (white arrow-
head), compared with TRV control (Fig. 5H; Supplementary 
Fig. S8). MG132 (20 μM) treatment for 4 h did not increase 
the mature Flag–PPX1 level in TRV:CCT2 plants in native-
PAGE, while it produced smeary bands in the upper region of 
the gel (see Supplementary Fig. S8). SDS-PAGE showed that 
the MG132 treatment did not change the Flag–PPX1 protein 
level in TRV control, but increased the level, at least partially, in 
TRV2:CCT2 samples (Fig. 5I; Supplementary Fig. S8). These 
results collectively suggest that PPX1 proteins undergo degra-
dation upon CCT deficiency. Finally, in order to demonstrate 
that PPX1 is a substrate of the CCT complex, we performed 
a CHX–chase assay using Flag–PPX1 OE seedlings. CHX 
treatment for 4 h decreased the levels of both CCT-associated 
Flag–PPX1 and its mature form in native-PAGE (Fig. 5J, left), 
whereas the total Flag–PPX1 protein level was relatively con-
stant with only a slight decrease after a 4 h treatment in SDS-
PAGE (Fig. 5J, K). In contrast, the amount of CCT complex 
remained constant following CHX treatment (Fig. 5J, right). 
Furthermore, the presence of PPX1 in the CCT upper band 
was further supported by 2D-PAGE (Supplementary Fig. S9). 
Flag–CCT2 was expressed in N.  benthamiana leaves along 
with Flag–PPX1, and the proteins were resolved by native-
PAGE (1D-PAGE), followed by SDS-PAGE (2D-PAGE). The 

gels were then subjected to immunoblotting with anti-Flag 
antibody. In 2D-PAGE, Flag–CCT2 (black arrowhead) and 
Flag–PPX1 (white arrowhead) were detected at the position 
of the CCT complex (Supplementary Fig. S9). Taken together, 
these results suggest that CCT chaperonin may mediate the 
folding of nascent PPX1 polypeptides. Furthermore, Tap46 
appeared to associate with the CCT complex, but not as a 
folding substrate.

Tap46 may participate in stabilization of PP4c

Previously, yeast two-hybrid assays have suggested a strong 
interaction between Tap46 and PPX1 (Ahn et al., 2011). α4, 
the mammalian homolog of Tap46, is required for the stabiliza-
tion of nascent catalytic subunits of PP2A family phosphatases 
(Kong et al., 2009; Jiang et al., 2013; LeNoue-Newton et al., 
2016). To understand the functions of Tap46 in relation to 
PPX1 and CCT2, we performed VIGS of Tap46 and CCT2 
in Flag–PPX1 OE plants (Fig. 6A). VIGS of Tap46 caused 
retarded plant growth and premature senescence. Based on 
native-PAGE and immunoblotting, Tap46 silencing signifi-
cantly reduced mature Flag–PPX1 proteins, but consistently 
increased its CCT-associated form (Fig. 6B). In contrast, CCT2 
silencing decreased both forms of Flag–PPX1 (Fig. 5H). SDS-
PAGE revealed a decrease in total Flag–PPX1 protein levels in 
the TRV2:Tap46 sample, compared with those in TRV2 con-
trol (Fig. 6B). VIGS of Tap46 in Flag–CCT2 OE and GFP–
TUB6 OE plants suggested that Tap46 deficiency does not 
inhibit CCT complex formation or β-tubulin biogenesis (Fig. 
6C, D). Collectively, these results suggest that Tap46 is required 
for the stability of PPX1. A high turnover rate of Tap46 pro-
teins shown by the CHX treatment (Fig. 5K) might have con-
tributed to the reduction in the mature form of Flag–PPX1 
upon CHX treatment (Fig. 5J, left).

We tested if the in vitro addition of recombinant Tap46 
proteins can stabilize PPX1 in leaf cell extracts (Fig. 6E). 
Recombinant proteins of the full-length Tap46 (Tap46-F), 
Tap46-N, and Tap46-C in His-tag fusion were purified from 
E.  coli. The recombinant proteins (5 μM) were added to the 
leaf cell extracts of TRV2 and TRV2:Tap46 plants in the 
Flag–PPX1 OE background. After a 2 h incubation in native-
PAGE buffer at 30°C, the whole cell extracts were subjected to 
immunoblotting with anti-Flag and anti-His antibodies. The 
TRV2:Tap46 sample contained lower amounts of Flag–PPX1, 
which was partially restored by the addition of Tap46-F–
His and Tap46-N–His, but not by addition of Tap46-C–His. 
Collectively, these results suggest that Tap46 may stabilize 
PPX1 via protein interaction, preventing its degradation in the 
leaf cell extracts.

To detect changes in endogenous PP4c levels, we performed 
VIGS of CCT2 and Tap46 in WT Arabidopsis plants, followed 
by immunoblotting with anti-PP4c antibody and as a control 
anti-PP2Ac antibody (Fig. 6F). The endogenous PP4c pro-
tein level was significantly reduced in both CCT2 and Tap46 
VIGS plants compared with TRV2 control, consistent with 
the results in Flag–PPX1 OE plants. This result suggests that 
both CCT2 and Tap46 are important for PP4c biogenesis in 
plants. Interestingly, cellular PP2Ac levels also decreased upon 
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CCT2 silencing, albeit less significantly, suggesting PP2Ac as a 
CCT substrate candidate (Fig. 6F). However, Tap46 silencing 
did not change PP2Ac levels. Thus, Tap46 may not be criti-
cal for PP2Ac stability in plants, which is consistent with the 
results obtained from dexamethasone-inducible Tap46 RNAi 
in Arabidopsis (Ahn et al., 2011).

Finally, computational modeling of the Tap46 N-terminal 
region (9–220 residues) was performed using the auto-
mated protein homology modeling server PHYRE2 (Protein 
Homology/analogY Recognition Engine V 2.0; http://www.
sbg.bio.ic.ac.uk/phyre2/html) with α4 N-terminal domain 
(10–222 residues) as template (Fig. 6G). The N-terminal 
domain of α4/Tap42 binds to PP2Ac with a stable secondary 
structure, while its C-terminal domain is intrinsically disor-
dered and sensitive to protease degradation (Yang et al., 2007; 
LeNoue-Newton et al., 2011). Despite low sequence identity 
(~27%), the N-terminal region of Tap46, mostly composed 
of α-helices, was very similar in structure to that of α4 (Fig. 
6G). The PP2Ac-binding residues (R156 and K159) in the 
extended α-helix 5 of α4 (Yang et al., 2007) are also conserved 
in Tap46 (R134 and K137). This structural conservation sug-
gests that the Tap46 N-terminal region is involved in binding 
to catalytic subunits of PP2A family phosphatases in plants. 
Interestingly, Yang et  al. (2007) reported that the α4/Tap42 
N-terminal domain was very similar in structure to 14-3-3 
and tetratricopeptide repeat proteins, which function as scaf-
fold or adaptor proteins.

Discussion

CCT chaperonin has a stacked double-ring structure, com-
posed of eight different subunits in each ring (Kalisman et al., 
2012; Leitner et al., 2012). Phylogenetic analysis of nucleotide 
sequences from diverse plant species, as well as yeast and human 
revealed deep paralogy of the CCT subunits, suggesting that 
CCT evolved very early in eukaryotic evolution, likely in the 
common ancestor (see Supplementary Fig. S1). Among plant 
sequences, it was noticed that diploid plant species with larger 
genome size, such as rice and maize, have increased numbers 
of CCT subunit genes, in comparison with the nine genes in 
Arabidopsis (Supplementary Table S1). Archibald et al. (2001) 
suggested that a large expansion of subunit genes in eukary-
otic CCT is driven by gene duplication, and that the dupli-
cate CCT subunits might have coevolved with their target 
substrates. Recently, Joachimiak et al. (2014) reported on the 
structural basis of substrate recognition by CCT. CCT con-
tacts full-length substrates combinatorially in a subunit-spe-
cific manner, ensuring the specificity and plasticity for diverse 
substrates. Thus, the binding site of each CCT subunit has a 
distinct, conserved pattern of residues specifying recognition 
of different substrate motifs. Collectively, these results suggest 
that subunit diversification positively correlates with the size 
of the proteome. In allotetraploid N. benthamiana and allopoly-
ploid soybean, genome duplication and subsequent proteome 
expansion may have increased CCT subunit gene numbers by 
more than two-fold (Supplementary Table S1).

Silencing of CCT2 and CCT3 by VIGS resulted in growth 
arrest in Arabidopsis, with small and round leaves (Fig. 2A). 
Abnormal trichome branch numbers and right-handed twist 
of leaf petioles in the VIGS plants are characteristic pheno-
types of MT defects (Fig. 2C–E), and indeed cortical MT 
density was significantly reduced upon CCT2 silencing, 
as observed upon TUA6 silencing (Fig. 3D). Furthermore, 
diverse biochemical experiments suggested that the plant 
CCT complex participates in the folding of tubulins (Fig. 
3E–I). Thus, tubulins may be evolutionarily conserved sub-
strates of CCT chaperonin in eukaryotes. Interestingly, the 
weak allele of cct8 with a site-specific mutation did not cause 
MT-related defects (Xu et  al., 2011), suggesting that the 
mutation in the CCT8 subunit did not interfere with tubu-
lin binding/folding by the CCT complex. Another promi-
nent phenotype of CCT2 and CCT3 silencing was necrosis 
around the shoot apex (Fig. 2A, B). Since this phenotype was 
never observed in TRV2:TUA6 plants despite the severity of 
their symptoms, it may be caused by the defective folding of 
other CCT substrates.

Tandem affinity purification using PP4c or α4 as bait co-
purified multiple CCT subunits in mammals (Gingras et al., 
2005). Recently, Herzog et al. (2012) probed the PP2A net-
work in human cells by analysing endogenous protein com-
plexes. TAP tagging followed by chemical cross-linking and 
mass spectrometry supported strong interactions of CCT 
subunits with PP4c and α4. This analysis also identified 
the PP2A regulatory subunit, 2ABG, as a CCT interactor. 
Subsequent cryoelectron microscopy revealed the topology 
of CCT chaperonin interacting with its substrate 2ABG, 
localized to the inner cavity of the CCT ring (Herzog et al., 
2012). The global protein kinase and phosphatase interac-
tion network in budding yeast, based on mass spectrometric 
analysis of protein complexes, also supported CCT inter-
action with PP4c (Breitkreutz et  al., 2010). Despite these 
repeated findings on the interaction of CCT with PP4c and 
α4, the functional significance of these interactions has not 
been revealed.

In this study, we demonstrated that Arabidopsis PP4c 
(PPX1) and Tap46 interact with individual CCT subunits and 
co-localized with the high-molecular-mass CCT complex in 
native-PAGE and sucrose density gradient sedimentation (Fig. 
4). Thus, interactions of PP4c and Tap46 with the CCT com-
plex also occur in plant cells. Furthermore, CCT deficiency 
significantly reduced cellular PPX1 protein levels but not 
Tap46 levels, and a brief CHX treatment reduced the CCT-
associated forms of PPX1 (Fig. 5). These results suggest that 
PPX1, but not Tap46, may be a novel substrate of plant CCT. 
The possibility that PPX1 binds to the CCT complex for 
dephosphorylation is inconsistent with either the disappear-
ance of mature PPX1 proteins upon CCT2 silencing (Fig. 5C, 
H) or the disappearance of CCT complex-associated PPX1 
upon CHX treatment (Fig. 5J). Future structural studies may 
reveal unique features of PP4c that require folding by CCT 
chaperonin.

Tap46 interacts with PP2A family catalytic subunits, with a 
particularly strong interaction with PPX1 (Ahn et al., 2011). 
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Tap46 silencing significantly decreased cellular PPX1 lev-
els (Fig. 6B, F), but not the protein levels of PP2Ac (Fig. 6F; 
Ahn et al., 2011), suggesting a more stringent requirement for 
Tap46 by PPX1. In mammals, depletion of α4 led to the loss 
of all PP2A family phosphatases (Kong et al., 2009), although 
knockdown of α4 with a different method preferentially 
decreased protein levels of PP4c and PP6c, rather than PP2Ac 
(LeNoue-Newton et al., 2016). Based on the structure of α4 
bound to the N-terminal fragment of PP2Ac, it was proposed 
that α4 is a scavenger chaperone that binds to and stabilizes 
partially folded PP2Ac for stable latency (Jiang et  al., 2013). 
The PP2Ac–α4 interface sterically hinders a ubiquitination 
site, preventing proteasome-mediated degradation of PP2Ac 
(McConnell et al., 2010). In this study, Tap46 was critical for 
the maintenance of cellular PPX1 levels (Fig. 6B, F), and the 
negative effect on PPX1 by Tap46 deficiency was partially 
rescued by the exogenous addition of recombinant Tap46 
proteins (Fig. 6E). These results suggest that Tap46 may sta-
bilize PPX1 and prevent its degradation via physical interac-
tion until the assembly of the functional PP4 complex takes 
place. The finding that a decrease in Tap46 proteins by CHX 
treatment led to a significant reduction in mature PPX1 pro-
teins (Fig. 5J, K) may suggest the importance of Tap46 for 
PPX1 stability. Furthermore, it was consistently observed that 
the CCT complex-associated form of PPX1 increases under 
Tap46-depleted conditions (Fig. 6B). The reason for this is 
unknown, but it is tempting to speculate that Tap46 may bind 
to PPX1 as it exits from the CCT complex, facilitating the 
process as a post-chaperonin factor. Future studies are needed 
to address the molecular mechanisms of Tap46 function with 
respect to PPX1 and CCT.

We did not observe any visible plant phenotypes after the 
co-silencing of PPX1 and PPX2, despite repeated attempts. 
The unavailability of knockout mutants of PPX1 and PPX2 
and the failure to generate their knockdown transgenic lines 
have been recently described (Kataya et al., 2017). PP4 often 
functions as a heterotrimeric complex, consisting of PP4c and 
two types of regulatory subunits (Gingras et al., 2005). Recently, 
two reports have suggested functions of PP4 phosphatase in 
plants, through studying its regulatory subunits. Su et al. (2017) 
reported that SMEK1/PSY2L (the Arabidopsis homolog of 
PP4 regulatory subunit PP4R3) interacted with PPX1 and 
PPX2 in the nucleus, and together dephosphorylated HYL1, 
a major regulator of miRNA processing. The smek1 mutants 
displayed dwarfism and abnormal floral organs, resembling the 
phenotypes of miRNA processing mutants. In another study, 
smek1 mutants showed growth defects and sensitivity to the 
DNA-damaging agent cisplatin (Kataya et  al., 2017). Recent 
studies have revealed that PP4 is involved in various cellular 
processes, including DNA damage repair, histone acetylation, 
and cell cycle progression in mammals (Cohen et  al., 2005; 
Zhang et al., 2005; Chowdhury et al., 2008; Lee et al., 2012; 
Shaltiel et al., 2014). We speculate that moderate silencing of 
PPX1 and PPX2 may be the reason for the lack of observed 
phenotypes. In future studies, it will be important to elucidate 
the functions of the PP4 complex associated with different 
regulatory subunits.
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