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Visual Abstract
Predictive Coding with Neural Delays:
A Real-Time Temporal Alignment Hypothesis
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Both backward and forward connections are
extrapolated, minimizing prediction error.

At a given moment, all hierarchical level
represent the object in the same position.
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Despite the enormous scientific interest in predictive coding as a model of cortical processing, most models
of predictive coding do not take into account that neural processing itself takes time. We show that when
the framework is extended to allow for neural delays, a model emerges that provides a natural, parsimo-
nious explanation for a wide range of experimental findings. It is consistent with neurophysiological data
from animals, predicts a range of well known visual illusions in humans, and provides a principled solution
to the temporal binding problem. Altogether, it explains how predictive coding mechanisms cause different
brain areas to align in time despite their different delays, and in so doing it explains how cortical hierarchies
kfunction in real time. /

ignificance Statement

Hierarchical predictive coding is an influential model of cortical organization, in which sequential hierarchical
levels are connected by backward connections carrying predictions, as well as forward connections carrying
prediction errors. To date, however, predictive coding models have largely neglected to take into account that
neural transmission itself takes time. For a time-varying stimulus, such as a moving object, this means that
backward predictions become misaligned with new sensory input. We present an extended model implementing
both forward and backward extrapolation mechanisms that realigns backward predictions to minimize prediction
error. This realignment has the consequence that neural representations across all hierarchical levels become
aligned in real time. Using visual motion as an example, we show that the model is neurally plausible, that it is
consistent with evidence of extrapolation mechanisms throughout the visual hierarchy, that it predicts several
known motion—-position illusions in human observers, and that it provides a solution to the temporal binding

problem.
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Introduction

Predictive coding is a model of neural organization that
originates from a long history of proposals that the brain
infers, or predicts, about the state of the world on the
basis of sensory input (von Helmholtz, 1867; Gregory,
1980; Dayan et al., 1995). It has been particularly influen-
tial in the domain of visual perception (Srinivasan et al.,
1982; Mumford, 1992; Rao and Ballard, 1999; Spratling,
2008, 2012), but has also been extensively applied in
audition (for review, see Garrido et al., 2009; Bendixen
et al., 2012), the somatosensory system (van Ede et al,,
2011), motor control (Blakemore et al., 1998; Adams et al.,
2013), and decision science (Schultz, 1998; Summerfield
and de Lange, 2014), where it accounts for a range of
subtle response properties and accords with physiology
and neuroanatomy. Although it has been criticized for
being insufficiently articulated (Kogo and Trengove,
2015), it has been developed further into a general theory
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of cortical organization (Bastos et al., 2012; Spratling,
2017) and even been advocated as a realization of the
free-energy principle, a principle that might apply to all
self-organizing biological systems (Friston, 2005, 2010,
2018; Friston and Kiebel, 2009).

An essential principle of predictive coding is a func-
tional organization in which higher organizational units
“predict” the activation of lower units. Those lower units
then compare their afferent input to this backward pre-
diction, and feed forward the difference: a prediction error
(Rao and Ballard, 1999; where the term “prediction” is
used in the strictly hierarchical sense, rather than the
everyday temporal sense of predicting the future). This
interaction of backward predictions and forward predic-
tion errors characterizes each subsequent level of the
processing hierarchy (Fig. 1a).

In this review, we argue that neural transmission delays
cause the classical model of hierarchical predictive cod-
ing (Rao and Ballard, 1999) to break down when input to
the hierarchy changes on a timescale comparable with
that of the neural processing. Using visual motion as an
example, we present two models that extend the classical
model with extrapolation mechanisms to minimize predic-
tion error for time-varying sensory input. One of these
models, in which extrapolation mechanisms operate on
both forward and back mechanisms, has as a conse-
quence that all levels in the hierarchy become aligned in
real time. We argue that this model not only minimizes
prediction error, but also parsimoniously explains a range
of spatiotemporal phenomena, including motion-induced
position shifts such as the flash-lag effect and related
illusions, and provides a natural solution to the question of
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Figure 1. The classical hierarchical predictive coding model and two possible extensions. a, The classical predictive model (model
A). This model consists of hierarchically organized loops of forward and backward connections. Backward signals carry predictions,
and forward signals carry prediction errors (Rao and Ballard, 1999). b, The predictive model with extrapolated feedback (model B).
To handle time-varying stimuli such as motion, the classical model can be expanded to include an extrapolation mechanism on the
backward step. This would be one way to minimize prediction error for time-varying stimuli. ¢, The predictive model with real-time
alignment (model C). In this model, extrapolation mechanisms work on both forward and backward steps. Like model B, this would
minimize prediction error, but has the additional consequence that it aligns the content of neural representations across the hierarchy.

Diagram labels in b and ¢ are as in a, but are omitted for clarity.

how asynchronous processing of visual features never-
theless leads to a synchronous conscious experience (the
temporal binding problem).

Minimizing prediction error

The core principle behind the pattern of functional con-
nectivity in hierarchical predictive coding is the minimiza-
tion of total prediction error. This is considered to be the
driving principle on multiple biological timescales (Friston,
2018).

At long timescales, the minimization of prediction error
drives evolution and phylogenesis. Neural signaling is
metabolically expensive, and there is therefore evolution-
ary pressure for an organism to evolve a system of neural
representation that allows for complex patterns of infor-
mation to be represented with minimal neural firing. A
sparse, higher-order representation that inhibits the
costly, redundant activity of lower levels would provide a
metabolic, and therefore evolutionary, advantage. Theo-
retically, the imperative to minimize complexity and met-
abolic cost is an inherent part of free-energy (i.e.,
prediction error) minimization. This follows because the
free energy provides a proxy for model evidence, and
model evidence is accuracy minus complexity (Friston,
2010). This means that minimizing free energy is effec-
tively the same as self-evidencing (Hohwy, 2016), and
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both entail a minimization of complexity or computational
costs, and their thermodynamic concomitants.

At the level of individual organisms, at timescales rele-
vant to decision-making and behavior, the minimization of
prediction error drives learning (den Ouden et al., 2012;
Friston, 2018). Predictions are made on the basis of an
internal model of the world, with the brain essentially
using sensory input to predict the underlying causes of
that input. The better this internal model fits the world, the
better the prediction that can be made, and the lower the
prediction error. Minimizing prediction error therefore
drives a neural circuit to improve its representation of the
world: in other words, learning.

Finally, at subsecond timescales relevant to sensory
processing, the minimization of prediction error drives
the generation of stable perceptual representations. A
given pattern of sensory input feeds in to forward and
backward mechanisms that iteratively projects to each
other until a dynamic equilibrium is reached between
higher-order predictions and (local) deviations from
those predictions. Because this equilibrium is the most
efficient representation of the incoming sensory input, the
principle of prediction error minimization works to main-
tain this representation as long as the stimulus is present.
This results in a perceptual representation that remains
stable over time. Interestingly, because there may be local
minima in the function determining total prediction error, a
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given stimulus might have multiple stable interpretations,
as is, for example, the case for ambiguous stimuli such as
the famous Necker cube (Necker, 1832).

Hierarchical versus temporal prediction

In discussing predictive coding, there is an important
distinction to be made regarding the sense in which pre-
dictive coding models predict.

Descriptively, predictive coding models are typically
considered (either implicitly or explicitly) to reflect some
kind of expectation about the future. For example, in
perception, preactivation of the neural representation of
an expected sensory event ahead of the actual occur-
rence of that event reflects the nervous system predicting
a future event (Garrido et al.,, 2009; Kok et al., 2017;
Hogendoorn and Burkitt, 2018). In a decision-making
context, a prediction might likewise be a belief about the
future consequences of a particular choice (Sterzer et al.,
2018). These are predictions in the temporal sense of
predicting future patterns of neural activity.

However, conventional models of predictive coding
such as the one first proposed by Rao and Ballard (1999)
are not predictive in this same sense. Rather than predict-
ing the future, these models are predictive in the hierar-
chical sense of higher areas predicting the activity of
lower areas (Rao and Ballard, 1999; Bastos et al., 2012;
Spratling, 2012, 2017). These models do not predict what
is going to happen: rather, by converging on a configura-
tion of neural activity that optimizes the representation of
a stable sensory input, they hierarchically predict what is
happening. The use of the word “prediction” in this con-
text is therefore somewhat unfortunate, as conventional
models of predictive coding do not actually present a
mechanism that predicts in the temporal way that predic-
tion is typically used in ordinary discourse.

Predicting the future

To date, the temporal dimension has been nearly ab-
sent from computational work on predictive coding. With
the exception of generalized formulations (see below), it is
generally implicitly assumed that sensory input is a sta-
tionary process (i.e., that it remains unchanged until the
system converges on a minimal prediction error solution).
The available studies of dynamic stimuli in a predictive
coding context consider only autocorrelations within the
time series of a given neuron: in other words, the ten-
dency of sensory input to remain the same from moment
to moment (van Hateren and Ruderman, 1998; Rao, 1999;
Huang and Rao, 2011). Computationally, this prediction is
easily implemented as a biphasic temporal impulse re-
sponse function (Dong and Atick, 1995; Dan et al., 1996;
Huang and Rao, 2011), which is consistent with the
known properties of neurons in the early visual pathway,
including the lateral geniculate nucleus (LGN; Dong and
Atick, 1995; Dan et al., 1996). However, this is only the
most minimal temporal prediction that a neural system
might make: the prediction that its input remains un-
changed over time.

A more general framework is provided by generalized
(Bayesian) filtering (Friston et al., 2010). The key aspect of
generalized predictive coding is that instead of just pre-
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dicting the current state of sensory impressions, there is
an explicit representation of velocity, acceleration, and
other higher orders of motion. This sort of representation
has been used to model oculomotor delays during active
vision (Perrinet et al., 2014). However, neither this frame-
work nor predictive coding approaches implicit in Kalman
filters (that include a velocity-based prediction) explicitly
account for transmission delays.

As such, what is missing from conventional models of
predictive coding is the fact that neural communication
itself takes time. Perhaps because the delays involved in
in silico simulations are negligible, or perhaps because the
model was first articulated for stationary processes,
namely static images and stable neural representations,
models of neural circuitry have entirely neglected to take
into account that neural transmission incurs significant
delays. These delays mean that forward and backward
signals are misaligned in time. For an event at a given
moment, the sensory representation at the first level of the
hierarchy needs to be fed forward to the next hierarchical
level, where a prediction is formulated, which is then fed
back to the original level. In the case of a dynamic stim-
ulus, however, by the time that the prediction arrives back
at the first hierarchical level, the stimulus will have
changed, and the first level will be representing the new
state of that stimulus. As a result, backward predictions
will be compared against more recent sensory information
than the information on which they were originally based,
and which they were sent to suppress. If this temporal
misalignment between forward and backward signals
would not somehow be compensated for, under the clas-
sical hierarchical predictive coding model any time-
varying stimulus would generate very large prediction
errors at each level of representation, which is typically
not seen in electrophysiological recordings of responses
to stimuli with constant motion (as opposed to unex-
pected changes in the trajectory; Schwartz et al., 2007;
McMillan and Gray, 2012; Dick and Gray, 2014).

Because of neural transmission delays, prediction error
is minimized not when a backward signal represents the
sensory information that originally generated it, but when
it represents the sensory information that is going to be
available at the lower level by the time the backward
signal arrives. In other words, prediction error is mini-
mized when the backward signal anticipates the future
state of the lower hierarchical level. For stimuli that are
changing at a constant rate, estimating that future state
requires only rate-of-change information about the rele-
vant feature, and it follows that if such information is
available at a given level, it will be recruited to minimize
prediction error. When allowing for transmission delays,
hierarchical predictions therefore need to become tempo-
ral predictions: they need to predict the future.

Two extended models

A clear example of common, time-varying sensory input
is visual motion. Here, we use visual motion to illustrate
the limitations of the classical predictive coding model
when input is time varying, and present two extensions to
the classical model that would solve these limitations. In
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Figure 2. Three simplified models of the representation of the position of a moving object throughout the visual processing hierarchy
under the predictive coding framework. Each rectangle denotes the neural representation of the position of the object at a given
hierarchical level and at a given time, with the filled circle indicating the object in one of five possible positions. In this simplified
representation, all connections are modeled as incurring an equal transmission delay (At). Colored bands link corresponding
representations, and numbered circles highlight the core features of each model. a, The classical predictive model (model A) of
predictive coding comprises forward connections from one hierarchical level to the next level (solid lines), and backward connections
to the previous level (dashed lines). No allowance is made for neural transmission delays, such that backward connections carry a
position representation (asterisks) that is outdated by the time that signal arrives. The resulting mismatch with more recent sensory
input generates large errors, which subsequently propagate through the hierarchy (emphasized with starbursts). b, In the predictive
model with extrapolated feedback (model B), an extrapolation mechanism operates on predictive backward projections, anticipating
the future position of the object. This mechanism on the backward projections compensates for the total time-cost incurred during
both the forward and the backward portion of the loop. This would minimize total prediction error in this simplified model. However,
the mechanism would rapidly become more complex when one considers that individual areas tend to send and receive signals to
and from multiple levels of the hierarchy. ¢, In the predictive model with real-time alignment (model C), extrapolation mechanisms
compensate for neural delays at both forward and backward steps. This parsimoniously minimizes total prediction error, even for
more complex connectivity patterns. Additionally, the model differs from the first two models in that at any given time, all hierarchical
levels represent the same position. Conversely, in the first two models, at any given time neural transmission delays mean that all
hierarchical levels represent a different position. This crucial difference is evident as vertical, rather than diagonal, colored bands
linking matching representations across the hierarchy. The consequence of this hypothesis is therefore that the entire visual hierarchy
becomes temporally aligned. This provides an automatic and elegant solution to the computational challenge of establishing which
neural signals belong together in time: the temporal binding problem. It is also consistent with demonstrated extrapolation
mechanisms in forward pathways and provides a parsimonious explanation for a range of motion-induced position shifts.

this illustration, we consider neural populations at various  predictions. Because the input to this level has
levels of the visual hierarchy that represent position, for ~ changed during the elapsed time, this results in predic-
instance as a Gaussian population code. Additionally, we  tion error (Fig. 2a).

will argue that to effectively represent position despite

transmission delays, those neural populations will addi-  The predictive model with extrapolated feedback (model B)
tionally represent velocity. Consequently, each neural In this extension to the classical model, each complete
population representing a particular position would con-  forward/backward loop uses any available rate-of-change
sist of subpopulations representing the range of stimulus  jrformation to minimize prediction error. In the case of

velocities. visual motion, this means that the circuit will use concur-

The classical predictive model (model A) rent velocity information to anticipate the representation

In the classical hierarchical predictive coding model  at the lower level by the time the backward signal arrives
(Rao and Ballard, 1999; Fig. 1a), neural transmission  at that level. In this model, an extrapolation mechanism is

delays mean that backward predictions arrive at a level ~ implemented only at the backward step of each loop (Fig.
in the processing pathway a significant interval of time  1b) to minimize predictive error while leaving the forward
after that level fed forward the signal that led to those  sweep of information unchanged (Fig. 2b).
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The predictive model with real-time alignment (model C)

In the classical model, prediction error results from the
cumulative delay of both forward and backward transmis-
sion. Prediction error is minimized when this cumulative
delay is compensated at any point in the forward-back-
ward loop. Evidence from both perception (Nijhawan,
1994, 2008) and action (Soechting et al., 2009; Zago et al.,
2009) strongly suggests that at least part of the total delay
incurred is compensated by extrapolation at the forward
step. Accordingly, in this model, we propose that extrap-
olation mechanisms work on both forward and backward
signals: any signal that is sent from one level to another,
whether forward or backward, is extrapolated into the
future that precisely compensates for the delay incurred
by that signal while it is in transit (Fig. 1c). In addition to
minimizing prediction error, this model has the remarkable
consequence of synchronizing representations through-
out the hierarchy: under this model, all levels represent a
moving object in the same position at the same moment
(Fig. 2c), independent of where in the hierarchy each level
lies.

Evaluating the evidence

We have argued above that the classical model of
predictive coding (Rao and Ballard, 1999; Huang and Rao,
2011; Bastos et al., 2012; Spratling, 2017) will consistently
produce prediction errors when stimuli are time varying
and neural transmission delays are taken into consider-
ation (Fig. 2a). We have proposed two possible extensions
to the classical model, each of which would minimize
prediction error. Here, we evaluate the evidence for and
against each of these two models.

Neural plausibility

Models B and C are both neurally plausible. First, both
models share key features with existing computational
models of motion—position interaction. For example,
Kwon et al. (2015) recently advanced an elegant compu-
tational model uniting motion and position perception. An
interaction between motion and position signals is a cen-
tral premise of their model, such that instantaneous po-
sition judgments are biased by concurrent motion stimuli
in a way that is qualitatively similar to the model we
propose here. In fact, they demonstrate that this interac-
tion predicts a number of properties of a visual effect
known as the curveball illusion, in which the internal mo-
tion of an object causes its position (and trajectory) to be
misperceived. Below, we argue that our extension of hi-
erarchical predictive coding similarly predicts a number of
other motion-induced position shifts. One such illusion is
the flash-lag effect (Nijhawan, 1994), in which a stationary
bar is flashed in alignment with a moving bar, but is
perceived to lag behind it. Importantly, Khoei et al. (2017)
recently presented a detailed argument that the flash-lag
effect could be explained by a Bayesian integration of
motion and position signals, and postulated that such mech-
anisms might compensate for neural delays. This interpre-
tation of the interaction between motion and position signals
is entirely consistent with the mechanisms we propose in
models B and C. Finally, we have previously argued that the
prediction errors that would necessarily arise under these
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models when objects unexpectedly change direction would
lead to another perceptual effect known as the flash-grab
illusion (Cavanagh and Anstis, 2013; van Heusden et al.,
2019; Fig. 1). Consequently, the models we propose are
compatible with existing empirical and computational work.

Second, both extensions to the classical model incor-
porate neural extrapolation mechanisms at each level of
the visual hierarchy. This requires first that information
about the rate of change be represented and available at
each level. In the example of visual motion, it is well
established that velocity is explicitly represented through-
out the early visual hierarchy, including the retina (Barlow
and Levick, 1965), LGN (Marshel et al., 2012; Cheong
et al.,, 2013; Cruz-Martin et al., 2014; Zaltsman et al.,
2015), and primary visual cortex (V1; Hubel and Wiesel,
1968). As required by both models, velocity information is
therefore available throughout the hierarchy. Indeed, it
follows from the prediction error minimization principle
that if velocity is available at each level, it can and will be
used at each level to optimize the accuracy of backward
predictions involving that level.

Finally, the extrapolation processes posited in both
models should cause activity ahead of the position of a
moving object, preactivating (i.e., priming the neural rep-
resentation of) the area of space into which the object is
expected to move. This activation ahead of a moving
object is consistent with the reported preactivation of
predicted stimulus position in cat (Jancke et al., 2004) and
macaque (Subramaniyan et al., 2018) V1, as well as in
human EEG (Hogendoorn and Burkitt, 2018). Importantly,
if the object unexpectedly vanishes, such extrapolation
would preactivate areas of space in which the object
ultimately never appeared. This is consistent with psycho-
physical experiments where an object is perceived to
move into areas of the retina where no actual stimulus
energy can be detected (Maus and Nijhawan, 2008; Shi
and Nijhawan, 2012), as well as with recent fMRI work
showing activation in retinotopic areas of the visual field
beyond the end of the motion trajectory (Schellekens
et al., 2016). Although the models presented here are by
no means the only models that would be able to explain
these results, these results do demonstrate properties
predicted by models B and C.

Hierarchical complexity

Model C is more robust to hierarchical complexity than
model B. Figure 2 shows extremely simplified hierarchies:
it omits connections that span multiple hierarchical levels,
it represents all time delays as equal and constant, and it
shows only a single projection from each area. In reality,
of course, any given area is connected to numerous other
areas (Felleman and Van Essen, 1991), each with different
receptive field properties. Transmission delays will inevi-
tably differ depending on where forward signals are sent
to and where backward signals originate from. Impor-
tantly, a given area might receive input about the same
moment through different pathways with different lags. A
purely backward extrapolation process (model B) would
not naturally compensate for these different lags, because
it would not be able to differentiate between the forward
signals that led to the prediction. Conversely, a model
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with extrapolation mechanisms at both forward and back-
ward connections (model C) would be able to compen-
sate for any degree of hierarchical complexity: for a
feedback loop with a large transmission delay, prediction
error would be minimized by extrapolating further along a
trajectory than for a feedback loop with a smaller trans-
mission delay. In this way, each connection would essen-
tially compensate for its own delay.

Motion-induced position shifts

Model C predicts motion-induced position shifts,
namely visual illusions in which motion signals affect the
perceived positions of objects. In model C, the represen-
tation in higher hierarchical levels does not represent the
properties of the stimulus as it was when it was initially
detected, but rather the expected properties of that stim-
ulus at a certain extent into the future. In the case of visual
motion, this means that the forward signal represents the
extrapolated position rather than the detected position of
the moving object. One consequence is that at higher
hierarchical levels, a moving object is never represented
in the position at which it first appears (Fig. 2c, top
diagonal). Instead, it is first represented at a certain extent
along its (expected) trajectory. Model C therefore neatly
predicts a visual phenomenon known as the Frdhlich
effect, in which the initial position of an object that sud-
denly appears in motion is perceived as being shifted in
the direction of its motion (Frohlich, 1924; Kirschfeld and
Kammer, 1999). Conversely, model B cannot explain
these phenomena, as the feedforward position represen-
tation reflects the veridical location of the stimulus, rather
than its extrapolated position (Fig. 2b).

Model C is also consistent with the much studied flash-
lag phenomenon (Nijhawan, 1994), in which a briefly
flashed stimulus that is presented in alignment with a
moving stimulus appears to lag behind that stimulus.
Although alternative explanations have been proposed
(Eagleman and Sejnowski, 2000), a prominent interpreta-
tion of this effect is that it reflects motion extrapolation,
specifically implemented to compensate for neural delays
(Nijhawan, 1994, 2002, 2008). Model C is not only com-
patible with that interpretation, but it provides a principled
argument (prediction error minimization) for why such
mechanisms might develop.

Neural computations

There are two key computations that the neural-
processing hierarchy needs to carry out to implement the
proposed real-time alignment of model C. First, it is nec-
essary that the position representation at each successive
level incorporates the effect of the neural transmission
delay to compensate for the motion, rather than simply
reproducing the position representation at the preceding
level. Second, this delay-and-motion-dependent shift of
the position representation must occur on both the for-
ward and backward connections in the hierarchy. More-
over, these computations must be learned through a
process that is plausible in terms of synaptic plasticity,
namely that the change in a synaptic strength is activity
dependent and local. The locality constraint of synaptic
plasticity requires that changes in the synaptic strength
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(i.e., the weight of a connection) can only depend on the
activity of the presynaptic neuron and the postsynaptic
neuron. Consequently, the spatial distribution of the syn-
aptic changes in response to a stimulus are confined to
the spatial distribution of the position representation of
the stimulus, which has important consequences for the
structure of the network that emerges as a result of
learning.

By incorporating the velocity of the stimuli into the
prediction error minimization principle, it becomes possi-
ble for a learning process to selectively potentiate the
synapses that lead to the hierarchically organized position
representations in both models B and C. This requires that
the appropriate velocity subpopulation of each position
representation is activated to generate the neural repre-
sentations illustrated in Figure 2, b and c. The prediction
error is generated by the extent of misalignment of the
actual input and the predicted input position representa-
tion on the feedback path, which involves the combined
forward and backward paths, as illustrated in Figure 2.
Consequently, the prediction error minimization principle
results in changes to the weights on both the forward and
backward paths. What distinguishes models B and C is
that the probability of potentiation depends on the extent
of the spatial overlap of the position representations at
successive times. In model C, this spatial overlap be-
tween the forward and backward paths is the same,
namely the position representation has changed by the
same extent during both the forward and backward trans-
mission delays, assuming that the neural delay time is the
same for both paths. However, in model B the forward
and backward paths are quite different: the forward path
has complete congruence in the position representation
between adjacent levels, whereas the backward path has
a position representation that corresponds to the sum of
the forward and backward delays, so that the position
representations between the two levels on the backward
path are much further apart. Since the position represen-
tations are local with a distribution that falls off from the
center (e.g., an exponential or power-law fall off), the
probability of potentiation of the backward pathway in
model B is correspondingly lower (by an exponential or
power-law factor). As a result, a local learning rule that
implements the prediction error principle would tend to
favor the more equal distribution of delays between the
forward and backward paths of model C. Since the same
learning principle applies to weights between each suc-
cessive level of the hierarchical structure, it is capable of
providing the basis for the emergence of this structure
during development.

Both models B and C posit interactions between mo-
tion and position signals at multiple levels in the hierarchy.
This is compatible with a number of theoretical and com-
putational models of motion and position perception. For
example, Eagleman and Sejnowski (2007) have argued
that for a whole class of motion-induced position shifts, a
local motion signal biases perceived position, precisely
the local interactions between velocity and position sig-
nals that we propose. Furthermore, these instantaneous
velocity signals have been shown to affect not only the
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perceptual localization of concurrently presented tar-
gets, but also the planning of saccadic eye movements
aimed at those targets (Quinet and Goffart, 2015; van
Heusden et al., 2018). We argue that, under the hierar-
chical predictive coding framework, delays in neural
processing necessarily lead to the evolution of motion—
position interactions.

Furthermore, both models B and C posit such interac-
tions at multiple levels, including very early levels in the
hierarchy. This is consistent with recent work on the
flash-grab effect, a motion-induced position shift in which
a target briefly flashed on a moving background that
reverses direction is perceived to be shifted away from its
true position (Cavanagh and Anstis, 2013). Using EEG, the
interaction between motion and position signals that gen-
erates the illusion has been shown to have already
occurred within the first 80 ms following stimulus presen-
tation, indicating a very early locus of interaction. A
follow-up study using dichoptic presentation revealed
that, even within this narrow time frame, extrapolation
took place in at least two dissociable processing levels
(van Heusden et al., 2019).

Temporal alignment

A defining feature of model C is that, due to extrapola-
tion at each forward step, all hierarchical areas become
aligned in time. Although neural transmission delays mean
that it takes successively longer for a new stimulus to be
represented at successive levels of the hierarchy (Lamme
et al., 1998), the fact that the neural signal is extrapolated
into the future at each level means that the representa-
tional content of each consecutive level now runs aligned
with the first hierarchical level, and potentially with the
world, in real time. In the case of motion, we perceive
moving objects where they are, rather than where they
were, because the visual system extrapolates the position
of those objects to compensate for the delays incurred
during processing. Of course, the proposal that the brain
compensates neural delays by extrapolation is not new
(for review, see Nijhawan, 2008). Rather, what is new here
is the recognition that this mechanism has not developed
for the purpose of compensating for delays at the behav-
ioral level, but that it follows necessarily from the funda-
mental principles of predictive coding.

The temporal alignment characterizing model C also
provides a natural solution to the problem of temporal
binding. Different visual features (e.g., contours, color,
motion) are processed in different, specialized brain areas
(Livingstone and Hubel, 1988; Felleman and Van Essen,
1991). Due to anatomic and physiologic differences, these
areas process their information with different latencies,
which leads to asynchrony in visual processing. For ex-
ample, the extraction of color has been argued to lead the
extraction of motion (Moutoussis and Zeki, 1997b; Zeki
and Bartels, 1998; Arnold et al.,, 2001). The question
therefore arises of how these asynchronously processed
features are nevertheless experienced as a coherent
stream of visual awareness, with components of that
experience processed in different places at different times
(Zeki and Bartels, 1999). Model C intrinsically solves this
problem. Because the representation in each area is ex-
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trapolated to compensate for the delay incurred in con-
necting to that area, representations across areas (and
therefore features) become aligned in time.

Local time perception

Model C eliminates the need for a central timing mech-
anism. Because temporal alignment in this model is an
automatic consequence of prediction error minimization
at the level of local circuits, no central timing mechanism
(e.g., internal clock; Gibbon, 1977) is required to carry out
this alignment. Indeed, under this model, if a temporal
property of the prediction loop changed for a particular
part of the visual field, then this would be expected to
result in localized changes in temporal alignment. Al-
though this is at odds with our intuitive experience of the
unified passage of time, local adaptation to flicker has
been found to distort time perception in a specific location
in the visual field (Johnston et al., 2006; Hogendoorn
et al., 2010). Indeed, these spatially localized distortions
have been argued to result from adaptive changes to the
temporal impulse response function in the LGN (John-
ston, 2010, 2014), which would disrupt the calibration of
any neuron extrapolating a given amount of time into the
future. By pointing to adaptation in specific LGN popula-
tions, this model has emphasized the importance of local
circuitry in explaining the spatially localized nature of this
temporal illusion. The counterintuitive empirical finding
that the perceived timing of events in specific positions in
the visual field can be distorted by local adaptation is
therefore consistent with the local compensation mecha-
nisms that form part of model C.

Violated predictions

Under the assumption that the observer’s percept cor-
responds to the current stable representation of the stim-
ulus at a given level of representation, models B and C
produce stable percepts when objects move on predict-
able trajectories. In model B, the represented location at
any given moment will lag behind the outside world by an
amount dependent on the accumulated delay in the hier-
archy, and in model C the represented location will be
synchronous with the outside world. In both cases, how-
ever, the representation at the appropriate level, and
hence the conscious percept, will continue to stably
evolve. In contrast, when events do not unfold predict-
ably, such as when objects unexpectedly appear, disap-
pear, or change their trajectory, this introduces new
forward information, which is, of course, at odds with
backward predictions at each level. This gives rise to
prediction errors at each level of the hierarchy, with pro-
gressively larger prediction errors further up the hierarchy
(as it takes longer for sensory information signaling a
violation of the status quo to arrive at higher levels).
During the intervening time, those areas will continue to
(erroneously) extrapolate into a future that never comes to
pass.

The breakdown of prediction error minimization (and
therefore accurate perception) in situations where events
unfold unpredictably fits with empirical studies showing
visual illusions in these situations. As noted above, the
flash-lag effect is one such visual illusion. Under model C,
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this effect occurs because the position of the moving
object can be extrapolated due to its predictability,
whereas the flashed object, which is unpredictable, can-
not (Nijhawan, 1994). As the sensory information pertain-
ing to the position of the moving object ascends the visual
hierarchy, it is extrapolated at each level. Conversely, the
representation of the flash is passed on “as-is,” such that
a mismatch accumulates between the two. This mismatch
between the predictable motion and the unpredictable
flash has a parallel in the flash-grab effect, a visual illusion
whereby a flash is presented on a moving background
that reverses direction (Cavanagh and Anstis, 2013). The
result is that the perceived position of the flash is shifted
away from the first motion sequence (Blom et al., 2019)
and in the direction of the second motion sequence.
Importantly, a recent study parametrically varied the pre-
dictability of the flash and showed that the strength of the
resulting illusion decreased as the flash became more
predictable (Adamian and Cavanagh, 2016). Likewise, in
studies of temporal binding, the asynchrony in the pro-
cessing of color and motion is evident only when rapidly
moving stimuli abruptly change direction (Moutoussis and
Zeki, 1997a). These illusions reveal that accurate percep-
tion breaks down when prediction is not possible, consis-
tent with model C, but not with the classical predictive
model A.

Conclusions and future directions

Altogether, multiple lines of evidence converge in sup-
port of model C: an extension of the hierarchical predic-
tive coding framework in which extrapolation mechanisms
work on both forward and backward connections to min-
imize prediction error. In this model, minimal prediction
error is achieved by local extrapolation mechanisms com-
pensating for the specific delays incurred by individual
connections at each level of the processing hierarchy. As
a result, neural representations across the hierarchy
become aligned in real time. This model provides an
extension to classical predictive coding models that is
necessary to account for neural transmission delays. In
addition, the model predicts and explains a wide range of
spatiotemporal phenomena, including motion-induced
position shifts, the temporal binding problem, and local-
ized distortions of perceived time.

Neural implementation

We have taken error minimization as the organizing
principle of predictive coding, but now extended to incor-
porate the local velocity of the stimuli. This is in keeping
with the approach of previous authors, who have suc-
cessfully modeled hierarchical prediction error minimiza-
tion (Rao and Ballard, 1997, 1999; Friston, 2010; Huang
and Rao, 2011; Bastos et al., 2012; Spratling, 2017) and
motion—position interactions (Kwon et al., 2015) as a Kal-
man filter (Kalman, 1960). The extension proposed here
can, in principle, be implemented straightforwardly by
incorporating the local velocity as an additional state
variable in a manner analogous to that proposed for mo-
tion—position interactions (Kwon et al., 2015). Such an
approach, in which the prediction error minimization in-
corporates the expected changes that occur due to both
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the motion of the stimulus and the propagation of the
neural signals, is possible when the local velocity is one of
the state variables that each level of the hierarchy has
access to. This could be seen as a special case of gen-
eralized predictive coding, where there is an explicit
leveraging of (sometimes higher-order) motion represen-
tations (Friston et al., 2010). This framework even goes
beyond the first-order velocity implicit in a Kalman filter to
include higher orders of motion. Mathematically, this
makes it easy to extrapolate forward and backward in
time by simply taking linear mixtures of different higher
order motion signals using Taylor expansions (Perrinet
et al., 2014). This would be one neurally plausible way in
which the extrapolation in Figure 2 could be implemented.

Furthermore, it is important to note that by minimizing
prediction error, the system will automatically self-
organize as if it “knows” what neural transmission delays
are incurred at each step. However, models B and C do
not require these delays to be explicitly represented at all.
Rather, if position and velocity are corepresented as state
variables, and the system is exposed to time-variant input
(e.g., a moving object), then selective Hebbian potentia-
tion would suffice to strengthen those combinations of
connections that cause the backward projection to accu-
rately intercept the new sensory input. This would be one
possible implementation of how extrapolation mecha-
nisms calibrate to rate-of-change signals.

It is important to note that the proposed model extends,
rather than replaces, the conventional formulation of pre-
dictive coding as first posited by Rao and Ballard (1999).
We have not discussed how this model would function in
the spatial domain to develop different receptive field
properties at each level, as this has been discussed at
length by other authors (Rao, 1999; Rao and Ballard,
1999; Jehee et al., 2006; Huang and Rao, 2011), and we
intend our model to inherit these characteristics. Our
model only extends the conventional model by providing
for the situation when input is time variant. When it is not
(i.e., for static stimuli), our model reduces to the conven-
tional model.

Altogether, the details of how cortical circuits imple-
ment extrapolation processing, how those circuits interact
with receptive field properties at different levels, and what
synaptic plasticity mechanisms underlie the formation of
these circuits still remain to be elaborated, and these are
key areas for future research.

Prediction in the retina

The proposed model follows from the principle of error
minimization within predictive feedback loops. These
feedback loops are ubiquitous throughout the visual path-
way, including backward connections from V1 to LGN.
Although there are no backward connections to the retina,
extrapolation mechanisms have nevertheless been re-
ported in the retina (Berry et al., 1999), and these mech-
anisms have even been found to produce a specific
response to reversals of motion direction, much akin to a
prediction error (Holy, 2007; Schwartz et al., 2007; Chen
et al., 2014). Indeed, the retina has been argued to imple-
ment its own, essentially self-contained predictive coding
mechanisms that adaptively adjust spatiotemporal recep-
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tive fields (Hosoya et al., 2005). In the absence of back-
ward connections to the retina, our model does not
directly predict these mechanisms, instead predicting
only extrapolation mechanisms in the rest of the visual
pathway where backward connections are ubiquitous. On
the long timescale, compensation for neural delays in the
retina provides a behavioral, and therefore evolutionary,
advantage, but more research will be necessary to ad-
dress whether any short-term learning mechanisms play a
role in the development of these circuits.

The ubiquity of velocity signals

We have emphasized hierarchical mechanisms at early
levels of visual processing, consistent with extrapolation
in monocular channels (van Heusden et al., 2019), early
EEG correlates of extrapolation (Hogendoorn et al., 2015),
and evidence that extrapolation mechanisms are shared
for both perceptual localization and saccadic targeting
(van Heusden et al., 2018). However, an influential body of
literature has proposed that the human visual system is
organized into two (partly) dissociable pathways: a ventral
“what” pathway for object recognition and identification,
and a dorsal “where” pathway for localization and motion
perception (Mishkin and Ungerleider, 1982; Goodale
et al., 1991; Goodale and Milner, 1992; Aglioti et al., 1995).
Two decades later, the distinction is more nuanced (Mil-
ner and Goodale, 2008; Gilaie-Dotan, 2016), but the ques-
tion remains whether velocity signals are truly ubiquitous
throughout the visual hierarchy. However, given that the
identity of a moving object typically changes much more
slowly than its position, it may be that the neuronal ma-
chinery that underwrites (generalized) predictive coding in
the ventral stream does not have to accommodate trans-
mission delays. This may provide an interesting interpre-
tation of the characteristic physiologic time constants
associated with the magnocellular stream (directed to-
ward the dorsal stream), compared with the parvocellular
stream implicated in object recognition (Zeki and Shipp,
1988). Consequently, whether real-time temporal align-
ment is restricted to the “where” pathway or is a general
feature of cortical processing that remains to be eluci-
dated.

The functional role of prediction error

Throughout this perspective, we have considered pre-
diction error as something that an effective predictive
coding model should minimize. From the perspective of
the free energy principle, the imperative to minimize pre-
diction error can be argued from first principles. The sum
of squared prediction error is effectively variational free
energy, and any system that minimizes free energy will
therefore self-organize to its preferred physiologic and
perceptual states. However, we have not addressed the
functional role of the prediction error signal itself. As
noted by several authors, this signal might serve an alert-
ing or surprise function (for review, see den Ouden et al.,
2012). In the model proposed here, the signal might have
the additional function of correcting a faulty extrapolation
(Nijhawan, 2002, 2008; Shi and Nijhawan, 2012). In this
role, prediction error signals would work to eliminate lin-
gering neural traces of predictions that were unsubstan-
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tiated by sensory input: expected events that did not end
up happening. This corrective function has been modeled
as a “catch-up” effect for trajectory reversals in the retina
(Holy, 2007; Schwartz et al., 2007), and as an increase in
position uncertainty (and therefore an increase in relative
reliance on sensory information) when objects change
trajectory in a recently proposed Bayesian model of visual
motion and position perception (Kwon et al., 2015). Fur-
ther identifying the functional role of these signals is an
exciting avenue for future research.
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