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Abstract

Background: In clinical and epidemiological researches, continuous predictors are often discretized into categorical
variables for classification of patients. When the relationship between a continuous predictor and log relative hazards is
U-shaped in survival data, there is a lack of a satisfying solution to find optimal cut-points to discretize the continuous
predictor. In this study, we propose a novel approach named optimal equal-HR method to discretize a continuous
variable that has a U-shaped relationship with log relative hazards in survival data.

Methods: The main idea of the optimal equal-HR method is to find two optimal cut-points that have equal log relative
hazard values and result in Cox models with minimum AIC value. An R package ‘CutpointsOEHR’ has been developed
for easy implementation of the optimal equal-HR method. A Monte Carlo simulation study was carried out to investigate
the performance of the optimal equal-HR method. In the simulation process, different censoring proportions, baseline
hazard functions and asymmetry levels of U-shaped relationships were chosen. To compare the optimal equal-HR
method with other common approaches, the predictive performance of Cox models with variables discretized by
different cut-points was assessed.

Results: Simulation results showed that in asymmetric U-shape scenarios the optimal equal-HR method had better
performance than the median split method, the upper and lower quantiles method, and the minimum p-value method
regarding discrimination ability and overall performance of Cox models. The optimal equal-HR method was applied to a
real dataset of small cell lung cancer. The real data example demonstrated that the optimal equal-HR method could
provide clinical meaningful cut-points and had good predictive performance in Cox models.

Conclusions: In general, the optimal equal-HR method is recommended to discretize a continuous predictor with right-
censored outcomes if the predictor has an asymmetric U-shaped relationship with log relative hazards based on Cox
regression models.
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Background
In survival analysis, Cox regression models [1], which are
the most popular model in this field, are frequently used to
investigate the effects of explanatory variables on right-cen-
sored survival outcomes. The explanatory variables may be
continuous, such as age or weight, or they may be discrete
variables, such as gender or treatment factors. When con-
tinuous explanatory variables have nonlinear effects on out-
comes, it is of interest to investigate U-shaped relationships
[2–5] between continuous explanatory variables and
health-related outcomes in many researches. Although the
U-shaped effects of continuous variables can be modeled in
Cox models with flexible smoothing techniques [6–8], such
as penalized splines and restricted cubic splines, many clin-
ical and epidemiological researchers would rather discretize
continuous explanatory variables [9, 10] to reflect high-risk
and low-risk values of the independent variables and com-
pare the risks of developing survival outcomes (i.e. deaths
or relapses) between different groups of patients. Moreover,
optimal cut-points could help identify thresholds of import-
ant predictors, which could be used to provide classification
schemes of the patients and assist in making clinical treat-
ment decisions. In practice, it is sensible to use standard
clinical reference values as cut-points to discretize continu-
ous predictors. But when it comes to lack of standard refer-
ence ranges for newly discovered risk factors or the
reference ranges can’t be applied to the population with dif-
ferent characteristics, how to find the scientific and reason-
able cut-points to categorize continuous independent
variables has been an important issue to be addressed [11–
13].
There are two widely adopted approaches to discretize

continuous independent variables in survival analysis. One
is the data-oriented cut-points approach [14, 15], which
uses the median value, quartiles or other percentile values
based on the distribution of continuous variables as
cut-points. Owing to its simplicity and easiness of imple-
mentation, median value and upper and lower quantiles
(noted as Q1Q3) have been widely used in many studies as
cut-points. However, this approach provides arbitrary
cut-points regardless of the relationships with survival
outcomes and might lead to wrong estimates of the true
effects. Another approach named maximum statistic ap-
proach or minimum p-value approach was first developed
by Miller and Siegmund [16] to dichotomize continuous
predictors with binary outcomes. The minimum p-value
approach selects a cut-point with maximum χ2 statistic as
the optimal cut-point when the outcomes are binary. When
it is extended to survival outcomes, the optimal cut-point is
the one that results in a minimum p-value of log-rank tests
[17]. In the simulation studies of the minimum p-value
approach, it is usually assumed that there is a single
theoretical threshold of continuous variables, which means
relationships between independent variables and survival

outcomes are stepwise functional relations. In practice, in-
dependent variables and survival outcomes generally have
smooth relationships instead of biologically implausible
stepwise functional relationships. In addition, U-shaped re-
lationships between continuous variables and outcomes are
commonly seen in the clinical and epidemiological studies
[2–5] but little considered in the study of the discretization
methods. In the case of body mass index (BMI), a too low
and a high BMI value both cause harmful effects on overall
health [3, 18]. When a prognostic variable has a U-shaped
relationship with outcomes, the effect of the prognostic
variable may be underestimated using high and low-risk
groups divided by a single cut-point.
To overcome the shortcomings of the common

discretization methods in survival data and meet the needs
of finding optimal cut-points for a continuous predictor
that has a U-shaped relationship with survival outcomes,
we propose a new approach named optimal equal-HR
method to estimate two optimal cut-points that have
approximately equal log hazard values based on Cox
regression models. The main idea of the optimal equal-HR
method is derived from the clinical need of classifying
patients into high-risk and low-risk groups according to a
categorized prognostic variable. In clinical practice, the
classification of high-risk or low-risk patients is based on
their risks of developing unfavored survival outcomes, such
as deaths or relapses. And the larger log relative hazards
correspond to the higher risks of developing the observed
survival outcomes. Despite the reference ranges, common
methods for classification in practical epidemiology studies,
such as the Q1Q3 method, are not accurate to define such
low-risk or high-risk groups when there exists a U-shaped
relationship. It is because the individuals with the same
risks (the same log relative hazards) could be divided into
opposite risk groups by the Q1Q3 method. During the pro-
cedures of finding optimal cut-points, it is important to
consider the effects of log relative hazards. Hence, we use
log relative hazards to find two optimal cut-points (P1, P2)
of the prognostic variable X (as shown in Fig. 1). The pa-
tients with X smaller than P1 or larger than P2 are classified
into two high-risk groups (or two low-risk groups in an in-
verse U-shaped relationship) respectively. By doing this, the
two high-risk groups are defined according to the same
threshold of log relative hazards, which makes the classifi-
cation more reasonable in clinical explanations. Our
method can provide more accurate optimal cut-points and
avoid the individuals with the same risks (the same log rela-
tive hazards) being divided into opposite risk groups. An R
package named ‘CutpointsOEHR’ has been originally devel-
oped to help investigators easily implement the optimal
equal-HR method.
The rest of this paper is organized as follows. The de-

tails of the optimal equal-HR method are presented in
next Section ‘Methods’. The performance of the optimal
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equal-HR method is compared with other commonly used
discretization methods regarding discrimination power
and overall performance via a simulation study. We
present the simulation settings in Section ‘The Simulation
Study’. The results of the simulation study and the appli-
cation of the optimal equal-HR method on a real dataset
of small cell lung cancer are presented in Section ‘Results’.
Finally, there are discussion and conclusions.

Methods
The optimal equal-HR method is based on Cox propor-
tional hazards regression models [1] which have the
following structure:

h tð Þ ¼ h0 tð Þ exp β0Xð Þ ð1Þ
where h(t) denotes the hazard function, h0(t) denotes the
baseline hazard function, t is the observed survival times,
X is a vector of covariates, and β is a vector of estimated
regression coefficients. The relative hazard λ can be calcu-
lated as the above equation divided by h0(t) in both side:

λ ¼ h tð Þ
h0 tð Þ ¼ exp β0Xð Þ ð2Þ

The optimal equal-HR method uses log(λ) values to
search for optimal cut-points. Hazard ratios (HR) could

be easily calculated from the relative hazards λ when inves-
tigators choose a reference value of an independent vari-
able and control other variables at average levels. And the
relationship between HR and a continuous variable is iden-
tical to that between λ and the continuous variable. There-
fore, the method of finding the optimal cut-points with
approximate equal log(λ) values is named as optimal
equal-HR method. The procedure of the optimal equal-HR
method contains two main steps described as follows.

Graphical diagnostic plot
The optimal equal-HR method proposed in this study
aims to solve the problem of discretizing a continuous
variable that has a U-shaped relationship with log(λ) in
the Cox model. Therefore, the first step of adopting the
optimal equal-HR method is to determine the relationship
between a continuous covariate and log(λ) and plot the
curve. Previous researches have already proposed several
methods for estimating nonlinear relationships, including
the multiple β method [19], martingale residual based
method [20], spline methods [21], etc. The performance
of the multiple β method for Cox models is unstable and
largely depends on the number of selected groups because
a Cox model is a semi-parametric model and its likelihood
is based on the order of events rather than their distribu-
tions. The martingale residual based method, which uses

Fig. 1 Schematic diagram of the optimal equal-HR method. The solid black line presents the U-shaped relationship between the continuous x
and log relative hazard. The red dashed line is parallel to the x-axis, which means P1 and P2 have equal log relative hazard values. The optimal
equal-HR method searches pairs of cut-points with equal log relative hazard values as candidate cut-points, such as (P1, P2)

Chen et al. BMC Medical Research Methodology           (2019) 19:96 Page 3 of 12



martingale residuals from Cox models to test the
log-linearity, cannot plot the relationship between a con-
tinuous covariate and log(λ). Due to the limitations of the
above two methods, this study used Cox regression models
with penalized B-splines (P-splines) [7, 22], which balances
goodness of fit and variance, to curve the relationship and
determine whether the non-linear term is statistically sig-
nificant. The smoothing parameter of the P-splines of de-
gree 3 with 22 evenly spaced knots is automatically chosen
by minimizing AIC, which is achieved through the
R-function ‘pspline’ in the ‘suevival’ package under the uni-
variate situation. If there are two or above covariates with
nonlinear effects, the R-function ‘dfmacox’ in the
‘smoothHR’ package [23] could be used to obtain the opti-
mal smoothing parameter. Then the estimated log(λ) values
are plotted against the continuous variable to give an
insight into the biological nature of the continuous variable.

Find two optimal cut-points
If the plotted curve suggests of a U-shaped relationship
(such as Fig. 1), two optimal cut-points of the continu-
ous variable are searched based on the relationship curve
of the continuous variable and log(λ). Specific steps of
the optimal equal-HR method are as follows:

(1) Calculate the percentiles of the estimated log(λ)
values, denoted as Qk, k = 1, 2, , 100. For each
percentile value between the 5th and the 95th
percentile of the estimated log(λ), draw a straight
line parallel to the x-axis, y =Qk, k = 5, 6,… , 95.
The line crosses the fitted U-shaped curve with two
intersections (illustrated in Fig. 1). The two obser-
vations P1kðX1k ; logðλ̂jX ¼ X1kÞÞ; P2kðX2k ; logðλ̂jX
¼ X2kÞÞ;X1k < X2k , which are closest to the two
intersections respectively, are found as a pair of

candidate cut-points with a constraint that j logðλ̂j
X ¼ X1kÞ− logðλ̂jX ¼ X2kÞj≤0:01. If the constraint
is violated, the linear interpolate method is used to
construct new data points as candidate cut-points,
which ensures candidate cut-points have equal
log(λ) values.

(2) The continuous predictor X is discretized into a
categorical covariate X′ with low range (X < X1k),
median range (X1k < X < X2k), and high range (X >
X2k) according to each pair of candidate cut-points.

(3) Then the categorical covariate X′ (reference level is
the median range) is fitted in a Cox model and the
concomitant Akaike Information Criterion (AIC)
value is calculated. The pair of cut-points that mini-
mizes AIC values is defined as optimal cut-points.
Moreover, choosing cut-points by the Bayesian
information criterion (BIC) has the same results
as AIC (Additional file 1: Tables S1, S2 and S3).

Implementation in R
The optimal equal-HR method was implemented in the
language R (version 3.3.3). The freely available R package
‘survival’ was used to fit Cox models with P-splines. The R
package ‘pec’ was employed for computing the Integrated
Brier Score (IBS). The R package ‘maxstat’ was used to im-
plement the minimum p-value method with log-rank sta-
tistics. And an R package named ‘CutpointsOEHR’ was
developed for the optimal equal-HR method. This package
could be installed in R by coding devtools::install_githu-
b(“yimi-chen/CutpointsOEHR”). All tests were two-sided
and considered statistically significant at P < 0.05.

The simulation study
A Monte Carlo simulation study was used to evaluate
the performance of the optimal equal-HR method and
other discretization methods including the median split
(Median), the upper and lower quartiles values (Q1Q3),
and the minimum log-rank test p-value method (minP).
We generated right-censored survival data with known
U-shaped exposure-response relationships. To investi-
gate the performance of these methods, the predictive
performance of Cox models fitted with different discre-
tized variables was assessed.

Design of the simulation study
The survival times T0 were generated from the Weibull dis-
tribution using the method from Bender’s research [24] as

T0 ¼ −
log Uð Þ

λ exp s xð Þð Þ
� �1=v

ð4Þ

where U followed a uniform distribution on the interval
from 0 to 1, abbreviated as U~U(0, 1), λ was the scale par-
ameter of Weibull distribution, v was the shape parameter
of Weibull distribution, x was a continuous covariate from
a standard normal distribution, and s(x) was the given
function of interest. To simulate U-shaped relationships
between x and log(λ), the form of s(x) was set to be

s xð Þ ¼ k1x; x≤a
k2x; x > a

�
ð5Þ

where parameters k1, k2 and a were used to control the sym-
metric and asymmetric U-shaped relationships. When -k1
was equal to k2, the relationship was almost symmetric. For
each subject, censoring time C was simulated by the uniform
distribution with [0, r]. The final observed survival time
was T =min(T0,C), and d was a censoring indicator
of whether the event happened or not in the observed
time T (d = 1 if T0 ≤ C, else d = 0). The parameter r
was used to control the censoring proportion Pc.
One hundred independent datasets were simulated with

n = 500 subjects per dataset for various combinations of
parameters k1, k2, a, v and Pc. Moreover, the simulation
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results of different sample sizes were shown in the supple-
mentary file, Additional file 1: Figures S1 and S2. The
values of (k1, k2, a) were set to be (− 2, 2, 0), (− 8/3, 8/5, −
1/2), (− 8/5, 8/3, 1/2), (− 4, 4/3, − 1), and (− 4/3, 4, 1),
which were intuitively presented in Fig. 2. Large absolute
values of a meant that the U-shaped relationship was more
asymmetric than that with small absolute values of a. Peak
asymmetry factor [25] of the above (k1, k2, a) values were
1, 5/3, 3/5, 3, 1/3, respectively. The survival times were
Weibull distributed with the decreasing (v = 1/2), constant
(v = 1) and increasing (v = 5) hazard rates. The scale par-
ameter of Weibull distribution was set to be 1. The censor-
ing proportion Pc was set to be 0, 20 and 50%. For each
scenario, the median method, the Q1Q3 method, the minP
method and the optimal equal-HR method were
performed to find the optimal cut-points.

Measures of predictive performance
The predictive performance of Cox regression models fitted
with covariates discretized by different methods was
assessed in two aspects, which were discrimination power
and overall performance (explained variance). Harrel’s con-
cordance index (c-index) [26], Gönen and Heller’s concord-
ance probability estimate (CPE) [27], and Graf ’s integrated
Brier Score (IBS) [28], Kent’s RPM

2 [29] and Royston’s RD
2

[30] were used to access the performance of Cox models.
Both c-index and CPE are estimators of concordance

probability. In general, the concordance probability is the
probability that the one of two randomly selected patients
with the shorter survival time has a higher predicted risk.
Integrated Brier Score (IBS), which ranges from 0 to 1,
measures the mean squared difference between forecast
probability and true disease status. A predictive model
with the lower IBS value has more accurate forecasts.
RPM

2 and RD
2 both measure the proportion of the ex-

plained variance of outcomes by the model. The two-fold
cross-validation approach [31] was applied to confirm the
significance of the cut-points and obtain almost unbiased
estimates of HR, c-index, CPE, IBS, RPM

2 and RD
2.

Results
Results of the simulation study
In this simulation study, we found that different v values
didn’t influence the results. Therefore, we only illustrated
the results when v was equal to 1 (constant hazards). There
were similar results when (k1, k2, a) was set to be (− 8/3, 8/
5, − 1/2) and (− 8/5, 8/3, 1/2), as well as when (k1, k2, a)
was set to be (− 4, 4/3, − 1) and (− 4/3, 4, 1). Therefore, we
only showed the results when (k1, k2, a) equaled (− 2, 2, 0),
(− 8/5, 8/3, 1/2), and (− 4/3, 4, 1), which corresponded to
symmetric, moderate asymmetric and severe asymmetric
U-shaped relationships respectively.
Tables 1, 2, 3 presented the estimated cut-points of the

median method, the Q1Q3 method, the minP method

Fig. 2 Different forms of s(x) in the simulation. Five forms of s(x) are used to simulate symmetrical and asymmetrical U-shaped relationships
between a continuous variable and log relative hazards. Parameter k1 is the slope of the left line in a U-shaped or V-shaped curve, parameter k2 is
the slope of the right line and parameter a is the value of the turning point in the x-axis

Chen et al. BMC Medical Research Methodology           (2019) 19:96 Page 5 of 12



and the optimal equal-HR method under different par-
ameter scenarios. Figures 3, 4, 5 examined the perform-
ance of Cox models with a continuous covariate
discretized by the four different discretization methods.
When (k1, k2, a) equaled (− 2, 2, 0), the relationship

between the continuous covariate and log(λ) was almost
symmetric (censoring might cause mild asymmetry). The
median method had the worst performance out of the four
discretization methods (Fig. 3). The cut-points found by the
minP method had much larger simulation standard errors
than the other methods (Table 1). The median values of
cut-points selected by the minP method were 0.60 (Pc =
0%), 0.00 (Pc = 20%), and − 0.76 (Pc = 50%), which also
reflected the considerable variation. The minP method per-
formed better than the median method, but worse than the
optimal equal-HR method and the Q1Q3 method. In terms
of c-index, CPE, and IBS measures, using Q1Q3 values as
cut-points was slightly better than the other methods in-
cluding the optimal equal-HR method (Fig. 3). As for RPM

2

and RD
2 measures, the optimal equal-HR method had the

better performance than the other three methods.
When (k1, k2, a) equaled (− 8/5, 8/3, 1/2), the relation-

ship between the continuous covariate and log(λ) was
moderate asymmetric. The median value method had
the worst performance among the four discretization

methods (Fig. 4). In this case, the variation of cut-points
found by the minP method was smaller than that in the
symmetric situation (Table 2), and the minP method
ranked the third regarding overall performance. The
Q1Q3 method ranked the second. Overall, the optimal
equal-HR method had the best performance out of the
four methods. However, the advantage of the optimal
equal-HR method over the Q1Q3 method was quite
slight in terms of c-index, CPE, and IBS.
When (k1, k2, a) equaled (− 4/3, 4, 1), the relationship

between the continuous covariate and log(λ) was severe
asymmetric. In this case, the optimal equal-HR method
had an obvious advantage over the other three methods
in terms of c-index, CPE, IBS, RPM

2 and RD
2 measures

(Fig. 5). Quantitatively, the differences between the
performance of the optimal equal-HR method and the
Q1Q3 method were larger than those in the moderate
situation under different censoring proportions. For
example, comparing the optimal equal-HR method with
the Q1Q3 method, the difference of their c-indexes
changed from 0.008 (moderate asymmetric situation) to
0.043 (severe asymmetric situation) when the Pc was
0%. Therefore, when the relationship between the con-
tinuous covariate and log(λ) was severe asymmetric, the
optimal equal-HR method had much better

Table 1 Estimated cut-points when (k1, k2, a) equals (− 2, 2, 0) in simulation data

Method Pc = 0% Pc = 20% Pc = 50%

Median Mean Sim SE Median Mean Sim SE Median Mean Sim SE

Median ‘ −0.01 0.00 0.05 −0.01 0.00 0.05 −0.01 0.00 0.05

Q1Q3_1 −0.68 −0.68 0.06 −0.68 − 0.68 0.06 − 0.68 −0.68 0.06

Q1Q3_2 0.67 0.67 0.07 0.67 0.67 0.07 0.67 0.67 0.07

MinP 0.60 0.06 0.77 0.00 −0.02 0.84 −0.76 − 0.01 1.03

OEHR_1 −0.90 − 0.89 0.15 −0.93 − 0.93 0.16 −1.02 −1.03 0.17

OEHR_2 0.90 0.90 0.15 0.94 0.93 0.15 1.01 1.03 0.17

Pc = censoring proportion; Sim SE = simulation standard error; Median ‘= using the median value of the continuous covariate as a cut-point; Q1Q3 = using the
upper and lower quartiles values as cut-points, Q1Q3_1 is the upper quartile value and Q1Q3_2 is the lower quantile value; MinP = the single cut-point minimum
p-value method with log-rank test; OHER = the optimal equal-HR method proposed in this study, OEHR_1 is the left estimated cut-point and OEHR_2 is the right
estimated cut-point

Table 2 Estimated cut-points when (k1, k2, a) equals (−8/5, 8/3, 1/2) in simulation data

Method Pc = 0% Pc = 20% Pc = 50%

Median Mean Sim SE Median Mean Sim SE Median Mean Sim SE

Median ‘ −0.01 0.00 0.05 − 0.01 0.00 0.05 −0.01 0.00 0.05

Q1Q3_1 −0.68 −0.68 0.06 −0.68 − 0.68 0.06 − 0.68 −0.68 0.06

Q1Q3_2 0.67 0.67 0.07 0.67 0.67 0.07 0.67 0.67 0.07

MinP −0.42 −0.40 0.13 −0.47 −0.48 0.15 −0.73 − 0.74 0.16

OEHR_1 −0.58 − 0.61 0.20 −0.65 − 0.65 0.19 − 0.80 − 0.77 0.22

OEHR_2 1.17 1.18 0.11 1.21 1.21 0.10 1.30 1.29 0.13

Pc = censoring proportion; Sim SE = simulation standard error; Median ‘= using the median value of the continuous covariate as a cut-point; Q1Q3 = using the
upper and lower quartiles values as cut-points, Q1Q3_1 is the upper quartile value and Q1Q3_2 is the lower quantile value; MinP = the single cut-point minimum
p-value method with log-rank test; OHER = the optimal equal-HR method proposed in this study, OEHR_1 is the left estimated cut-point and OEHR_2 is the right
estimated cut-point
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performance than the Q1Q3 method, the median split
method and the minP method.

According to the above results, we could get the
following messages

� The Q1Q3 method and the optimal equal-HR
method have comparable good performance when
the U-shaped relationship between the continuous

covariate and log(λ) is almost symmetric. As
the U-shaped relationship becomes asymmetric,
the optimal equal-HR method has better perform-
ance than the Q1Q3 method.

� The median method and the minP method are
not recommended when there exist U-shaped
relationships between the continuous covariates
and log(λ) since these two methods don’t have
good performance under all simulation scenarios.

Table 3 Estimated cut-points when (k1, k2, a) equals (−4/3, 4, 1) in simulation data

Method Pc = 0% Pc = 20% Pc = 50%

Median Mean Sim SE Median Mean Sim SE Median Mean Sim SE

Median ‘ −0.01 0.00 0.05 −0.01 0.00 0.05 −0.01 0.00 0.05

Q1Q3_1 −0.68 −0.68 0.06 −0.68 − 0.68 0.06 − 0.68 −0.68 0.06

Q1Q3_2 0.67 0.67 0.07 0.67 0.67 0.07 0.67 0.67 0.07

MinP −0.08 −0.08 0.15 −0.19 −0.20 0.17 −0.51 − 0.51 0.20

OEHR_1 −0.41 −0.39 0.23 −0.45 − 0.46 0.24 − 0.60 −0.59 0.26

OEHR_2 1.49 1.49 0.08 1.51 1.52 0.08 1.55 1.55 0.10

Pc = censoring proportion; Sim SE = simulation standard error; Median ‘= using the median value of the continuous covariate as a cut-point; Q1Q3 = using the
upper and lower quartiles values as cut-points, Q1Q3_1 is the upper quartile value and Q1Q3_2 is the lower quantile value; MinP = the single cut-point minimum
p-value method with log-rank test; OHER = the optimal equal-HR method proposed in this study, OEHR_1 is the left estimated cut-point and OEHR_2 is the right
estimated cut-point

Fig. 3 Predictive performance of estimated cut-points when (k1, k2, a) equals (− 2, 2, 0). a Simulation results when Pc = 0%; (b) Simulation results
when Pc = 20%; (c) Simulation results when Pc = 50%. Four discretization methods are used to find optimal cut-points of simulated continuous
variables. The continuous variables are transformed into categorical variables and then fitted in univariate Cox models. The boxplots present
predictive performance of Cox models in term of c-index, CPE, IBS, RPM

2 and RD
2
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Results of the application on a real dataset
Small cell lung cancer (SCLC) is a subtype of lung cancer
with terrible survival outcomes. It is characterized by high
invasiveness, high growth fraction, and poor prognosis.
Fibrinogen (FIB), a protein that is synthesized by the liver
and has a blood coagulation function, plays an important
role in the pathogenesis of cardiovascular diseases. The
reference range of FIB is 2–4 g/L. Several studies have
found that the higher FIB level was associated with shorter
overall survival (OS) [32–34]. Some authors used the
median value of FIB as a cut-point of low and high FIB
level [32, 33], when some others used the upper limit of
the reference range as a cut-point [34].
We used the data of 275 patients with SCLC in the First

Affiliated Hospital of Guangzhou Medical University from
January 2009 to December 2013 [35]. FIB ranged from
0.98 to 9.23 g/L (mean ± SD: 4.78 ± 1.56 g/L). There were
235 events (deaths) during the study period. The OS
ranged from 0 to 86months (median: 12months), and the
1-, 2-year OS rates were 50 and 21%, respectively.
First, the effect of FIB on log relative hazards was

curved by a Cox model with P-splines. The U-shaped
graph (Fig. 6) indicated that the patients with low and

high FIB values might have a higher risk of deaths when
compared to those with FIB values in the median range.
It meant that the data was suitable to apply the optimal
equal-HR method. Then, the median method, the Q1Q3
method, the minP method and the optimal equal-HR
method were applied in the data.
Table 4 showed the cut-points found by the four

methods. The median method selected 4.52 as a cut-point,
the Q1Q3 method selected two cut-points at 3.59 and
5.84, the minP method selected 4.02, and the optimal
equal-HR method chose 2.62 and 4.06 as cut-points. The
cut-points of the optimal equal-HR method were closest
to the reference range of FIB (2–4 g/L).
Four Cox models were fitted with the discretized FIB

variable. Reference levels of the discretized FIB were <
4.52 for the median method, 3.59–5.84 for the Q1Q3
method, < 4.02 for the minP method, and 2.62–4.06 for
the optimal equal-HR method. In the Cox model with
the FIB discretized by the optimal equal-HR method,
both low FIB level (< 2.62) and high FIB level (> 4.06 g/
L) had adverse effects (P-value < 0.05) on survival
outcomes, while it was not statistically significant using
the Q1Q3 method.

Fig. 4 Predictive performance of estimated cut-points when (k1, k2, a) equals (− 8/5, 8/3, 1/2). a Simulation results when Pc = 0%; (b) Simulation
results when Pc = 20%; (c) Simulation results when Pc = 50%. Four discretization methods are used to find optimal cut-points of simulated
continuous variables. The continuous variables are transformed into categorical variables and then fitted in univariate Cox models. The boxplots
present predictive performance of Cox models in term of c-index, CPE, IBS, RPM

2 and RD
2
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Table 5 illustrated the performance of different esti-
mated cut-points in Cox models. 100-times five-fold
cross-validation was used to obtain accurate estimations
of the performance. The cut-points estimated by the op-
timal equal-HR method had the best performance in dis-
crimination power and overall performance (explained
variance) in terms of c-index, CPE, IBS, RPM

2 and RD
2

measures. In conclusion, the optimal equal-HR method
provided clinical meaningful and well-performed cut-
points in the case study.

Discussion
In this study, we propose the optimal equal-HR method to
discretize a continuous predictor when the relationship
between the predictor and log(λ) is U-shaped. We demon-
strate the results of the Monte Carlo simulation study with
different censoring proportions, baseline functions, and
relationship curves. When the relationship between the
predictor and log(λ) is symmetric (peak asymmetry factor
equals 1), it’s hard to describe whether the Q1Q3 method
or the optimal equal-HR method has better performance.
At a first look, it surprises us a little that the Q1Q3 method
has such good performance. The two possible reasons for

the good performance of the Q1Q3 method are as follows.
One is that under the symmetric scenario, the Q1Q3
method finds two cut-points with close log(λ) values, which
conforms to the principle of the optimal equal-HR method.
The other is that the Q1Q3 method divides samples into
three groups with 1:2:1 sample sizes while the optimal
equal-HR method might result in more unbalanced ratios
of sample sizes. When the relationship becomes asymmet-
ric, which is common in practice, the optimal equal-HR
method has better performance than the Q1Q3 method,
the median method, and the minP method. The SCLC case
study has also proved that the cut-points selects by the op-
timal equal-HR method have more plausible biological
sense and better model performance in the asymmetric
situation.
We have only used the optimal equal-HR method

under univariate Cox regression models in this study.
The effect of continuous predictors on survival outcome
might be influenced by other confounding variables.
Therefore, it is important to include those variables in
Cox models. Mazumber, et al [36] suggested that when
we add a new categorical predictor to an existing multi-
variate model, searching the cut-points for the new

Fig. 5 Predictive performance of estimated cut-points when (k1, k2, a) equals (− 4/3, 4, 1). a Simulation results when Pc = 0%; (b) Simulation results
when Pc = 20%; (c) Simulation results when Pc = 50%. Four discretization methods are used to find optimal cut-points of simulated continuous
variables. The continuous variables are transformed into categorical variables and then fitted in univariate Cox models. The boxplots present
predictive performance of Cox models in term of c-index, CPE, IBS, RPM

2 and RD
2
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variable should be done in the existing multivariate setting.
The optimal equal-HR method could easily extend to
multivariate Cox models after the selection of confounding
variables is made depend on the ground of clinical and
epidemiological understandings. As mentioned before, the
optimal equal-HR method includes two main steps: (1). the
graphical diagnostic plots, (2). find two optimal cut-points.
The optimal equal-HR method could be applied in a multi-
variate context as follows. First, the diagnostic plots and
estimated log relative hazards could be obtained from a
multivariate Cox regression model with penalized B-splines,
which means the functional form for the interested covari-
ate is determined under the condition that all other covari-
ates remain constant. Then, the optimal cut-points of the
interested covariate will be the cut-points in the multivari-
ate Cox regression model with minimum AIC value. Add-
itionally, the simulation results in Additional file 1: Tables

S4 and S5 showed that applying our method in a multivari-
ate context will provide more reasonable estimates of both
optimal cut-points (smaller variations) and Cox regression
coefficients (closer to the true regression coefficients) than
that in a univariate context if the survival outcomes are
truly affected by other covariates. Nevertheless, the R pack-
age ‘CutpointsOEHR’ already supports seeking optimal
cut-points in a multivariate context. However, when there
are two or more covariates that need to be categorized, the
implementation of the optimal equal-HR method remains
to be addressed in further studies.
Other researchers have also proposed different ways to

find two optimal cut-points. Camp, et al [37] developed
X-Tile, a bio-informatics tool to find optimal cut-points,
which is widely used in genetic data. The X-Tile accesses all
combinations of two cut-points and selects the one with the
highest log-rank χ2 value as the optimal pair of cut-points.

Fig. 6 The relationship between FIB and log(λ) in small cell lung cancer data. The black solid line is the estimated log relative hazard of FIB by
Cox model with P-spline, the grey dashed lines present 95% confidence interval of the estimated log relative hazard

Table 4 Estimated cut-points of FIB and results of Cox models with discretized FIB

Method cut-point1 cut-point2 β1 HR1 P-value1 β2 HR2 p-value2

Median 4.52 – 0.43 1.54 0.002 – – –

Q1Q3 3.59 5.84 −0.33 0.72 0.059 0.17 1.18 0.295

minP 4.02 – 0.46 1.59 0.001 – – –

OEHR 2.62 4.06 1.08 2.94 < 0.001 0.61 1.83 < 0.001

Median denotes using the median value of the continuous covariate as a cut-point. Q1Q3 denotes using the upper and lower quartiles values as cut-points. MinP
denotes the single cut-point minimum p-value method with the log-rank test. OEHR denotes the optimal equal-HR method proposed in this study
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Compared to the X-Tile, the optimal equal-HR method
finds two cut-points with approximately equal log(λ) values,
which is based on the underlying idea of classifying
high-risk or low-risk population according to their log rela-
tive hazards. In this way, the optimal equal-HR method
might provide more clinical valuable cut-points than the
X-tile, offer clues for finding reasonable reference ranges,
and reduce the number of computer operations. We might
expect a better prediction performance if we allow different
hazard values for two cut-points. Therefore, it is possible to
improve our strategy with a trade-off between prediction
performance and clinical meaning in further studies.
There are more works to be done in the future to

generalize the utilization of the optimal equal-HR method:
(1) This method uses Cox models with penalized B-splines
to curve U-shaped relationships, which requires covariates
to satisfy the proportional hazard (PH) assumption. There-
fore, further studies are needed to release the PH assump-
tion. (2) We focus on the U-shaped relationships between
covariates and log relative hazards in this study. The modifi-
cation and application of the optimal equal-HR method to
other types of nonlinear relationships remain to be explored.
It is important to remember that lots of literature have

proved that discretization will inevitably result in infor-
mation loss [38–40]. This study did not encourage
researchers to blindly discretize continuous independent
variables when fitting Cox models. The decision to
discretize a continuous covariate should be cautiously
made by the investigators based on clinical needs.
What’s more, the precondition of our method is the
U-shaped relationship between an interested continuous
covariate and survival outcomes. We recommend using
the graphical diagnostic plots, which are based on Cox
models with penalized B-splines, to visualize the data
and determine whether there exists U-shaped relation-
ships or not. Besides the graphical diagnostic plots,
formal tests, such as the two-lines test [41], could also
facilitate the judgement of U-shaped relationships.

Conclusions
In general, the optimal equal-HR method proposed in
our study offers researchers a solution to find optimal
cut-points of continuous predictors that have U-shaped

relationships with log(λ) in survival analysis. If researchers
have decided to discretize a continuous predictor in Cox
models, we highly advise them to explore the relationships
between continuous predictors and survival outcomes
firstly. When the relationships are U shapes, of which the
majority are asymmetric in real-world data, the optimal
equal-HR method is recommended to find two optimal
cut-points. In addition, an R package called ‘Cutpoint-
sOEHR’ has been developed for easy use of this method-
ology in practice.

Additional file

Additional file 1: Table S1. Comparison of the cut-points selected by
the optimal equal-HR method using AIC and BIC in simulated datasets
when (k1, k2, a) equals (− 2, 2, 0). Table S2. Comparison of the cut-points
selected by the optimal equal-HR method using AIC and BIC in simulated
datasets when (k1, k2, a) equals (− 8/5, 8/3, 1/2). Table S3. Comparison of
the cut-points selected by the optimal equal-HR method using AIC and
BIC in simulated datasets when (k1, k2, a) equals (− 4/3, 4, 1). Table S4.
The estimated cut-points a by the multivariate and univariate approaches
of the optimal equal-HR method. Table S5. The estimated Cox regression
coefficients a of covariates discretized by the multivariate and univariate
approaches of the optimal equal-HR method. Figure S1. Predictive per-
formance of estimated cut-points when sample sizes are 250. Figure S2.
Predictive performance of estimated cut-points when sample sizes range
from 100 to 500 (DOCX 441 kb)
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