Table 1.
Method | Pc = 0% | Pc = 20% | Pc = 50% | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Mean | Sim SE | Median | Mean | Sim SE | Median | Mean | Sim SE | |
Median ‘ | −0.01 | 0.00 | 0.05 | −0.01 | 0.00 | 0.05 | −0.01 | 0.00 | 0.05 |
Q1Q3_1 | −0.68 | −0.68 | 0.06 | −0.68 | − 0.68 | 0.06 | − 0.68 | −0.68 | 0.06 |
Q1Q3_2 | 0.67 | 0.67 | 0.07 | 0.67 | 0.67 | 0.07 | 0.67 | 0.67 | 0.07 |
MinP | 0.60 | 0.06 | 0.77 | 0.00 | −0.02 | 0.84 | −0.76 | − 0.01 | 1.03 |
OEHR_1 | −0.90 | − 0.89 | 0.15 | −0.93 | − 0.93 | 0.16 | −1.02 | −1.03 | 0.17 |
OEHR_2 | 0.90 | 0.90 | 0.15 | 0.94 | 0.93 | 0.15 | 1.01 | 1.03 | 0.17 |
Pc = censoring proportion; Sim SE = simulation standard error; Median ‘= using the median value of the continuous covariate as a cut-point; Q1Q3 = using the upper and lower quartiles values as cut-points, Q1Q3_1 is the upper quartile value and Q1Q3_2 is the lower quantile value; MinP = the single cut-point minimum p-value method with log-rank test; OHER = the optimal equal-HR method proposed in this study, OEHR_1 is the left estimated cut-point and OEHR_2 is the right estimated cut-point