Skip to main content
. 2019 May 9;19:96. doi: 10.1186/s12874-019-0738-4

Table 1.

Estimated cut-points when (k1, k2, a) equals (− 2, 2, 0) in simulation data

Method Pc = 0% Pc = 20% Pc = 50%
Median Mean Sim SE Median Mean Sim SE Median Mean Sim SE
Median ‘ −0.01 0.00 0.05 −0.01 0.00 0.05 −0.01 0.00 0.05
Q1Q3_1 −0.68 −0.68 0.06 −0.68 − 0.68 0.06 − 0.68 −0.68 0.06
Q1Q3_2 0.67 0.67 0.07 0.67 0.67 0.07 0.67 0.67 0.07
MinP 0.60 0.06 0.77 0.00 −0.02 0.84 −0.76 − 0.01 1.03
OEHR_1 −0.90 − 0.89 0.15 −0.93 − 0.93 0.16 −1.02 −1.03 0.17
OEHR_2 0.90 0.90 0.15 0.94 0.93 0.15 1.01 1.03 0.17

Pc = censoring proportion; Sim SE = simulation standard error; Median ‘= using the median value of the continuous covariate as a cut-point; Q1Q3 = using the upper and lower quartiles values as cut-points, Q1Q3_1 is the upper quartile value and Q1Q3_2 is the lower quantile value; MinP = the single cut-point minimum p-value method with log-rank test; OHER = the optimal equal-HR method proposed in this study, OEHR_1 is the left estimated cut-point and OEHR_2 is the right estimated cut-point