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Biological roles and an evolutionary sketch of the GRF-GIF 
transcriptional complex in plants
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Department of Biology, School of Biological Sciences, Kyungpook National University, Daegu 41566, Korea

GROWTH-REGULATING FACTORs (GRFs) are sequence- 
specific DNA-binding transcription factors that regulate various 
aspects of plant growth and development. GRF proteins 
interact with a transcription cofactor, GRF-INTERACTING 
FACTOR (GIF), to form a functional transcriptional complex. 
For its activities, the GRF-GIF duo requires the SWITCH2/ 
SUCROSE NONFERMENTING2 chromatin remodeling 
complex. One of the most conspicuous roles of the duo is 
conferring the meristematic potential on the proliferative and 
formative cells during organogenesis. GRF expression is 
post-transcriptionally down-regulated by microRNA396 
(miR396), thus constructing the GRF-GIF-miR396 module and 
fine-tuning the duo’s action. Since the last comprehensive 
review articles were published over three years ago, many 
studies have added further insight into its action and 
elucidated new biological roles. The current review highlights 
recent advances in our understanding of how the GRF-GIF- 
miR396 module regulates plant growth and development. In 
addition, I revise the previous view on the evolutionary origin 
of the GRF gene family. [BMB Reports 2019; 52(4): 227-238]

INTRODUCTION

Transcription factors control gene expression and thus regulate 
the patterns of plant growth and development. The number of 
transcription factors in Arabidopsis thaliana (Arabidopsis 
hereafter) has been estimated to be more than 2,000, which is 
comparable to that in humans (1-4). Besides the large 
numbers, a significant portion of them are present only in 
plants (4, 5). One class of plant-specific transcription factors, 
GROWTH-REGULATING FACTOR (GRF), was first identified 
in rice and Arabidopsis (the notion of ‘plant-specific’ needs 
revision, as described in the last section below), and found to 
exist in multiple homologous copies: Arabidopsis and rice 

have nine and twelve members, respectively (6-8). Later, GRF 
proteins were found to interact with GRF-INTERACTING 
FACTORs (GIFs) in Arabidopsis, which form a small family of 
three members: AtGIF1 (aka ANGUSTIFOLIA3, AN3), AtGIF2, 
and AtGIF3 (9, 10). Since then, many studies have 
demonstrated that GRFs and GIFs are bona fide interacting 
partner proteins that form a functional unit, and that the 
GRF-GIF complex plays essential roles in various aspects of 
plant growth and development (for review, see 11-13). It has 
also been well documented that microRNA396 (miR396) 
post-transcriptionally regulates the majority of GRF members 
and fine-tunes their expression, thus controlling GRF-GIF- 
dependent processes (14, 15).

It has been more than three years since the last 
comprehensive review articles were published on the 
GRF-GIF-miR396 module (11-13). During that time, many 
reports have been published, elucidating its new biological 
roles and identifying its downstream and upstream genes as 
well as target cis-elements. The current review highlights 
recent studies that have increased the understanding of the 
regulatory module. It also revises the previous view on the 
evolutionary origin of the GRF gene family.

WHAT ARE GRF AND GIF?

GRF proteins contain two highly conserved QLQ and WRC 
domains in the N-terminal half (6-8). The QLQ domain 
consists of highly conserved Gln-Leu-Gln (QX3LX2Q) and 
neighboring residues. The QLQ domain provides an interface 
for interacting with GIFs (9, 10). The WRC domain consists of 
the conserved spacing of three Cys and one His residues 
(CX9CX10CX2H, simply the C3H motif), which acts as a 
DNA-binding domain (DBD) (6, 7, 16-18). The C-terminal 
regions of GRF proteins are highly variable in length and 
composition of amino acid residues, and they function as a 
transactivation domain (7-10). AtGRFs with truncated 
C-termini have been shown to lose their transactivation 
activities, while OsGRF10 (rice) and ZmGRF10 (maize) with 
short C-termini have also exhibited no activities (9, 19, 20).

GIFs were identified by their capability interacting with 
GRFs and characterized as transcription cofactors with no 
DBD (9, 10). The interacting partnership between almost all 
members of the two protein families has been demonstrated in 
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Proteins cis-elements Target genes Transcriptional 
regulation

AtGRF7 TGTCAGGa DREB2A −b

AtGRF9 CTGACA ORG3 +
OsGRF6 TGTGTTG OsJMJ706 +
OsGRF9 OsCR4 +
OsGRF6 CGSMRc ARF2

ARF7
YUCCA-like 

+
+
+

AtGIF1/AN3 CACGTG COL5 +
GAGAGAGA COL5

HEC1
+
+

TGTCAGA PLT1 −
aNucleotide sequences read from the 5’ to 3’ direction. 
bMinus and plus symbolize up- and down-regulation of target gene 
expression, respectively.
cS indicates G and C; M, A and C; R, A and G.

Table 1. Potential cis-elements bound by GRFs and AtGIF1/AN3

all plants tested (19-25). GIF proteins have the highly 
conserved SNH domain in the N-terminus that directly 
interacts with the GRF QLQ domain. The C-terminal regions of 
GIFs exert transactivation activities and are rich in Gln (Q) and 
Gly (G), and are thus called the QG domain. GIF genes are 
more ancient in terms of evolutionary origin than GRFs, and 
they exist in major lineages of eukaryotes, including humans, 
in which they are called SYT (synovial translocation protein), 
aka SS18 (synovial sarcoma associated protein) (26, 27).

POTENTIAL CIS-ELEMENTS BOUND BY GRF AND GIF 

As transcription factors with the WRC DBD, GRFs are 
expected to regulate the expression of downstream target 
genes and bind to specific regulatory cis-elements in them. A 
GRF-targeting cis-element (GTE), TGTCAGG, was first 
identified in the promoter of DEHYDRATION-RESPONSIVE 
ELEMENT BINDING PROTEIN2A (DREB2A) in Arabidopsis: 
AtGRF7 bound to the GTE and led to the repression of 
DREB2A expression (Table 1) (17). AtGRF9 bound to the 
promoter region of a bZIP transcription factor gene, 
OBP3-RESPONSIVE GENE3 (ORG3), whose promoter contains 
a potential GTE, CTGACA (28); rice GRFs (OsGRF6 and/or 
OsGRF10), to a GTE (TGTGTTG) of OsJMJ706 (a JMJD2 family 
jmjC gene) and OsCR4 (a gene for crinkly4 receptor-like 
kinase), upregulating their expression (19); OsGRF6, to 
CGSMR in the promoters of AUXIN RESPONSE FACTOR2 
(ARF2), ARF7, and an YUCCA-like gene, whose expression is 
up-regulated by OsGRF6 overexpression (29).

Aside from GTEs, chromatin immunoprecipitation assays 
(ChIP) revealed that AtGIF1/AN3 proteins were strongly 
associated with the G-box and GAGA elements in the 
Arabidopsis genome, and that these elements were found to 

reside in the promoters of some target genes, including 
CONSTANS-LIKE5 (COL5) and HECATE1 (HEC1; Table 1) 
(23). Another ChIP assay using AtGIF1/AN3 as bait revealed 
the strong enrichment of a promoter region of PLETHORA1 
(PLT1), which contains a cis-element, TGTCAGA (30). Since 
AtGIF1/AN3 lacks a DBD, its association with cis-elements is 
made possible when it works in concert with transcription 
factors with DBDs, such as GRFs. Therefore, the high similarity 
between the elements found in DREB2A and PLT1, which 
were associated with AtGRF7 and AtGIF1/AN3, respectively, 
may not be the result of a coincidence. Nevertheless, the 
systematic inference and experimental verification of a 
canonical or consensus GTE still seems to be premature, or 
GTEs may be variable depending on the classes of GRFs 
and/or plant species. Indeed, the first GTE found in DREB2A 
was associated only with AtGRF7, and not with any other 
AtGRF members (17).

MOLECULAR FUNCTION OF THE GRF-GIF DUO IN 
THE TRANSCRIPTIONAL REGULATION

As mentioned above, ChIP assays revealed that AtGIF1/AN3 
and maize GIF1/AN3 (ZmGIF1/ZmAN3) proteins were 
associated with the promoter regions of certain target genes 
(23, 25). The assays also showed that these associations were 
not limited to those known target genes, but detected widely 
over the whole genome of Arabidopsis, suggesting that 
AtGIF1/AN3 may be a key transcription cofactor acting 
together with GRFs and/or other transcription factors. 
Consistently with the notion, a series of tandem affinity 
purification (TAP) and co-immunoprecipitation (co-IP) 
approaches revealed that GIF1/AN3 proteins of Arabidopsis 
and maize were co-purified with the components of 
SWI2/SNF2 chromatin-remodeling complexes, including the 
core SWI2/SNF2 chromatin-remodeling ATPases, such as 
BRAHMA (BRM) and SPLAYED (SYD) (21, 23, 24). 
Upregulation of AtGIF1/AN3 target genes also required intact 
activities of BRM. These results give rise to the notion that 
GIF1/AN3 transcription cofactors may recruit both SWI2/SNF2 
complexes and GRFs to GTEs, thus activating or repressing 
target genes (Fig. 1).

The results and notion are consistent with the fact that the 
human GIF homolog, SYT, directly interacts with the human 
BRM and its homolog (31, 32), as well as the fact that TAP 
experiments using the human SYT as bait also retrieved the 
components of human SWI2/SNF2 chromatin-remodeling 
complexes (33). The result suggests that the interaction 
between GIF1/AN3 and the SWI2/SNF2 complex may be 
mediated via direct interaction between GIF1/AN3 and plant 
BRM homologs, and that the interaction between GIF1/AN3 
and the SWI2/SNF2 complex is not only evolutionarily 
conserved in metazoans and plants, but also essential for 
transcriptional regulation, despite the fact that metazoans lack 
GRFs.
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Fig. 1. Schematic summary of molecular and biological functions of the GRF-GIF duo. The core and common molecular features of the 
duo are depicted in the circle, in which the GRF-GIF duo associated with the SWI2/SNF2 complex performs transcriptional regulation of 
target genes, including its own (auto-activation), and miR396 post-transcriptionally represses GRF expression. The biological functions 
common to eudicots and monocots are shown in red, i.e., the promotion of leaf growth via the regulation of cell cycling and promotion 
of cell cycling in root meristematic zones; the biological functions confirmed in Arabidopsis and other eudicots are shown in green and 
black, respectively; the biological functions validated in rice and maize are shown in brown and blue, respectively. The solid arrows and 
block bars indicate experimentally verified promotive and inhibitory actions, respectively, while the dotted ones indicate speculated 
possibilities.

Some additional interesting features of the GRF-GIF action 
are that they activate their own transcription through a positive 
feedback loop in Arabidopsis, rice, and maize, likely by 
forming the GRF-GIF-SWI2/SNF2 complex at the promoter 
sites of target GRFs and GIFs (Fig. 1; for detailed information, 
see 11, 25); and that Arabidopsis and rice GIF1 proteins 
translocate between different cell layers through plasmodesmata, 
thus coordinating the cell proliferation activities of different 
cell layers (34, 35).

REGULATORY ROLES OF THE GRF-GIF-MIR396 
MODULE IN LEAF GROWTH 

Roles in cell proliferation of dicot leaves
GRF and GIF genes are highly expressed in almost all 
meristematic tissues, including leaf and floral organ primordia. 
Loss-of-function mutants of AtGRFs and AtGIFs had small and 
narrow leaves and petals, whereas their overexpressors 
developed larger ones (7, 9, 10, 36, 37). Determination of 
cellular parameters elucidated that AtGRFs and AtGIFs are 
positive regulators of cell proliferation in leaf primordia, 
providing cells with a meristematic potential or meristematicity. 

In Arabidopsis, miR396 species, products of AtMIR396a and 
AtMIR396b genes, target and induce the cleavage of AtGRF 
mRNA species with the exceptions of AtGRF5 and AtGRF6 

mRNAs, which lack the miR396 target site (14, 15). Therefore, 
the overexpression of AtMIR396 (35S:AtMIR396) resulted in 
post-transcriptional down-regulation of target AtGRFs, resulting 
in small and narrow leaves along with a reduced number of 
cells. By contrast, the expression of At-rGRFs, which were 
manipulated to be resistant to miR396 by altering their target 
sites, induced an enhancement of cell proliferation, 
consequently resulting in large leaves (15, 21, 22, 38).

The function of the GRF-miR396 module holds up for other 
eudicot plants as well. The overexpression of Arabidopsis and 
Populus trichocarpa MIR396s in tobacco plants has been 
shown to result in small and narrow leaves (38-40). 
Arabidopsis or Brassica napus plants overexpressing B. napus 
and B. rapa GRFs have also shown the development of 
enlarged leaves with more cells, along with increased 
expression of a set of cell cycle genes (41-43). 

It has been shown that the AtGIF family controls both the 
rate and duration of cell division (37, 44). An increase in the 
AtGIF1/AN3 activity not only enhanced, but also prolonged 
the expression of a marker gene for the G-to-M transition in 
cell cycle, CYCB1;1, in the leaf primordium (23), whereas 
decreases in GIF activities were accompanied by reductions in 
the expressions of cell cycle-related genes (37). Similarly, the 
overexpression of AtMIR396 (35S:AtMIR396) and At-rGRF3 
resulted in reductions and increases in CYCB1;1 expression 
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(15, 21), respectively, indicating that the GRF-GIF duo plays a 
critical role in regulating cell cycle activities, consequently 
maintaining and supplying meristematic cells for cell 
proliferation in leaf primordia. Further study is needed as to 
what signaling pathway downstream of the GRF-GIF duo leads 
to the regulation of cell proliferation-mediating genes, 
including cell cycle-related genes.

The movement of the cell cycle arrest front (AF) from the 
distal to proximal regions of Arabidopsis leaf primordia during 
the early stages of leaf growth has been well documented (45). 
35S:AtMIR396 induced the precocious AF movement toward 
the leaf proximal region, reducing cell proliferation activities 
and accelerating cell expansion (an indication of 
differentiation in plants) in the distal region behind AF, 
whereas an enhancement of the AtGRF5 activity exerted the 
opposite effects on those cellular processes, stimulating leaf 
growth (15, 46). Similarly, enhanced activities of AtGIF1/AN3 
delayed the AF movement (23), and the distribution patterns of 
AtGIF expression were consistent with the AF movement (10, 
47, 48), suggesting that the GRF-GIF-miR396 module is a 
crucial regulator of the AF movement. Gupta and Nath 
analyzed various types of leaf growth polarity present in 75 
eudicot species, including the distal-proximal type of 
Arabidopsis, and found that the patterns of leaf growth polarity 
are tightly coupled with the abundance patterns of miR396 
species and GRF mRNAs: regions of active cell proliferation 
are positively correlated with abundance of GRF mRNAs, 
whereas regions of cessation of cell proliferation and 
commencement of cell differentiation are positively correlated 
with miR396 abundance (49). The results suggest that, in 
eudicots, the patterns of cell proliferation and differentiation 
are controlled by the GRF-GIF-miR396 module.

A pea transcriptional complex consisting of BIGGER 
ORGANS (BIO) and ELEPHANT EAR LIKE LEAF1 (ELE1) 
negatively regulates leaf growth and interacts with a 
WUSCHEL-related transcription factor, LATHYDROIDES 
(LATH) (50). LATH has been shown to directly bind to a 
promoter region of a pea GRF, indicating that the negative 
regulator complex of leaf growth exerts it function through the 
repression of GRF expression. Arabidopsis PEAPOD (PPD) 
genes, orthologs of pea ELE1, are negative regulators of cell 
proliferation in leaves (51), giving rise to the possibility that 
PPDs may directly repress AtGRF expression in order to exert 
their negative role in the regulation of cell meristematicity.

CINCINNATA-like TCP (CIN-TCPs) transcription factors 
control the transition from cell proliferation to expansion 
during leaf morphogenesis and act as growth repressors (for 
review, see 52). The overexpression of Arabidopsis CIN-TCPs 
directly enhances AtMIR396 expression, leading to precocious 
declines in GRF-GIF expression and leaf growth (15, 53). On 
the other hand, multiple loss-of-function mutations, tcp2 tcp4 
(tcp2/4) and tcp2/4/10, promoted leaf growth by increasing 
cell proliferation (54). These results suggest that certain 
negative regulators of leaf cell proliferation, including PPDs 

and TCPs, may exert their function, directly or indirectly and at 
least partially, through the repression of GRF-GIF expression.

It should be noted that not all Arabidopsis GRFs seem to act 
as positive regulators of leaf growth. The loss-of-function 
Atgrf9 mutation enhanced cell cycle activities, resulting in 
large leaves, whereas AtGRF9 overexpression reduced those 
activities, resulting in small leaves (28, 55). This indicates that 
AtGRF9 negatively regulates leaf growth via the suppression of 
cell proliferation in leaf primordia. The authors also showed 
that the negative effect of AtGRF9 on cell proliferation was, at 
least partially, mediated by the regulation of a target gene, 
which encodes ORG3 (aka bHLH039). AtGRF9 directly 
activated ORG3 expression, and loss-of-function org3 mutants 
developed large leaves with more cells, whereas ORG3 
overexpressors had small leaves with fewer cells. No additive 
effect on leaf growth was found in the org3 Atgrf9 double 
mutant, and the enhancement of leaf growth by org3 was not 
negated by AtGRF9 overexpression. It remains unclear how 
the specific GRF member exerts the opposite function. In 
contrast, Horiguchi et al. observed a very slight increase in the 
leaf size of the Atgrf9 mutant, but this increase was not 
statistically significant (10). Furthermore, it has been reported 
that AtGRF9 overexpressors produced only slightly enlarged 
leaves and that the same Atgrf9 mutant allele did not 
contribute to changes in leaf size (22). This incongruity should 
be reconciled in the future.

Roles in cell proliferation and expansion of monocot leaves
It appears that monocot GRFs and GIFs primarily act as 
positive regulators of cell proliferation in leaves. makiba3 
(mkb3), a loss-of-function mutant allele of rice GIF1 (OsGIF1), 
caused a reduction in the number of leaf epidermal cells, 
producing small leaves, whereas MKB3 overexpression 
resulted in the opposite phenotypes, indicating that 
OsGIF1/MKB3 acts as a positive regulator of cell proliferation 
in the leaf organ as well (35). Similarly, CRISPR/CAS9-induced 
loss-of-function mutations of OsGIF1 (C/C-Osgif1) reduced leaf 
size, whereas 35S:OsGIF1 increased leaf size (56). mkb3 and 
C/C-Osgif1 mutants also shared other phenotypes, such as leaf 
rolling and reductions in the length of stem internodes. Based 
on the analysis of subepidermal cells in the internodes and 
main veins of leaf blades, the latter attributed the change in 
leaf size to the change in cell size, rather not in cell numbers. 
However, the latter also suggested a role of OsGIF1 in 
regulating cell proliferation of some tissues, such as 
specialized epidermal cells of the leaf blade, proposing that 
both the cell proliferation and expansion processes are under 
the control of OsGIF1, likely depending on the cell types. 
35S:OsMIR396d and Osgrf6 rice plants showed reductions in 
cell length of the stem internode, leaf collar, and leaf sheath, 
indicating that lack of GRFs leads to defects in the cell 
elongation process in rice (57). 

The overexpression of ZmGRF10, which lacks the 
C-terminal transactivation domain, led to a reduction in the 
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size of maize leaves by decreasing cell proliferation, as it 
could execute a dominant negative effect by competing with 
other ZmGRFs with transactivation activities, suggesting that 
the other ZmGRFs may act as positive regulators of cell 
proliferation (20, 24). Consistently with the notion, the 
overexpression of Zm-rGRF1, a miR396-resistant version, 
increased the number of dividing cells in the leaf division 
zone, producing longer leaves (24). Intriguingly, however, 
Zm-rGRF1 overexpression prolonged the duration of cell 
cycling of those dividing cells, and thus the increase in leaf 
length was not as large as expected based on the increase in 
the number of dividing cells. Inversely, loss-of-function Zmgif1 
mutants developed shorter and narrower vegetative and ear 
leaves than the wild type, and the size of their epidermal cells 
were larger, which is indicative of a reduction in cell numbers 
and thus a defect in the cell proliferation process. All things 
considered, therefore, the timing of the transition from the 
meristematic state to differentiating state in the leaf organ is 
governed by the GRF-GIF-miR396 module, in consequence 
determining the leaf size and shape in both eudicot and 
monocot plants.

It should be noted that, like loss-of-function mutant leaves of 
Arabidopsis GRFs and GIFs as well as 35S:AtMIR396, the rice 
mkb3 and Zmgif1 leaves developed larger cells, partially 
compensating for a reduced leaf size (25, 35). The 
compensation syndrome, which here I do not elaborate on, 
has been well documented (58).

Leaf senescence in Arabidopsis
It has been reported that increases in the GRF activities of 
Arabidopsis, B. napus, and B. rapa stimulate photosynthetic 
activities, resulting in an abundance of photosynthetic 
assimilates or seed oil (21, 41, 42, 59). The increases were 
concomitant with increases in total chlorophyll content and 
the rate of chloroplast division (41, 46). Activation of the 
GRF-GIF duo delayed leaf senescence, whereas their 
down-regulation accelerated it (21, 46). During dark-induced 
leaf senescence, the expression of specific marker genes for 
leaf senescence was markedly suppressed by 35S:At-rGRF3 
but enhanced by 35S:AtMIR396 (21). The suppressive role of 
GRFs in leaf senescence may be explicable in light of the 
GRF-cytokinin interplay, as 35S:AtGRF5 increases the 
sensitivity of leaves to cytokinins (46). Cytokinins are well 
known to act not only as potent stimulators of cell proliferation 
but also as specific suppressors of leaf senescence (for review, 
see 60). The nature of the GRF-cytokinin interplay requires 
further investigation, although AtGIF1/AN3 directly activated 
CYTOKININ RESPONSE FACTOR2 (CRF2) and repressed 
ARABIDOPSIS RESPONSE REGULATOR4 (ARR4) (23).

Recently, an Arabidopsis gain-of-function mutant, 
oresara15-1D (ore15-1D), was shown to delay leaf senescence 
and promote organ growth (61). ORE15 encodes a 
transcription factor belonging to the PLATS family (PLANT 
A/T-RICH SEQUENCE- AND ZINC-BINDING PROTEIN). The 

suppression of leaf senescence by ore15-1D was accompanied 
by reductions in the expression of senescence marker genes, 
while the promotion of leaf growth by ore15-1D was coupled 
with the upregulation of AtGRF5 and AtGIF1/AN3 expression 
as well as cell cycle genes. The ORE15 transcription factor 
directly bound to the promoters of AtGRF1 and AtGRF4. In 
contrast to ore15-1D, ore15 null mutations functioned 
inversely in most of those physiological and molecular 
phenotypes. The findings demonstrate that ORE15 is not only 
a negative regulator of leaf senescence, but also a positive 
regulator of leaf cell proliferation. Therefore, ORE15 provides 
a genetic link mediating both of the processes, and the dual 
function of ORE15 is likely manifested, in part, through control 
of the GRF-GIF-miR396 module. Indeed, the an3 mutation 
promoted leaf senescence in the presence of ore15, but 
nullified the effect of ore15-1D. Both the leaf cell proliferation 
and senescence events occur temporally separated in 
Arabidopsis, i.e., at the primordial and mature stages, 
respectively. Therefore, it remains to be addressed in the 
future how the ORE15-GRF-GIF pathway regulates both of the 
cellular processes.

REGULATORY ROLES IN ROOT GROWTH AND 
DEVELOPMENT 

It was recently demonstrated that AtGRFs are required for the 
transition of stem cells into transit-amplifying cells in the root 
meristem (62). Briefly, the abolishment of AtGRF activities by 
35S:MIR396 suppressed the activities of cell cycle markers in 
root tips, reducing the root elongation rate and root length, 
whereas the overexpression of At-rGRF3 exhibited opposite 
effects on the marker activities. Unexpectedly, however, the 
final length of the 35S:At-rGRF3 root was short. The 
contradiction may be comprehensible in light of an additional 
function of AtGRFs in the root: ectopic AtGRF expression 
interferes with the normal patterning of cell divisions in the 
stem cell niche and organization of the quiescent center (QC). 
Nevertheless, it is intriguing that the heterologous 
overexpression of At-rGRF3 in B. oleracea resulted in longer 
roots than the wild type (63). 

AtGIF1/AN3 also plays crucial roles in QC organization, 
which are, interestingly, independent of GRF activities (30). 
The AtGIF1/AN3 action was shown to be mediated, at least in 
part, by regulating the expression patterns of PLT1, as PLT1 
was ectopically expressed in the an3 mutant. As mentioned 
above, PLT1 is one of the direct targets of AtGIF1/AN3. The 
report suggests that, as AtGIF1/AN3 lacks a DBD and its role 
in QC organization is independent of GRF, its targeting to 
PLT1 should be associated with another transcription factor, 
likely in concert with the SWI2/SNF2 chromatin-remodeling 
complex. The result and its implication are consistent with the 
roles of AtGIF1/AN3 in suppressing ectopic PLT1 expression 
during the development of embryonic polarity: if PLT1 not 
suppressed, the apical regions of embryos, which are 
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presumed to develop into cotyledons, are converted to ectopic 
roots, as observed in the an3 han double mutant (64). HAN 
(HANABA TARANU) encodes a GATA transcription factor 
(65). In the legume plant Medicago truncatula, deactivation of 
MtGRFs by MtMIR396a and RNA interference (RNAi) 
inhibited root growth, due to reductions in both the cell 
cycling activity and the numbers of transit-amplifying cells in 
the meristematic zone of the root, though it did not affect the 
organization of the root apical meristem (66).

Regarding monocot root growth, the roots of 35S:OsMIR396d 
rice plants possessed fewer cells in the G2/M phase, 
suggesting that a lack of OsGRF activities may lead to 
reductions in cell cycling activities in rice roots (57). It should 
be noted, however, that the reduced cell cycling activity did 
not affect the root length, although 35S:OsMIR396d boosted 
the brassinosteroid (BR)-induced inhibition of root growth. By 
contrast, a loss-of-function rice mutant, Osgrf6, had shorter 
roots than the wild type (57). Taken together, the GRF-GIF duo 
generally seems to be required for root growth in both eudicot 
and monocot plants. However, this notion may not hold up 
straightforwardly, since one needs to separately analyze the 
duo’s effects on cell cycling activities in the transition zone of 
the root meristem as well as the organization of the stem cell 
niche.

REGULATORY ROLES IN THE DEVELOPMENT OF 
FLORAL ORGANS IN ARABIDOPSIS AND MONOCOTS

The Arabidopsis gif1/2/3 triple mutant displayed severe defects 
in the growth and development of all floral organs (67). Most 
conspicuously, the mutant gynoecium was split into two 
carpels along the medial regions, because the primordial 
replum cells of carpel margin meristems (CMMs) failed to 
maintain their meristematicity, precociously differentiating into 
papillar cells and thus not completely accomplishing the 
carpel fusion process. The mutant gynoecium either 
completely lacked or showed poor development in all internal 
tissues of the ovary (ovules, the septum, and the transmitting 
tract), which are all derived from CMMs. The gif triple mutant 
also had malformed anthers with no development of 
microsporangia bearing pollen grains, because the 
archesporial cells and their progeny lost meristematicity. 
Taken together, these results indicate that AtGIFs are essential 
factors for the establishment of the reproductive competency. 

Since GRFs and GIFs form a functional unit for 
transcriptional regulation, the deactivation of AtGRFs is 
expected to cause similar floral aberrancies. Indeed, some 
strong 35S:MIR396 lines frequently developed single-carpel 
gynoecia, instead of two, and, on rare occasions, split 
gynoecia (22, 68). Recently, the strong deactivation of both 
AtGIF and AtGRF by gif 35S:MIR396 and grf multiple 
mutations allowed for further insight into the roles of AtGRFs 
in floral organ development. Those mutants completely 
aborted the pluripotent CMMs and archesporial cells of the 

anther (69). Strikingly, the mutant gynoecium developed no 
ovary at all, forming a rod-shaped gynoecium only with the 
stigma, style, and replum: the interior and exterior tissues of 
the gynoecial body were entirely filled in and covered with 
replum tissues. It is therefore obvious that AtGRFs are essential 
factors for the meristematic competency of formative cells in 
floral tissues, as are AtGIFs. Furthermore, the results showed 
that the lack of CMM development allows for the replum cells 
to infiltrate the whole gynoecial body, suggesting a 
developmental antagonism between the ovary and replum. 
GRF and GIF proteins are abundantly localized in the 
formative tissues of gynoecium and anther primordia, and the 
localization patterns of both proteins match exactly (67, 69). It 
has been shown that HEC1 is a direct target gene of 
AtGIF1/AN3 (23), thus giving rise to the possibility that it may 
mediate the duo’s action in floral organ growth and 
development. 

The rod-shaped gynoecium phenotypes of those mutants 
were exacerbated by the pinoid-3 mutation and N-1- 
naphthylphthalamic acid, which is indicative of interplay 
between the GRF-GIF duo and polar auxin transport (69). It is 
noteworthy that, although the floral organ phenotypes of 
gif1/2/3 and gif 35S:MIR396 overlap on a broad scale, some of 
the details differ: the former predominantly displayed split 
gynoecia and yet developed the ovary, though poor, whereas 
the latter completely failed to form the ovary. In addition, the 
grf1/2/3/5 quadruple mutant, the strongest among the grf 
mutants obtained, mostly lost their ovary, but hardly 
developed split gynoecia. The results suggest that, in addition 
to their common pathway, AtGRFs and AtGIFs may have their 
own specific roles in the regulation of cell proliferation and 
differentiation during gynoecium development. The 
down-regulation of tobacco GRFs by AtMIR396 and PtMIR396 
caused aberrant floral organs, which were reminiscent of the 
grf phenotypes, suggesting that the functionality of the 
GRF-GIF duo is conserved in eudicot floral organs (39, 40). 

35S:OsMIR396 and Osgrf6/10 double mutants frequently 
produced aberrant floral organs: open husks, long sterile 
lemmas, and/or anomalous numbers of the stigma and anther 
(19). OsCR4 and Osjmj706 were shown to be directly 
activated by OsGRF10, thus mediating, at least in part, the 
roles of OsGRFs in floral organ development: the open-husk 
phenotype was also induced by the deactivation of OsCR4 
and Osjmj706 (70, 71); 35S:OsJMJ706 partly rescued the floral 
defects of 35S:OsMIR396 (19).

Rice GIF1/MKB3 has been shown to be involved in floral 
organ development, as spikelets of the mkb3 mutant exhibited 
morphological abnormalities: the shapes of the lemma and 
palea were distorted, and the width of the palea was 
significantly reduced (35). The mkb3 mutant was not able to 
complete the ovule formation and integument elongation 
processes, and also produced no pollen or abnormal pollen, 
similar to the Arabidopsis gif mutants.

The maize gif1 mutant also showed many defects in floral 
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organs: it is male and female sterile; it produced multiple silks, 
or pistils, per floret; and its nucellus protruded out of the 
carpel, as seen in Arabidopsis gif mutants (25). Interestingly, in 
the Zmgif1 mutants, extra numbers of spikelet meristems (SMs) 
were initiated from spikelet pair meristems (SPMs) in both ears 
and tassels, indicating that the axillary meristems lose their 
determinate nature, and thus ZmGIF1 is involved in promoting 
determinacy of the inflorescence. The situation seems to be 
contrary to that of leaf growth, in which Zmgif1 leaf cells are 
less meristematic, producing small leaves with fewer cells, as 
mentioned previously. Rice and maize GIF1 mRNAs are highly 
expressed in floral organ primordia, SMs, and SPMs (25, 35). 
In conclusion, the GRF-GIF duo of both eudicot and monocot 
plants plays essential roles in the growth and development of 
floral organs, thus warranting successful reproduction. 
Additionally, depending on different evolutionary pathways, it 
may have co-opted a switch function balancing the deter-
minacy and indeterminacy of spikelet meristems in monocots. 

REGULATORY ROLES IN SCULPTING PLANT 
ARCHITECTURE OF MONOCOT PLANTS

Roles in regulation of stem elongation and plant height
The deactivation of OsGRFs by loss-of-function mutations, 
35S:OsMIR396, and RNAi resulted in semi-dwarf rice plants 
(18, 19, 29, 57). On the other hand, a rice dominant quanti-
tative trait locus (QTL), GRAIN SIZE ON CHROMOSOME2 in 
the Baodali line (GS2-BDL) caused a slight increase in height 
with significantly longer leaves (72). The GS2-BDL locus 
corresponds to OsGRF4, whose transcripts lost its miR396 
target site by a mutation in it, thus increasing its transcripts 
level but not affecting the amino acid sequence of the OsGRF4 
protein and thus its function (Osgrf4-1DGS2-BDL hereafter for 
simplicity). Of note, however, no significant changes in those 
phenotypes were detected in Osgrf4-1DGS2-JDL, which 
contained the same kind of a gain-of-function mutation from 
the GRAIN SIZE AND WEIGHT2 QTL (GS2) in Judali as 
Osgrf4-1DGS2-BDL (73). The reduced height of 35S:OsMIR396d 
rice was due to the short internodes with compromised cell 
elongation. 35S:OsMIR396d also increased the degree of the 
leaf angles, because the cell elongation of the adaxial side of 
the leaf collar was less affected than that of the abaxial side. 
Taken together, this indicates that the rice height is controlled 
by the GRF-miR396 module. The compromised and 
differential elongation of stem intermodal and leaf collar cells 
of 35S:OsMIR396d was shown to be intimately linked with 
the signaling and biosynthetic pathways of the phytohormones 
BR and gibberellin (GA): OsBZR1, a key transcription activator 
of BR signaling, directly activated OsMIR396d expression, 
while OsGRF6 promoted GA biosynthesis and signaling. 
Inversely, Osgrf4-1DGL2 stimulated seedling growth and 
reduced leaf angles, and the central negative regulator in BR 
signaling, OsGSK2, physically interacted with OsGRF4, 
inhibiting OsGRF4 expression (74). 

Both the rice mkb3 and Zmgif1 mutants exhibited dwarf 
phenotypes due to shortened internodes, indicating that, like 
GRFs, GIFs are also involved in the regulation of stem 
elongation, and thus plant height (25, 35). Unexpectedly, 
however, the overexpression of Zm-rGRF1 resulted in dwarfism 
(24), likely due to a perturbation in the stem elongation 
process due to its nature of a strong ectopic expression.

Based on results derived from the deactivation of monocot 
GRF and GIF genes, it is clear that the compromised cell 
elongation process is a primary cause of short internodes, 
suggesting that the GRF-GIF-miR396 module is involved in the 
regulation of cell elongation in stem growth, rather than cell 
proliferation. It is noteworthy, however, that those studies 
have focused on cell elongation of internode regions. Given 
that the first GRF member, OsGRF1, was identified in the 
intercalary meristem of rice plants, which supplies internode 
tissues with new cells (6), examining the cell cycling activities 
in the intercalary meristem of the rice and maize mutants 
could provide further insight into the role of the 
GRF-GIF-miR396 module in the regulation of monocot stem 
elongation.

The Arabidopsis inflorescence stem showed a bi-phasic 
growth pattern in response to different dosages of gif 
mutations: the gif1 single mutant developed longer stems than 
the wild type, whereas the gif triple mutant had much shorter 
ones (37), although its nature was not investigated in detail. 
Interestingly, Arabidopsis roots also showed a bi-phasic 
pattern: gif1 roots, longer; gif1/2/3, shorter (30).

Roles in regulation of grain size and panicle development of 
monocots
In monocot plants, the activities of the GRF-GIF-miR396 
module affected the grain size and architecture of panicles, 
such as the length and number of branches as well as spikelet 
numbers. The up-regulation of OsGRFs by 35S:OsGRF6, 
Os-rGRF6, and a target mimicry of miR396 (35S:MIM396) 
increased the numbers of panicle branches and spikelets, 
resulting in high yield, whereas the down-regulation of 
OsGRFs by 35S:OsMIR396d and RNAi caused the opposite 
phenotypes (29). The report suggested that regulation of the 
axillary branches and spikelet numbers by OsGRFs appeared 
to be mediated by stimulated auxin biosynthesis and signaling. 
The dominant Osgrf4-1D mutations and OsGRF 
overexpression also markedly increased grain size and panicle 
length, consequently producing more grains with increased 
weight (72, 73, 75, 76). The deactivation of OsGRFs by 
loss-of-function approaches impaired those yield traits (19, 76). 
As expected, the OsGIF1 function in the panicle traits parallels 
that of OsGRFs. The mkb3 and C/C-Osgif1 mutants had 
shorter branches and/or reduced size and weight of grains, 
whereas the overexpression of OsGIF1 increased both grain 
size and weight (35, 56, 73, 75). Therefore, it is clear that the 
GRF-GIF duo acts as a positive regulator of grain size and 
panicle development in rice. Maize gif1 mutants also 
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Fig. 2 Phylogenetic relationships among ‘green plants’ and the 
presence of GRF-GIF genes. Depicted are the relationships among 
the three lineages of ‘green plants’: chlorophytes, charophytes, 
and land plants. The numbers of GRF and GIF are indicated in 
black boxes, while diamond bullets indicate the presence of the 
WRC domain. Species depicted in gray tone only have whole 
transcriptomic resources, but no whole genome sequenced. n 
designates ‘not present’; asterisks indicate that the GRF genes are 
predicted to encode three consecutive WRC domains after the 
QLQ domain.

displayed severe defects in the inflorescence architecture: 
reduced lengths of tassels and ears as well as reduced numbers 
of tassel branches, but increased numbers of short branches in 
the ear (25). 

Evidence indicates a role of eudicot GRFs in determining 
seed size. 35S:AtGRF1 and 35S:AtGRF5 have been shown to 
increase seed size, albeit not always accompanied by 
increases in seed weight (77). Arabidopsis plants overexpres-
sing BnGRF2a and BrGRFs as well as B. napus plants 
overexpressing BrGRFs all developed large seeds with 
increased weight (41-43). The promotive effect on seed growth 
may be closely associated with the increases in photosynthetic 
activities and senescence retardation by GRFs. 

REGULATORY ROLES IN PLANT-PATHOGEN 
INTERACTION AND IN RESPONSES TO UV-B LIGHT 

Syncytium formation occurring in Arabidopsis roots by an 
infective cyst nematode (Heterodera schachtii) was deterred 
by 35S:AtMIR396 and the grf1/2/3 triple mutation, indicating 
that AtGRFs are required for the reprogramming processes of 
root cells, such as changes in cell fate, re-differentiation, and 
cell proliferation (78). This leads to an interesting, evolutionary 
question of how the parasite wired up the GRF-miR396 
module in order to induce the nourishment source tissue. 
Similarly, in M. truncatula, 35S:MtMIR396 reduced the 
frequency of colonization by arbuscular mycorrhizal fungi, 
whereas 35S:MIM396 frequently reversed it (66). This 
indicates that the GRF-miR396 module promotes (sym)biotic 
associations with microbes in the rhizosphere.

Genes involved in the regulation of defense responses and 
disease resistance were found to be enriched in the potential 
target candidates of AtGRF1 and AtGRF3 (79). In support of 
that, Arabidopsis plants expressing 35S:MIR396 enhanced the 
susceptibility to infection, thus increasing fungal biomass, 
whereas 35S:MIM396 plants displayed broad resistance to 
fungal pathogens with concomitant activation of defense 
responses, indicating that GRFs help deter pathogenic 
organisms (80). 

In Arabidopsis leaves, UV-B light induced the accumulation 
of miR396 and thus reduced the abundance of AtGRF mRNA, 
resulting in repressed cell proliferation (81). Therefore, the 
GRF-miR396 module mediates, at least in part, the 
UV-B-repression of leaf growth, and also likely provides a 
protective mechanism against UV-B light, as plant cells with 
UV-B-damaged DNA are not to proliferate. Arabidopsis E2Fc 
transcription factor acts upstream of AtMIR396, probably 
activating, directly or not, the expression of AtMIR396 or of 
genes that encode proteins involved in the processing of 
miR396 precursors (82). UV-B light induced the accumulation 
of miR396 in maize leaves as well, and caused a reduction in 
cell proliferation and a shortened growth zone (83). These 
results suggest that both dicot and monocot plants may have 
adopted the parallel molecular apparatus in order to cope with 

the detrimental effect of UV-B light. 

THE EVOLUTIONARY GENESIS OF GRFs

It has been described in the last review articles that GRFs are 
land plant-specific genes, since genomic and transcriptomic 
resources available then revealed their presence only in plants 
(land plants or embryophytes) but not in metazoans, fungi, and 
protists, including ‘green algae’ (11, 12). The ‘green algae’ are 
members of chlorophytes and charophytes that are 
paraphyletic to land plants (Fig. 2). However, a recent paper 
reported the presence of a single GRF gene in the genome 
sequence of a charophyte, Klebsormidium nitens (previously 
known as K. flaccidum) (84). This prompted me to scrutinize 
other charophycean sequences that have been recently 
deposited in public databases and I found single GRF genes in 
the genomes or transcriptomes of almost all orders of charo-
phycean algae, but not in coleochaetales (Chaetosphaeridium 
globosum and Coleochaete scutata), probably because of 
insufficient coverages of their transcriptomic sequences (Fig. 
2). However, I have still not been able to detect the presence 
of GRF in any chlorophytes. This sequence profile calls for a 
revision of the previous notion regarding the evolutionary 
origin of GRFs: GRFs are not land plant-specific transcription 
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factors but streptophyte-specific. Streptophytes comprise both 
charophytes and land plants, and are paraphyletic to 
chlorophytes (Fig. 2) (85, 86). Therefore, it is likely that a GRF 
gene may have evolutionarily emerged in an ancestral 
charophyte after its divergence from chlorophytes, and that an 
ancestral land plant inherited and duplicated it, thus 
diversifying its function to meet the biological complexity of or 
to give rise to the complexity in ensuing lineages of land 
plants.

How could the GRF gene have been invented in an 
ancestral charophyte? This question may remain unanswered 
for years. One may speculate that an ancient QLQ domain 
derived from the N-terminus of the SWI2/SNF2 chromatin- 
emodeling ATPases (BRM and its homologs) have acquired the 
WRC domain, resulting in an ancestral GRF gene (9, 11). 
SWI2/SNF2 ATPases are universally present in eukaryotes, 
including viridiplantae, and they play essential roles in the 
chromatin remodeling process (11, 87, 88). According to the 
Pfam profile, QLQ domains exist in 66 different architectures 
with 2303 entries (http://pfam.xfam.org, PF08880). Half of the 
entry proteins have the QLQ domain together with WRC as 
GRF proteins; roughly the other half together with the SNF2_N 
domain of the SWI2/SNF2 ATPases; and only a few entries are 
together with other kinds of domains. These combinatorial 
structures with QLQ are compatible with the notion that the 
SWI2/SNF2 ATPase QLQ domain might be co-opted into an 
ancient GRF gene.

The Pfam profile also reveals that the WRC domain, which 
contains the DNA-binding C3H motif, is present in 
streptophytes and Mamiellophyceae, but is not present in 
Chlorophyceae and Trebouxiophyceae or any other organisms 
(Fig. 2; http://pfam.xfam.org, PF08879). WRC domains exist in 
26 different architectures with 1984 entries: more than half of 
the entry proteins have the WRC domain together with the 
QLQ domain as GRFs, a quarter are mostly uncharacterized 
proteins with a single WRC domain but with no associated 
known domains, and the rest have single or multiple WRC 
domains associated with other kinds of known domains. 
Interestingly, the GRFs of Chara globularis and Chara braunii 
belonging to Charales have a QLQ domain followed by three 
consecutive WRC domains (Fig. 2). This profiling suggests that 
the evolutionary swapping of the WRC domain might have 
frequently occurred in virideplantae (“green plants”). 
Therefore, it is tempting to speculate that QLQ and WRC 
domains might have been co-opted into a GRF protein in an 
ancestral charophyte.

The origin of GIF genes is much more ancient than that of 
GRFs, as they exist in most eukaryotes, such as virideplantae, 
and metazoans, and not in fungi and protists other than ‘green 
algae’ (11, 12). GIFs are present in the genomes of a 
charophyte (K. nitens) and chlorophytes (Chlamydomonas 
reinhardtii, Ostreococcus lucimarinus, and Ostreococcus 
tauri) (84). Additionally, this profiling identified GIFs in the 
genomes or transcriptomic sequences of chlorophytes 

(Botryococcus braunii, Chlorella variabilis NC64, and 
Prototheca wickerhamii) and charophytes (Chaetosphaeridium 
globosum and Chlorokybus atmophyticus; Fig. 2).

Both genomic and cDNA sequences were available for 
some of those algal GIFs (C. reinhardtii, V. cateri, and K. 
nitens), allowing for the construction of their exon-intron 
structures. I found that the SNH domains of those three algae 
and land plants are encoded in the first three exons with 
conserved intron positions and phases (data not shown). The 
analysis suggests that the structure of GIF genes has been 
highly conserved during the evolutionary path of chlorophytes, 
charophytes, and land plants. Therefore, it is a plausible 
hypothesis that the GRF-GIF partnership was established in an 
ancestral charophyte. It would be interesting to explore 
whether charophycean GRFs and GIFs interact together; then if 
so, what the biological role and molecular function of the duo 
are, especially in terms of evolution, and what chlorophytic 
GIFs do in the absence of the canonical partner protein GRF.

In summary, the GRF-GIF-miR396 module plays essential 
roles in the growth and development of angiosperms. It 
regulates the meristematic potential of primordial cells during 
leaf growth, determining the final size and shape of the leaf 
organ. The GRF-GIF duo is a prerequisite for floral organ 
development, and thus enables the production of the 
formative cells, such as CMMs and egg cells as well as 
microsporangia and sperm cells. It is also involved in the 
regulation of leaf longevity and photosynthetic efficiency in 
mature leaves. Importantly, the monocot GRF-GIF duo also 
promoted the yield traits, such as grain size and panicle 
architecture, warranting crop productivity. Finally, the GRF 
gene has a charophycean origin, so studies on GRFs of 
basalmost land plants and charophytes could shed light on 
their significance in the evolution-developmental history of a 
main lineage of life, the streptophyte. 
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