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Summary

Causal inference in multivariate time series is challenging because the sampling rate may not
be as fast as the time scale of the causal interactions, so the observed series is a subsampled
version of the desired series. Furthermore, series may be observed at different sampling rates,
yielding mixed-frequency series. To determine instantaneous and lagged effects between series
at the causal scale, we take a model-based approach that relies on structural vector autoregressive
models. We present a unifying framework for parameter identifiability and estimation under
subsampling and mixed frequencies when the noise, or shocks, is non-Gaussian. By studying
the structural case, we develop identifiability and estimation methods for the causal structure of
lagged and instantaneous effects at the desired time scale. We further derive an exact expectation-
maximization algorithm for inference in both subsampled and mixed-frequency settings. We
validate our approach in simulated scenarios and on a climate and an econometric dataset.

Some key words: Mixed frequency; Non-Gaussian error; Structural vector autoregressive model; Subsampling; Time
series.

1. Introduction

Classical approaches to multivariate time series and Granger causality assume that all time
series are sampled at the same rate. However, due to data integration across heterogeneous
sources, many datasets in econometrics, health care, environment monitoring, and neuroscience
comprise multiple series sampled at different rates, referred to as mixed-frequency time series.
Furthermore, due to the cost or technological challenge of data collection, many series may
be sampled at a rate lower than the true causal scale of the underlying physical process. For
example, many econometric indicators, such as gross domestic product, GDP, or housing price
data, are recorded at quarterly and monthly scales (Moauro & Savio, 2005), though there may
be important interactions between these indicators at the weekly or biweekly scale (Boot et al.,
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1967; Stram & Wei, 1986; Moauro & Savio, 2005). In neuroscience, imaging technologies with
high spatial resolution, such as functional magnetic resonance imaging or fluorescent calcium
imaging, have relatively low temporal resolutions, but many important neuronal processes and
interactions happen at finer time scales (Zhou et al., 2014). A causal analysis rooted at a slower
time scale than the true causal time scale may miss true interactions and add spurious ones
(Boot et al., 1967; Breitung & Swanson, 2002; Silvestrini & Veredas, 2008; Zhou et al., 2014).
A comprehensive approach to Granger causality in multivariate time series should be able to
simultaneously accommodate both mixed-frequency and subsampled data.

Recently, causal discovery in subsampled time series has been studied with methods in causal
structure learning using graphical models (Danks & Plis, 2013; Plis et al., 2015; Hyttinen et al.,
2016). These methods are model-free and automatically infer a sampling rate for causal relations
most consistent with the data. We maintain a similar goal, but take a model-based approach and
examine the identifiability of structural vector autoregressive models under both subsampling and
mixed-frequency settings. Structural models are an important tool in time series analysis (Harvey,
1990; Lütkepohl, 2005) and are a mainstay in econometrics and macro-economic policy analysis.
These models combine classical linear autoregressive models with structural equation modelling
(Bowen & Guo, 2011) to allow analysis of both instantaneous and lagged causal effects between
time series. However, structural models are commonly applied to regularly sampled data, where
each series is observed at the same regular intervals; moreover, the time scale of such an analysis
is typically restricted to this shared sampling scale.

Gong et al. (2015) recently explored identifiability and estimation of vector autoregressive
models under subsampling with independent innovations, i.e., no instantaneous causal effects or
error correlations. They showed that with non-Gaussian errors, the transition matrix is identifiable
under subsampling, implying that Granger causality estimation is possible. Unfortunately, their
results do not cover correlated errors, a common and important aspect of many real-world time
series (Lütkepohl, 2005). Interestingly, non-Gaussian errors have also been shown to aid model
identifiability in structural autoregressive models with standard sampling assumptions (Hyvärinen
et al., 2008; Zhang & Hyvärinen, 2009; Hyvärinen et al., 2010; Peters et al., 2013; Lanne et al.,
2017). This line of work applies techniques developed for structural equation modelling with non-
Gaussian errors and independent component analysis (Hyvärinen et al., 2004) to the structural
time series context. Non-Gaussian errors allow identification of the structural model without other
identifying restrictions (Lanne et al., 2017) and also allow identification of the causal ordering
of the instantaneous effects if these are known to follow a directed acyclic graph (Hyvärinen
et al., 2010). These models have been successfully applied to many non-Gaussian time series in
econometrics (Lanne & Lütkepohl, 2010; Lanne et al., 2010, 2017; Herwartz & Plödt, 2016).

Our approach to subsampling unifies existing approaches to identifiability along two comple-
mentary directions. First, our work connects the non-Gaussian subsampled autoregressive model
to the independent innovations method (Gong et al., 2015) in the non-Gaussian structural autore-
gressive framework (Hyvärinen et al., 2008, 2010; Zhang & Hyvärinen, 2009; Peters et al., 2013;
Lanne et al., 2017) by proving identifiability of a structural vector autoregressive model of order
one under arbitrary subsampling. As a result, we find that one can identify not only the causal
structure of lagged effects from subsampled data with correlated errors, but also the directed
acyclic graph of the instantaneous effects, without prior knowledge of the causal ordering.

Second, we generalize our results to the mixed-frequency setting with arbitrary subsampling,
where the subsampling level may be different for each time series. In doing so, we provide a unified
theoretical approach and estimation method for subsampled and mixed-frequency cases. Deriving
identifiability conditions on the model parameters in the mixed-frequency case is difficult (Ander-
son et al., 2016) and has only been studied based on the first two moments of the mixed-frequency
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Fig. 1. Four types of structured sampling, where black lines indicate observed data and dotted
lines indicate missing data: (a) both series are subsampled; (b) the standard mixed-frequency
case, where only the second series is subsampled; (c) a subsampled version of case (b) where
each series is subsampled at a different rate; (d) a subsampled mixed-frequency series that has

no common factor across sampling rates and thus is not a subsampled version of case (b).

Table 1. Summary of contributions of our work to identifiability and estima-
tion in mixed-frequency sampling for structural autoregressive models: the
subsampling types are as in Fig. 1; citations refer to previous work and check

marks indicate our contributions
Sampling type None A B C D

C = I
Identifiability Lut05 Gong15 � � �
Estimation Lut05 Gong15 (approx.) � � �(ce) �(ce)

C free
Identifiability Hyv08 � � � �
Estimation Hyv08 � � �(ce) �(ce)

(ce), computationally expensive; Hyv08, Hyvärinen et al. (2008); Gong15, Gong et al. (2015);
Lut05, Lütkepohl (2005).

process. Our work follows a complementary direction by leveraging higher-order moments and
provides the first set of specific model conditions for mixed-frequency structural models needed
for identifiability. Furthermore, previous mixed-frequency approaches have assumed a causal
ordering, while our results indicate that this may be estimated by leveraging non-Gaussianity.
Finally, our approach to identifiability allows us to move beyond the classical mixed-frequency
setting, where the time scale is fixed at the most finely sampled series (Anderson et al., 2016); we
instead consider identifiability and estimation in more general mixed-frequency cases. The four
sampling types covered by our approach are shown in Fig. 1. To simplify the presentation, we
first introduce our theoretical results for subsampled series of case (a) in § 3. We then generalize
the results to the mixed-frequency cases (b), (c) and (d) in § 4.

We introduce an exact expectation-maximization algorithm for inference in both subsampled
and mixed-frequency cases. Gong et al. (2015) also use such an algorithm, but because they
formulate inference directly on the subsampled process by marginalizing the missing data, their
approach requires an extra approximation. Our approach instead casts inference as a missing-data
problem and uses a Kalman filter to exactly compute the E-step for both subsampled and mixed-
frequency cases. We validate our estimation and identifiability results via extensive simulations
and apply our method to evaluate causal relations in a subsampled climate dataset and a mixed-
frequency econometric dataset. Taken together, we present a unified theoretical analysis and
estimation methodology for subsampled and mixed-frequency cases, which have previously been
studied separately. A summary of our contributions is presented in Table 1.
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2. Background

Let xt ∈ R
p (t ∈ {1, . . . , T }) be a p-dimensional multivariate time series generated at a fixed

sampling rate. We collect all the xt into the matrix X = (x1, . . . , xT ). We assume that the dynamics
of xt follows a combination of instantaneous effects, autoregressive effects and independent noise:

xt = Bxt + Dxt−1 + et , (1)

where B ∈ R
p×p is the structural matrix that determines the instantaneous-time linear effects, D ∈

R
p×p is an autoregressive matrix that specifies the lag-one effects conditional on the instantaneous

effects, and et ∈ R
p is a white noise process such that E(et) = 0 for all t and eti is independent

of et′j for all i, j, t, t′ such that (i, t) |= (j, t). We assume that etj is distributed as etj ∼ pej . Solving
(1) in terms of xt gives the following lag-one structural vector autoregressive process for the
evolution of xt :

xt = (I − B)−1Dxt−1 + (I − B)−1et = Axt−1 + Cet . (2)

Under the representation in (2), each element Aji denotes the lag-one linear effect of series i on
series j and C ∈ R

p×p is the structural matrix. The error etj is referred to as the shock to series j
at time t, and the element Cji is the linear instantaneous effect of etj on xti.

Conditions on C, or equivalently B, for model identifiability and estimation have been explored
(Harvey, 1990; Kilian & Lütkepohl, 2016). The most typical condition is that C is a lower
triangular matrix with ones on the diagonal, implying a known causal ordering of the instantaneous
effects. In this case, one may interpret the instantaneous effects as a directed acyclic graph
(Lauritzen, 1996), i.e., a graph G = (V , E) with vertices V = {1, . . . , p} and directed edge set E
that has no directed cycles. A causal ordering is an ordering of the vertices into a sequence, π ,
such that if j comes before i in π then E does not contain a path of edges from i to j; see, e.g.,
Shojaie & Michailidis (2010) for details. In the structural context, for i |= j there exists a directed
edge i → j from xi to xj in E if and only if Cji is nonzero. Classical estimation for structural
models with known causal ordering typically proceeds by simultaneously fitting A and C with the
identifiability constraint that C be lower triangular. When there are no unobserved confounders,
as we assume throughout this paper, we may refer to the entries in C as instantaneous causal
effects.

A recent line of work (Zhang & Hyvärinen, 2009; Hyvärinen et al., 2010; Lanne et al.,
2017) focuses on estimating A and C when π is unknown. When the errors et are non-
Gaussian, both the causal ordering and the instantaneous effects C may be inferred directly
from the data using techniques from independent component analysis (Hyvärinen et al., 2010).
Alternatively, one may dispense with orderings and lower triangular restrictions and directly esti-
mate C under non-Gaussian errors (Lanne et al., 2017). Our analysis continues along these
directions, leveraging non-Gaussianity of the structural model with subsampling or mixed
frequencies.

3. Subsampled structural vector autoregressive models

3.1. The subsampled process

Subsampling occurs when, due to low temporal resolution, we only observe xt every k time-
steps, as displayed graphically in case (a) of Fig. 1. In this situation, we only have access
to observations X̃ = (x̃1, x̃2, . . . , x̃T̃ ) ≡ (x1, x1+k , . . . , x1+(T̃−1)k), where T̃ is the number of
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subsampled observations. By marginalizing out the unobserved xt , we obtain the evolution
equations

x̃t = x1+tk = Ax1+tk−1 + Ce1+tk = A(Ax1+tk−2 + Ce1+tk−1) + Ce1+tk

= Ak x̃t−1 +
k−1∑
l=0

AlCe1+tk−l (3)

= Ak x̃t−1 + Lẽt , (4)

where ẽt = (eT
1+tk , . . . , eT

2+(t−1)k)
T is the stacked vector of errors for time 1 + tk and the unob-

served time-points between times 1+ tk and 1+ (t −1)k , and L = (C, . . . , Ak−1C). Equation (3)
states that the subsampled process is a linear transformation of the past subsampled observations
with transition matrix Ak−1 and a weighted sum of the shocks across all unobserved time-points.
Each shock is weighted by A raised to the power of the time lag. We provide an example of (3)
in the Supplementary Material.

Equation (4) appears to take a similar form to the structural process in (1), but now the
vector of shocks, ẽt , is of dimension kp, with special structure on both the structural matrix L
and the distributions of the elements in ẽt . Unfortunately, this representation does not have the
interpretation of instantaneous causal effects described in § 2, as there are now multiple shocks
per individual time series. We will refer to the full parameterization of the subsampled structural
model in (4) as (A, C, pe; k). Identifiability of this model means that there is a unique pair of
matrices A and C consistent with the joint distribution of X̃ at subsampling rate k .

3.2. Lagged and instantaneous causality confounds of subsampling

A classical analysis based on x̃t that does not account for subsampling would incorrectly
estimate lagged Granger causal effects in Ak , because Aij = 0 does not imply (Ak)ij = 0, and
vice versa (Gong et al., 2015). Similarly, estimation of structural interactions may also be biased
if subsampling is ignored. Classical structural estimation methods that assume a known causal
ordering of the instantaneous shocks simply estimate the covariance of the error process, � =
E(CeteT

t CT) = C�CT, and let the estimated structural matrix be the Cholesky decomposition of
�. Under subsampling, the covariance of the error process is

E(Lẽt ẽ
T
t LT) = L(Ik ⊗ �)LT, (5)

where ⊗ is the Kronecker product and Ik is the identity matrix of size k . The causal structure
given by zeros in the Cholesky decomposition of (5) need not be the same as that implied by C.

Example 1. Consider the process (Gong et al., 2015)

A =
(

0.8 0.5
0 −0.8

)
, C =

(
1 0
0 1

)
, � =

(
1 0
0 1

)
,

so that C�CT = Ip. Then, for a subsampling of k = 2,

Ak =
(

0.64 0
0 0.64

)
, L (Ik ⊗ �) LT =

(
1.89 −0.4

−0.4 1.64

)
.
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Fig. 2. Graphical depiction of how subsampling confounds causal analysis of both lagged and instantaneous effects:
(a) the true causal diagram for the regularly sampled data; (b) the estimated causal structure of the subsampled process

when the effects of subsampling are ignored.

This implies no lagged causal effect between x1 and x2 but a relatively large instantaneous
interaction, contrary to the true data-generating model; see Fig. 2.

3.3. Identifiability of L under subsampling

While both lagged Granger causality and instantaneous structural interactions are confounded
by subsampling, we show here that by accounting for subsampling we may, under some condi-
tions, still estimate the A and C matrices of the underlying process directly from the subsampled
data. As a first step towards proving the identifiability of A and C, we show that the matrix
L = (C, . . . , Ak−1C) in (4) is identifiable up to permutation and scaling of columns when the pej ,
the distributions of the etj, are all non-Gaussian.

Proposition 1. Suppose that all the pej are non-Gaussian. Given a known subsampling factor

k and subsampled data X̃ generated according to (4), L may be determined up to permutation
and scaling of columns.

The proof closely follows that of Proposition 1 in Gong et al. (2015) and depends on the
following fundamental result in independent component analysis (Eriksson & Koivunen, 2004).

Lemma 1. Let ê = Jr and ê = Ms be two representations of the n-dimensional random
vector ê, where J and M are constant matrices of orders n × l and n × m, respectively, and
r = (r1, . . . , rl)

T and s = (s1, . . . , sm)T are random vectors with independent components.
If the ith column of J is not proportional to any column of M, then ri is Gaussian. Moreover, if

the ith column of J is proportional to the jth column of M, then the logarithms of the characteristic
functions of ri and sj differ by a polynomial in a neighbourhood of the origin.

This result states that if r is non-Gaussian with independent elements and if Jr = Ms, then M
and J must be equal up to permutation and scaling of columns. This implies that one may estimate
M from only observations of ê and that the estimate of M should be equal, up to permutations
and scalings, to the true M .

To prove Proposition 1 using Lemma 1, note that Ak is identifiable by linear regression.
Hence, the error component ê = x̃t − Ak x̃t−1 = Lẽt satisfies the conditions of Lemma 1 and L is
identifiable up to permutations and scalings since the ẽt are non-Gaussian.
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3.4. Complete identifiability of the structural autoregressive model when C = I

Using the identifiability result for L in Proposition 1, we can derive identifiability statements
and conditions for C and A in the subsampled case. We require a few mild assumptions.

Assumption 1. Let xt be stationary so that all singular values of A have modulus less than 1.

Assumption 2. The distributions pej are distinct for each j after rescaling ej by any nonzero
scale factor; their characteristic functions are all analytic, or are all nonvanishing, and none of
them has an exponent factor with polynomial of degree at least two.

Assumption 3. All the pej are asymmetric.

Assumption 1 is standard in time series modelling (Lütkepohl, 2005), and Assumption 2 is
common in independent component analysis. While many of our identifiability results for C
only require that the pej distributions be non-Gaussian, our identifiability results for A in part (ii)
of Theorems 1 and 2 and part (iii) of Theorems 3 and 4 further require Assumption 3, namely
that the pej be asymmetric. In practice, assuming fully Gaussian errors may be unrealistic, as
aspects of non-Gaussianity, such as asymmetry (Harvey & Siddique, 2000; Walls, 2005; Lanne
& Pentti, 2007), heavy tails (Cont, 2001; Rachev, 2003) or stochastic volatility (Justiniano &
Primiceri, 2008), are often observed. Not only are non-Gaussian errors empirically appealing
but, furthermore, theoretical and modelling approaches that harness the higher-order moments of
non-Gaussian distributions aid in identifying model parameters that are unidentifiable from the
first two moments alone.

Gong et al. (2015) give identifiability results under Assumptions 1 and 2 for the subsampled
autoregression with no error correlations, C = I . We restate their result in our framework.

Theorem 1 (Gong et al., 2015). Suppose that etj is non-Gaussian for all t and j, and that the
data x̃t are generated by (2) with C = Ip. Assume that the process admits another representation
(A′, Ip, p′

e; k). If Assumptions 1 and 2 hold, then we have the following:
(i) A′ can be represented as A = AD1, where D1 is a diagonal matrix with 1 or −1 on the

diagonal; if we constrain the self influences to be positive, represented by the diagonal
entries, then A′ = A.

(ii) If Assumption 3 also holds, then A′ = A.

3.5. Complete identifiability of general structural autoregressive models

For identifiability of the full model under subsampling, we require two more assumptions.

Assumption 4. The variance of each pej is equal to 1, i.e., � = Ip.

Assumption 5. The matrix C is of full rank.

Assumption 4 is common in structural modelling and removes the nonidentifiability between
scaling the etj and scaling the columns of C. Assumption 5 is mild, and covers the more restrictive
assumption in non-Gaussian structural models that C may be row- and column-permuted to a
lower triangular matrix (Shimizu et al., 2006). Under these assumptions, we have the following
identifiability result for general subsampled structural models.

Theorem 2. Suppose that the etj are all non-Gaussian and independent, and that the data
x̃t are generated by (2) with representation (A, C, pe; k). Assume that the process also admits
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another subsampling representation (A′, C ′, p′
e; k). If Assumptions 1, 2 and 4 hold, then we have

the following:
(i) C is equal to C ′ up to permutation of columns and scaling of columns by 1 or −1; that is,

C ′ = CP where P is a scaled permutation matrix with elements being 1 or −1; this implies
that � = CCT = C ′C ′T = �T.

(ii) If Assumptions 3 and 5 also hold, then A = A′.

The requirement that C be of full rank stems from the structure of L. Since one may identify
C as the first p columns of L, to obtain A we must premultiply the second set of p columns of L
by C−1. The asymmetry assumption is needed since the scaling of the columns of C and AC by
factors of 1 or −1 is ambiguous if the distributions are symmetric; the asymmetry assumption
ensures that the unit scalings are identifiable; see the Supplementary Material.

If the instantaneous causal effects follow a directed acyclic graph, we may identify the structure
without any prior information about causal ordering of the variables.

Corollary 1. Suppose that Assumptions 1, 2 and 4 hold. If the true structural process cor-
responds to a directed acyclic graph G, i.e., it has a lower triangular structural matrix C with
positive diagonals, and if it admits another representation with structural matrix C ′, then C = C ′.
Hence the structure of G is identifiable without prior specification of the causal ordering of G.

This result follows because C may be identified up to a column permutation. Based on the
identifiability results of Shimizu et al. (2006), if C corresponds to an acyclic graph, it may be
row- and column-permuted to a unique lower triangular matrix. The row permutations identify
the causal ordering, and the nonzero elements below the diagonal identify the edges in G. See
Shimizu et al. (2006) for more details on identifiability and estimation of the graph from C.

Taken together, the results of Theorem 2 and Corollary 1 imply that when the shocks et are inde-
pendent and asymmetric, a complete causal diagram of the lagged effects and the instantaneous
effects is fully identifiable from the subsampled time series, X̃ .

4. Mixed-frequency structural autoregressive models

4.1. Background and motivation

Estimation and forecasting of mixed-frequency time series are commonly approached using
autoregressive models (Schorfheide & Song, 2015). Typically, the model is fitted at the same
scale as the fastest sampled time series, which is depicted in Fig. 1(c). The primary motivating
example of Fig. 1(c) in the literature is GDP (Anderson et al., 2016). The subsampled structure
of Fig. 1(c) simplifies the temporal aggregation of GDP and is used to simplify analysis. Due
to costly data collection, especially for macro-economic indicators such as GDP, the scale of
the fastest sampled series is generally arbitrary and may not reflect the true causal dynamics,
leading to confounded Granger and instantaneous causality judgements (Breitung & Swanson,
2002; Zhou et al., 2014). If the true causal scale, or one of interest to an analyst, is at a lower
rate, as in case (d) of Fig. 1, then an analysis at the observed rate will run into the same problems
as those for the single-frequency subsampling case discussed in § 3.2. We provide an example at
the end of § 4.2.

Finding identifiability conditions for mixed-frequency autoregressive models with no subsam-
pling at the fastest scale, Fig. 1(b), was an open problem for many years (Chen & Zadrozny, 1998).
Recently Anderson et al. (2016) showed that the mixed-frequency nonstructural autoregressive



Subsampled and mixed-frequency structural autoregressive models 441

model of Fig. 1(b) is generically identifiable from the first two observed moments, so uniden-
tifiable models make up a set of measure zero in the parameter space. Explicit identifiability
conditions for the lag-one, bivariate case from the first two moments have also been established
(Anderson et al., 2012). However, no explicit identifiability conditions for structural models or
models in higher dimensions have been explored.

In this section, we generalize our identifiability results from § 3 to the mixed-frequency case
with arbitrary levels of subsampling for each time series. Our analysis indicates that Granger
and instantaneous causal effects can be accurately estimated from mixed-frequency time series.
Specifically, we use the results from § 3 to provide explicit identifiability conditions for mixed-
frequency structural models under arbitrary subsampling, namely cases (b), (c) and (d) in Fig. 1,
with non-Gaussian error assumptions.Altogether, our framework provides a unified way of deriv-
ing explicit identifiability conditions for both subsampling and mixed-frequency cases.While case
(c) in Fig. 1 is a subsampled version of the standard mixed-frequency case, our results also cover
mixed-frequency subsampling as in case (d). To the best of our knowledge, these results are the
first identifiability results for subsampled mixed-frequency cases like (c) and (d).

4.2. Mixed-frequency structural autoregressive models

We assume that each time series in xt ∈ R
p is sampled at one of two sampling rates, a slow

subsampling rate ks and a fast subsampling rate kf . We write xt = (xs
t , xf

t ), where xs
t are those series

subsampled at ks and xf
t are those subsampled at kf . Let k ∈ {ks, kf }p be the list of subsampling

rates for each time series. In Fig. 1(b), kf = 1 and ks = 2, whereas in Fig. 1(c), kf = 2 and
ks = 4. Analogously to the subsampled case, we refer to a parameterization of a mixed-frequency
structural model as (A, C, pe; k), where k is now a p-vector. Let k∗ be the smallest multiple of
both ks and kf ; for example, in Fig. 1(c) we have k∗ = 4.

We may derive a similar representation to (4) for mixed-frequency series. Fix a time-point t
such that all series are observed. Let I (q) be a modified p × p identity matrix where all rows i
such that xti is not observed at time t − q are set to zero. Further, let I (q̄) = I − I (q), A(q) = I (q)A
and A(q̄) = I (q̄)A. Then

xt = Axt−1 + Cet = AI (1)xt−1 + AI (1̄)xt−1 + Cet

= AI (1)xt−1 + A(A(1̄)xt−2 + C(1̄)et−1) + Cet

= Fx̃t−1 + Lẽt , (6)

where

F = (A, AA(1̄), . . . , AA(1̄) · · · A(k∗−1)),

L = (C, AC(1̄), AA(1̄)C(2̄), . . . , AA(1̄) · · · A(k∗−2)C(k∗−1)),

x̃t−1 = (I (1)xt−1, . . . , I (k)xt−k∗), ẽt = (et , et−1, . . . , et−k∗+1).

Equation (6) has the same form as (4), suggesting that similar identifiability results will hold. We
provide an example of (6) for a mixed-frequency series in the Supplementary Material.

In a subsampled mixed-frequency setting where the fastest rate is greater than unity, Fig. 1(c),
not accounting for subsampling leads not only to the kind of mistaken inferences discussed in
§ 3.2 but also to further mistakes unique to the mixed-frequency case.
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Example 2. Consider a subsampled mixed-frequency structural process generated by (6) with
the (A, C) parameters given by Example 1. Suppose subsampling is not taken into account and
that X̃ is analysed instead as a classical mixed-frequency series, case (b), based on the first two
moments (Anderson et al., 2016). We consider two cases.

Case 1: the sampling rate is k = (2, 4). In this case, if X̃ is analysed at the rate (1, 2) using the
first two moments, then A and � are not identifiable at this rate since both off-diagonal elements
of A are zero (Anderson et al., 2016). Thus, no inference of both the instantaneous correlations
and the lagged effects is possible.

Case 2: the sampling rate is k = (2, 6). In this case, if X̃ is analysed at the rate (1, 3) using the
first two moments, the estimated A and covariance � will be the same as in Example 1 (Anderson
et al., 2016), leading to an incorrect inference that there is an instantaneous effect but no directed
lagged effect.

4.3. Identifiability of mixed-frequency structural autoregressive models

We provide generalizations of Theorems 1 and 2 to the mixed-frequency case.

Theorem 3. Suppose the etj are non-Gaussian and independent for all t and j, and that the
data x̃t are generated by (2) with C = Ip. Assume that the process also admits another mixed-
frequency representation (A′, Ip, p′

e; k). If Assumptions 1 and 2 hold, then we have the following:

(i) A′ can be represented as A′ = AD1, where D1 is a diagonal matrix with 1 or −1 on the
diagonal.

(ii) If any multiple of ki is 1 smaller than some multiple of kj, then Aij = A′
ij . If Aij |= 0, this

implies (D1)jj = 1, i.e., the jth columns of A and A′ are equal, A:j = A′
:j .

(iii) If Assumption 3 also holds, then A′ = A.

Proof. Statements (i) and (iii) follow since we may further subsample all series in xt to a
subsampling rate of k∗. This gives a subsampled X̃ with representation {A, I , p(e); k∗}. Applying
Theorem 1 gives the result. Furthermore, if some multiple of ki is equal to some multiple of kj
minus 1, then there exists a set of times t for (6) such that series i is observed at time t − 1 and
series j is observed at time t. By identifiability of linear regression, A′

ij = Aij. This resolves the
sign ambiguity of the columns in (iii) so that A:j = A′

:j. �

Theorem 4. Suppose the etj are non-Gaussian and independent for all t and j, and that the
data x̃t are generated by (2) with representation (A, C, pe; k). Assume that the process also admits
another mixed-frequency subsampling representation (A′, C ′, p′

e; k). If Assumptions 1, 2 and 4
hold, then we have the following:

(i) C is equal to C ′ up to permutation of columns and scaling of columns by 1 or −1, i.e.,
C ′ = CP where P is a scaled permutation matrix with elements being 1 or −1; this implies
that � = CCT = C ′C ′T = �′.

(ii) If C is lower triangular with positive diagonals, i.e., the instantaneous interactions follow
a directed acyclic graph, and if for all i there exists a j such that any multiple of ki is 1
smaller than some multiple of kj with Aj:C:i |= 0, then A = A′.

(iii) If Assumptions 3 and 5 also hold, then A = A′.

The proofs of statements (i) and (iii) follow the same subsampling argument as in the proof of
Theorem 3. The proof of (ii) is given in the Supplementary Material.
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Theorems 3 and 4 demonstrate that identifiability of structural models still holds for mixed-
frequency series with subsampling under non-Gaussian errors. Statements (i) and (iii) of
Theorems 3 and 4 are the same as their subsampled counterparts; statement (ii) in both the-
orems shows how the mixed-frequency setting provides additional information for resolving
parameter ambiguities in the non-Gaussian setting. Specifically, when there is a one-time-step
difference between when series xj and xi are sampled, then Aij is identifiable. We can then use
this information to resolve sign ambiguities in columns of A, which leads to statement (ii) in
both of Theorems 3 and 4. This result applies directly to the standard mixed-frequency setting
(Schorfheide & Song, 2015; Anderson et al., 2016), where one series is observed at every time-
step in Fig. 1(b). It also applies to case (d), since there exist certain time-steps where one series
is observed one time-step before another series.

5. Estimation

5.1. Modelling non-Gaussian errors

We model the non-Gaussian errors as a mixture of Gaussian distributions with m components.
This approach has been adopted widely in econometrics and other fields as a flexible and tractable
way of modelling non-Gaussian innovations (Gong et al., 2015; Lanne et al., 2017). Formally,
we assume that etj is drawn from the mixture distribution

ztj ∼ Categorical(πj), etj ∼ N (μjztj , σ
2
jztj

),

where μj, σ 2
j and πj are m-vectors specifying the mean, variance and mixing weight of each

mixture component. The ztj component indicators are auxiliary variables introduced to facilitate
inference. The mixture model for the errors implies that conditional on the assignment indicators
ztj, the mean and variance of the error distribution for each series xtj are time-dependent. This
mixture model can capture the types of non-Guassianity required for identifiability and also
those observed in real-world time series. Asymmetric errors may be formed when the mixture
centres are nonzero and the variances or mixture weights are different.A non-Gaussian symmetric
distribution with kurtosis greater than 1 may be formed by setting the mixture centres to zero
but allowing the mixture variances to have different values. The full set of parameters for the
structural model is � = (A, C, μ, σ 2, π) where μ, σ 2 and π concatenate the mixture parameters
of the errors across series. For example, μji is the mean of the ith mixture component for the jth
error distribution, and likewise for σ 2 and π .

5.2. Expectation-maximization algorithm

We develop an expectation-maximization algorithm for joint maximum likelihood estimation
of the full set of parameters � based only on the observed subsampled and mixed-frequency
data X̃ . Unlike the method of Gong et al. (2015), which is tailored to the subsampled case, our
method is the same for both types of data. Furthermore, the non-structural-specific, i.e., C = I ,
algorithm of Gong et al. (2015) introduces auxiliary noise terms to facilitate inference, rendering
the resulting algorithm inexact, whereas our algorithm introduces no such approximations. Since
the loglikelihood is nonconvex, we employ multiple random restarts to avoid poor local optima.
For the subsampled case, the local optimum problem is particularly severe due to the noniden-
tifiability under the first two moments; many values of (A, C) can give a good fit to the data.
The basic algorithm also suffers from slow convergence due to the large amount of missing data.
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To speed up the algorithm, we deploy the adaptive over-relaxed method of Salakhutdinov &
Roweis (2003).

Let W = C−1, and let ztji = 1 if error etj was generated by mixture component i and ztji = 0
otherwise. The complete loglikelihood, log p(X1:T , z1:T | �), of our structural model is

T log |W | +
T∑

t=1

p∑
j=1

m∑
i=1

ztji

{
log πji − 1

2
log 2πσ 2

ji − (Wjxt − WjAxt−1 + μji)
2

2σ 2
ji

}
,

where Wj is the jth row vector of W . The algorithm alternates between the E-step, where we
compute the conditional expectation E{log p(X1:T , z1:T | �) | X̃ }, and the M-step, where that
expectation is maximized with respect to the parameters �. We first describe the M-step updates,
and then explain how the conditional expectations are computed using a Kalman filter.

5.3. The M-step

In the M-step, we maximize the expected complete loglikelihood conditional on the observed
data, E{log p(X1:T , z1:t | �) | X̃ }, with respect to � via coordinate ascent, cycling through A, W
and (μ, σ 2, π) until convergence. The specific updates are as follows.

Updating A: each row of A, Aj, may be updated independently according to

Âj =
{

T∑
t=1

m∑
i=1

E(ztjixt−1xT
t−1 | X̃ )

σ 2
ji

}−1

×
{

T∑
t=1

m∑
i=1

−μjiE(ztjixt−1 | X̃ ) + E(ztjixt−1xT
t | X̃ )W T

j

σ 2
ji

}
.

Updating μ, σ 2 and π : these may be optimized jointly in one step using

μ̂ji =
{

T∑
t=1

E(ztji | X̃ )

}−1 {
T∑

t=1

E(ztjixt | X̃ ) − WjAE(ztjixt−1 | X̃ )

}
,

π̂ji = T−1
T∑

t=1

E(ztji | X̃ ),

σ̂ 2
ji = 1∑T

t=1 E(ztji | X̃ )

×
{ T∑

t=1

WjE(ztjixtx
T
t | X̃ )W T

j + W T
j AE(ztjixt−1xT

t−1 | X̃ )ATW T
j + μ̂2

jiE(ztji | X̃ )

− 2μjiWjE(ztjixt | X̃ ) − 2WjE(ztjixtx
T
t−1)A

TW T
j + 2μjiWjAE(ztjixt−1)

}
.

Updating W : since the maximization is not given in closed form, we use the Newton-Raphson
method. Let w = vec(W ) be the W vectorization. At each step, the next w iterate is

wl+1 = wl − H (wl)−1∇l(wl),
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where l(w) = E{log p(X1:T , z1:t | �) | X̃ } and H (w) is the Hessian of l(w) with respect to w.
Expressions for the gradient and Hessian are given in the Supplementary Material.

5.4. The E-step

All conditional expectations in the M-step above are computed using the Kalman filtering-
smoothing algorithm. For simplicity, consider one block of data, so that X = x1:t , where x1 and
xt are fully observed but the xt′ for 1 < t′ < t have some missing data and hence are not included
in X̃ . Any subsampled or mixed-frequency series can be broken into blocks of this type. The
conditional expectation E(ztjixtxT

t−1 | X̃ ) can be computed by noticing that

E(ztjixtx
T
t−1 | X̃ ) = Ez1:t

{
ztjiEx(xtx

T
t−1 | X̃ , z1:t)

}
.

For a fixed z1:t , Ex(xtxT
t−1 | X̃ , z1:t) is computed using the Kalman filtering-smoothing algorithm,

since for fixed z1:t , x̃t is a linear Gaussian state-space model with latent observations xt . We
compute Ex(xtxT

t−1 | X̃ , z1:t) for each z1:t combination and then add these together weighted by
p(z1:t | X̃ )ztji. The probability p(z1:t | X̃ ) may be computed as

p(z1:t | X̃ ) ∝ p(X̃ | z1:t) p(z1:t),

where p(z1:t) is the set of prior mixture component weights, π , and p(X̃ | z1:t) is the likelihood
of the observed data, which may also be computed by one Kalman pass. This process is repeated
for all expectations in the E-step. The computational complexity of this exact algorithm scales
as 2(k+1)p, since the Kalman filter must be run for all combinations of z1:t for each block. The
approximate algorithm of Gong et al. (2015) has the same complexity. Like Gong et al. (2015),
we have explored approximate inference methods based on variational and Markov chain Monte
Carlo methods but found their performance to be poor; see § 8.

6. Simulations

6.1. Estimation dependence on the subsampling factor and number of observations

We first investigate the performance of the expectation-maximization algorithm under subsam-
pling. We simulate data with p = 2 time series and m = 2 mixture components. The asymmetric
error distributions are given by π1 = (0.7, 0.3), σ1 = (0.2, 1) and μ1 = (0.36, −0.84) for et1,
and π2 = (0.7, 0.3), σ2 = (0.2, 1) and μ2 = (−0.36, 0.84) for et2. We consider two cases for A
and C:

A(1) =
(

0.98 0
0.2 0.98

)
, A(2) =

(
0.98 0.31

−0.31 0.98

)
,

C(1) =
(

1 0
0 1

)
, C(2) =

(
1 0

−0.2 1

)
.

Simulations are performed for two subsampling factors, k ∈ {2, 3}, and three sample sizes,
T ∈ {205, 403, 805}. Due to subsampling, the actual sample sizes are reduced. Data from each
parameter configuration are generated 10 times, and the estimation algorithm is run on each
realization using 1000 random restarts. Boxplots of the error estimates for two of the scenarios
are shown in Figs. 3 and 4; see the Supplementary Material for plots in the other two settings.
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Fig. 3. Boxplots of errors in A(1) and C(1) parameter estimates over 10 random data samplings. The original series is
of length 203 (top), 403 (middle) or 805 (bottom) and is then subsampled at k = 2 (left) and k = 3 (right).
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Fig. 4. As Fig. 3 but for A(2) and C(2).

We perform a similar experiment for p = 3. We simulate data with parameters

A =
⎛
⎝0.57 0 −0.2

0.2 0.57 0
0 0.25 0.57

⎞
⎠, C =

⎛
⎝ 1 0 0

0.2 1 0
0.25 −0.2 1

⎞
⎠.
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Table 2. Average log mean squared error of A and C in
a p = 3 structural system over ten random samples for

k ∈ (2, 3) and three sample sizes
k = 2 k = 3

T 203 403 805 203 403 805
A −2.4 −7.0 −7.5 −0.9 −1.6 −6.8
C −3.6 −4.8 −5.8 −1.8 −1.8 −3.9

Table 3. Average log mean squared error of A over ten random samplings for both A
and C estimates across multiple settings of the parameters, number of observations, and

subsampling factors
k = 2 k = 3

γ 1.8 1.2 0.8 0.4 0 1.8 1.2 0.8 0.4 0

A(1) C(1) −9.0 −7.7 −7.3 −7.0 −0.018 −8.1 −7.0 −7.1 −7.0 −7.4
A(1) C(2) −9.0 −7.9 −7.7 −7.4 0.16 −7.9 −7.2 −7.4 −7.2 −7.5
A(2) C(1) −9.1 −7.9 −0.94 −0.26 1.2 −8.0 −0.33 0.71 1.6 1.6
A(2) C(2) −9.1 −8.0 −0.94 0.15 1.3 −8.0 −0.32 1.0 1.4 1.2

The mixture of normal error distributions for et1 and et2 is the same as that for the p = 2 case. The
parameters for e3 are μ3 = (−0.625, 1.875), σ3 = c(0.2, 3) and π3 = (0.75, 0.25). The average
error rates are displayed in Table 2 and indicate increasingly accurate estimation in trivariate
structural systems as the sample size increases.

6.2. Estimation dependence on the asymmetry of errors

We analyse estimation performance as a function of the skewness of the error distribution,
γ , which is a measure of asymmetry. We simulate data from the same (A, C) parameter con-
figurations as in § 6.1 for k ∈ (2, 3) and T = 403. While keeping the variance fixed, we vary
the error distributions across a range of γ , γ ∈ (1.8, 1.2, 0.8, 0.4, 0), so that et1 and et2 have the
same magnitude of skewness but opposite signs. The skewness values are obtained by gradually
modifying the μ, σ 2 and π values in a bivariate mixture of normals. See the Supplementary
Material for the exact parameter values and plots of the simulated error distributions.

The results for estimation of A are shown in Table 3. First, for k = 3 estimation remains
accurate across all skewness settings for A(1), while for k = 2 the error stays low for γ > 0
but spikes for γ = 0. For A(2), estimation is stable until γ = 1.2 for k = 2, but for k = 3
estimation is only stable at k = 1.8. Taken together, these results suggest that the strength of
identifiability depends on a combination of factors, A, C and k , and the level of asymmetry of
the error distributions. Similar results for C are reported in the Supplementary Material.

6.3. Estimation dependence on the signal-to-noise ratio

We next investigate estimation performance in subsampling and mixed-frequency sampling as
a function of the signal-to-noise ratio. In these experiments we use A(1) and C(2). We scale A by
a factor to set its maximum eigenvalue to the desired level. We perform these experiments both
for full subsampling of k = 2 and 3 and for mixed-frequency subsampling where one series is
observed at every time-point and the other is subsampled. Data from each parameter configuration
are generated 40 times. In Fig. 5 we plot the average absolute error for estimating the A and C
matrices as a function of the maximum eigenvalue of A. Estimation under subsampling is stable
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Fig. 5. Average mean squared error (MSE) in estimation of (a) A and (b) C as a function of the maximum eigenvalue of
A. Results are shown for subsamplings of k = 3 (red solid), k = (1, 3) (red dashed), k = 2 (blue solid), and k = (1, 2)

(blue dashed). Error bars indicate one standard error from 40 simulation runs.

until the maximum eigenvalue falls to about 0.5, and thereafter estimation becomes dramatically
worse, indicating unstable estimation in this regime. The increasing error in the estimation of A
as a function of the signal-to-noise ratio is also observed in the mixed-frequency case. However,
the estimation error increases less dramatically than in the subsampled case, partly due to the
presence of fewer local optima in the mixed-frequency case. In the mixed-frequency case, the
error in C estimation appears to be constant across the maximum eigenvalue range we considered.

Unstable estimation arises from a combination of two factors. First, under subsampling, the
transition matrix of the subsampled process is Ak , indicating that the signal strength between
observations scales exponentially as a function of k . Furthermore, the likelihood surface is mul-
timodal, such that multiple high probability modes all have approximately the same Ak value.
As the signal-to-noise ratio falls, Ak estimation becomes more difficult due to subsampling, and
so the multimodal estimation becomes more severe, and modes far from the true A occasionally
have higher likelihood. Overall, these simulations indicate that in the subsampling case, there
appears to be a threshold on the maximum eigenvalue, below which inference becomes unstable.

The simulations cover cases (a) and (b) in Fig. 1. Unfortunately, the complexity of the E-step
forbids performing simulations in a reasonable time for cases (c) and (d). Future work will explore
tractable inference in these cases; see the discussion at the end of § 7.

7. Real data

7.1. Subsampled ozone data

We use the subsampled structural model to analyse the causal scale and pathways in an ozone
and temperature dataset. The temperature-ozone data are the 50th causal effect pair from the
website https://webdav.tuebingen.mpg.de/cause-effect/, and were also con-
sidered by Gong et al. (2015). The dataset consists of temperature and ozone concentration values,
sampled daily. First we standardize each time series to zero mean and unit variance. We fit the
subsampled structural model to the pre-processed series for k = (1, 2, 3, 4) subsampling regimes
under both independent errors, C = I , and structural covariance in the instantaneous errors, C
free. To ensure that good optima are found, we perform 30 000 restarts and run the adaptive
over-relaxed algorithm until the relative change in loglikelihood is less than 10−6.

The estimated Â for k = 1 is

Â =
(

0.669 0.175
−0.050 0.992

)
,
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Table 4. Bayesian information criterion scores of subsam-
pling and covariance types on the atmospheric dataset;

an asterisk indicates the lowest value
Model / k 1 2 3 4
C = I 901.96 791.02 839.56 797.00
C free 784.53 777.78∗ 790.46 791.23

with a maximum eigenvalue of 0.962, suggesting that accurate estimation of subsampled parame-
ters is possible. The Bayesian information criterion scores for all models are displayed in Table 4.
Across all subsampling rates, the structural model, C free, has lower score, indicating that the
two extra parameters of the structural model, the off-diagonal elements of C, provide necessary
flexibility. Furthermore, the best-performing model is the structural model with subsampling rate
k = 2. The estimated transition matrix for k = 2 is

Â =
(

0.849 0.058
−0.027 0.981

)
,

similar to that given by Gong et al. (2015) for C = I . After normalizing the columns, we obtain

Ĉ =
(

1.0 0.2
0.29 1.0

)
, �̂ = Ĉ�̂(et)Ĉ

T =
(

0.199 0.054
0.053 0.054

)
.

These results indicate weak lagged effects at the subsampled scale, but stronger instantaneous
effects between temperature and ozone. Furthermore, the temperature series derives most of its
power from a strong error variance, while the ozone series is driven more by the autoregressive
component. See the Supplementary Material for quantile-quantile plots of the inferred mixture
of error distributions.

7.2. Mixed-frequency data: GDP and treasury bonds

We perform a structural autoregressive analysis on the mixed-frequency dataset of quarterly
GDP and monthly price of treasury bonds. The dataset has previously been compiled and analysed
in the mixed-frequency setting by Schorfheide & Song (2015) and is available in the Supplemen-
tary Material. We follow Schorfheide & Song (2015) and compute the logarithm of both series.
Furthermore, as is common in mixed-frequency analysis (Chen & Zadrozny, 1998), we compute
first differences to remove first-order nonstationarities.

There are multiple approaches to modelling mixed-frequency GDP data in the literature.
Recently, many authors have treated GDP as a flow variable and used state-space models to
directly model the aggregation over months in a quarter (Schorfheide & Song, 2015; Ghysels,
2016). Others ignore the generative subsampling structure and instead jointly model the high- and
low-frequency variables in a quarter using mixed data sampling methods (Ghysels, 2016). We fol-
low another line of work that simplifies the analysis by ignoring aggregation (Chen & Zadrozny,
1998; Seong, 2012; Eraker et al., 2014; Anderson et al., 2016; Zadrozny, 2016), thus treating
GDP as a purely subsampled series, and apply our mixed-frequency structural autoregressive
model at the monthly rate. Indeed, recent theoretical work on mixed-frequency autoregressive
models for GDP also focuses on the purely subsampled, rather than aggregated, case (Anderson
et al., 2016). Since our subsampled approach to modelling GDP is a simplifying assumption that
ignores aggregation, extending our framework to handle aggregated variables is an important
direction of future research.
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Table 5. Bayesian information criterion scores of different instanta-
neous causality structures on the GDP dataset; an asterisk indicates

the lowest value
Model M MGDP→TB MTB→GDP MGDP→TB, TB→GDP

1984.00 1983.41 1981.08∗ 1987.55

In the traditional approaches to mixed-frequency analysis, A and the instantaneous covariance
� are generically identifiable from the first two moments (Anderson et al., 2016). What sets our
non-Gaussian approach apart in this mixed-frequency domain is its ability to uniquely identify
the ordering of the instantaneous causal effects in the structural matrix C. To highlight this
ability, we perform model selection on the zero entries in C to determine the causal ordering of
the instantaneous effects. Specifically, we calculate the Bayesian information criterion for the
nested models M : C2,1 = C2,1 = 0, MGDP→TB : C1,2 = 0, MTB→GDP : C2,1 = 0, and
MGDP→TB, TB→GDP. Models M , MGDP→TB and MTB→GDP represent acyclic structures on the
instantaneous effects, while the unrestricted model MGDP→TB, TB→GDP does not. The scores for
all models shown in Table 5 indicate that MTB→GDP performs best. The estimated matrices of

Â =
(

0.297 −0.068
0.012 0.658

)
, Ĉ =

(
0.950 0.0
0.280 0.695

)

suggest a slight negative lagged interaction from GDP to treasury bonds and an instantaneous
interaction at the monthly scale from treasury bonds to GDP. See the Supplementary Material for
quantile-quantile plots of the inferred mixture of error distributions.

The above analysis fits a structural model at the time scale of months, the same sampling rate
as the treasury bond time series. The results from § 4 indicate that we could uniquely identify
models at bimonthly, or even more granular, time scales. However, even at the bimonthly rate,
the computational complexity of the E-step of our algorithm becomes prohibitive due to the
large number of combinations of error mixture components in a data block, as discussed in § 5.4.
Since the E-step requires running the forward-backward algorithm many times, a considerable
computational speed-up could be achieved from a parallel implementation.

8. Discussion

Our results provide sufficient conditions for identifiability of structural autoregressive mod-
els for both subsampled and mixed-frequency series. The causal diagram of both lagged and
instantaneous effects is identifiable under arbitrary subsampling and non-Gaussian errors.

We have developed an exact expectation-maximization algorithm for estimation and analysed
its performance via simulations. Our algorithm has two drawbacks: high complexity due to a
Kalman filter evaluation for all mixture error assignments within a time block; and many local
optima due to weak identifiability. Our simulations show that the latter problem is more severe
under even subsampling factors and low signal-to-noise regimes.

An ongoing line of work is to develop approximate inference for these models using Markov
chain Monte Carlo or variational methods. Unfortunately, we have found that the local optima
make sampling difficult. A Gibbs sampler we have explored gets stuck in one local mode and
requires the same number of random restarts as our algorithm to find a good solution. Perhaps
incorporating recent advances in sampling (Ma et al., 2016) may prove beneficial. We have also
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found the performance of a variational algorithm to be poor. Similarly, Gong et al. (2015) reported
significantly worse results for a variational approach than for their approximate expectation-
maximization algorithm. By breaking the dependence between the unobserved, subsampled xt
and the auxiliary zt , the variational approach avoids the combinatorial evaluation of a Kalman
filter; however, this dependence is critical for correctly evaluating the probable trajectories of the
latent xt , without which inference of A suffers.

While our work has focused on point estimation, future research aims to adapt the time series
bootstrap to the mixed-frequency and subsampled settings for constructing confidence intervals.
It would be interesting to explore method-of-moments estimation for this problem, which may
side-step the local optima difficulty and the combinatorial complexity of our algorithm.

Acknowledgement

This research was partially funded by the U.S. National Science Foundation, National Institutes
of Health, Air Force Office of Scientific Research, and Office of Naval Research. We thank the
referees for helpful comments and suggestions.

Supplementary material

Supplementary material available at Biometrika online includes an example of the subsampled
and mixed-frequency structural processes, detailed proofs of Theorems 2 and 4, details on the W
update in the expectation-maximization algorithm, additional simulation results, both of the real
datasets that we analysed, and the code for the expectation-maximization algorithm.

References

Anderson, B. D., Deistler, M., Felsenstein, E., Funovits, B., Koelbl, L. & Zamani, M. (2016). Multivariate AR
systems and mixed-frequency data: G-identifiability and estimation. Economet. Theory 32, 793–826.

Anderson, B. D., Deistler, M., Felsenstein, E., Funovits, B., Zadrozny, P., Eichler, M., Chen, W. & Zamani,

M. (2012). Identifiability of regular and singular multivariate autoregressive models from mixed-frequency data.
In 51st IEEE Conference on Decision and Control (CDC 2012). Piscataway, New Jersey: IEEE, pp. 184–9.

Boot, J. C., Feibes, W. & Lisman, J. H. C. (1967). Further methods of derivation of quarterly figures from annual
data. Appl. Statist. 16, 65–75.

Bowen, N. K. & Guo, S. (2011). Structural Equation Modeling. Oxford: Oxford University Press.
Breitung, J. & Swanson, N. R. (2002). Temporal aggregation and spurious instantaneous causality in multiple time

series models. J. Time Ser. Anal. 23, 651–65.
Chen, B. & Zadrozny, P. A. (1998). An extended Yule-Walker method for estimating a vector autoregressive model

with mixed-frequency data. Adv. Economet. 13, 47–74.
Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Finance 1, 223–36.
Danks, D. & Plis, S. (2013). Learning causal structure from undersampled time series. In NIPS 2013 Workshop on

Causality (Lake Tahoe, Nevada, 9 December 2013).
Eraker, B., Chiu, C. W., Foerster, A. T., Kim, T. B. & Seoane, H. D. (2014). Bayesian mixed-frequency VARs. J.

Finan. Economet. 13, 698–721.
Eriksson, J. & Koivunen, V. (2004). Identifiability, separability, and uniqueness of linear ICA models. Sig. Proces.

Lett. 11, 601–4.
Ghysels, E. (2016). Macroeconomics and the reality of mixed-frequency data. J. Economet. 193, 294–314.
Gong, M., Zhang, K., Schölkopf, B., Tao, D. & Geiger, P. (2015). Discovering temporal causal relations from

subsampled data. In Proceedings of the 32nd International Conference on Machine Learning (Lille, France). New
York: Association for Computing Machinery, pp. 1898–906.

Harvey, A. C. (1990). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge
University Press.

Harvey, C. R. & Siddique, A. (2000). Conditional skewness in asset pricing tests. J. Finance 55, 1263–95.



452 A. Tank, E. B. Fox AND A. Shojaie

Herwartz, H. & Plödt, M. (2016). The macroeconomic effects of oil price shocks: Evidence from a statistical
identification approach. J. Int. Money Finance 61, 30–44.

Hyttinen, A., Plis, S., Järvisalo, M., Eberhardt, F. & Danks, D. (2016). Causal discovery from subsampled time
series data by constraint optimization. arXiv: 1602.07970.

Hyvärinen, A., Karhunen, J. & Oja, E. (2004). Independent Component Analysis. New York: John Wiley & Sons.
Hyvärinen, A., Shimizu, S. & Hoyer, P. O. (2008). Causal modelling combining instantaneous and lagged effects:

An identifiable model based on non-Gaussianity. In Proceedings of the 25th International Conference on Machine
Learning (Helsinki, Finland). New York: Association for Computing Machinery, pp. 424–31.

Hyvärinen, A., Zhang, K., Shimizu, S. & Hoyer, P. O. (2010). Estimation of a structural vector autoregression model
using non-Gaussianity. J. Mach. Learn. Res. 11, 1709–31.

Justiniano, A. & Primiceri, G. E. (2008). The time-varying volatility of macroeconomic fluctuations. Am. Econ. Rev.
98, 604–41.

Kilian, L. & Lütkepohl, H. (2016). Structural Vector Autoregressive Analysis. Cambridge: Cambridge University
Press.

Lanne, M. & Lütkepohl, H. (2010). Structural vector autoregressions with non-normal residuals. J. Bus. Econ. Statist.
28, 159–68.

Lanne, M., Lütkepohl, H. & Maciejowska, K. (2010). Structural vector autoregressions with Markov switching.
J. Econ. Dynam. Contr. 34, 121–31.

Lanne, M., Meitz, M. & Saikkonen, P. (2017). Identification and estimation of non-Gaussian structural vector
autoregressions. J. Economet. 196, 288–304.

Lanne, M. & Pentti, S. (2007). Modeling conditional skewness in stock returns. Eur. J. Finance 13, 691–704.
Lauritzen, S. L. (1996). Graphical Models. Oxford: Oxford University Press.
Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Berlin: Springer.
Ma, Y.-A., Chen, T., Wu, L. & Fox, E. B. (2016). A unifying framework for devising efficient and irreversible MCMC

samplers. arXiv: 1608.05973.
Moauro, F. & Savio, G. (2005). Temporal disaggregation using multivariate structural time series models. Economet.

J. 8, 214–34.
Peters, J., Janzing, D. & Schölkopf, B. (2013). Causal inference on time series using restricted structural equation

models. In Proceedings of the 26th International Conference on Neural Information Processing Systems (Lake
Tahoe, Nevada). New York: Association for Computing Machinery, pp. 154–62.

Plis, S., Danks, D., Freeman, C. & Calhoun, V. (2015). Rate-agnostic (causal) structure learning. In Proceedings
of the 28th International Conference on Neural Information Processing Systems (Montreal, Canada). New York:
Association for Computing Machinery, pp. 3303–11.

Rachev, S. T. (2003). Handbook of HeavyTailed Distributions in Finance, vol. 1 of Handbooks in Finance.Amsterdam:
Elsevier.

Salakhutdinov, R. & Roweis, S. T. (2003). Adaptive overrelaxed bound optimization methods. In Proceedings of the
20th International Conference on Machine Learning (Washington, DC). New York: Association for Computing
Machinery, pp. 664–71.

Schorfheide, F. & Song, D. (2015). Real-time forecasting with a mixed-frequency VAR. J. Bus. Econ. Statist. 33,
366–80.

Seong, B. (2012). Cointegration analysis with mixed-frequency data of quarterly GDP and monthly coincident
indicators. Korean J. Appl. Statist. 25, 925–32.

Shimizu, S., Hoyer, P. O., Hyvärinen, A. & Kerminen, A. (2006). A linear non-Gaussian acyclic model for causal
discovery. J. Mach. Learn. Res. 7, 2003–30.

Shojaie, A. & Michailidis, G. (2010). Penalized likelihood methods for estimation of sparse high-dimensional directed
acyclic graphs. Biometrika 97, 519–38.

Silvestrini, A. & Veredas, D. (2008). Temporal aggregation of univariate and multivariate time series models: A
survey. J. Econ. Surv. 22, 458–97.

Stram, D. O. & Wei, W. W. (1986). A methodological note on the disaggregation of time series totals. J. Time Ser.
Anal. 7, 293–302.

Walls, W. D. (2005). Modelling heavy tails and skewness in film returns. Appl. Finan. Econ. 15, 1181–8.
Zadrozny, P. A. (2016). Extended Yule–Walker identification of VARMA models with single or mixed-frequency

data. J. Economet. 193, 438–46.
Zhang, K. & Hyvärinen, A. (2009). Causality discovery with additive disturbances: An information-theoretical

perspective. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (Berlin,
Germany). Berlin: Springer, pp. 570–85.

Zhou, D., Zhang, Y., Xiao, Y. & Cai, D. (2014). Analysis of sampling artifacts on the Granger causality analysis for
topology extraction of neuronal dynamics. Front. Comp. Neurosci. 8, DOI: 10.3389/fncom.2014.00075.

[Received on 15 February 2017. Editorial decision on 26 August 2018]


