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Summary

Micro-organisms such as bacteria form complex ecological community networks that can be
greatly influenced by diet and other environmental factors. Differential analysis of microbial com-
munity structures aims to elucidate systematic changes during an adaptive response to changes
in environment. In this paper, we propose a flexible Markov random field model for microbial
network structure and introduce a hypothesis testing framework for detecting differences between
networks, also known as differential network analysis. Our global test for differential networks
is particularly powerful against sparse alternatives. In addition, we develop a multiple testing
procedure with false discovery rate control to identify the structure of the differential network.
The proposed method is applied to data from a gut microbiome study on U.K. twins to evaluate
how age affects the microbial community network.

Some key words: Differential network; High-dimensional logistic regression; Microbiome; Multiple testing.

1. Introduction

1.1. Markov random field model for microbial networks

High-throughout sequencing technologies provide comprehensive surveys of the human micro-
biome using either 16S rRNA or shotgun metagenomics sequencing (Kuczynski et al., 2012). An
important objective in microbiome studies is to infer the interactions among various microorgan-
isms (Faust & Raes, 2012). There is growing interest in studying microbial community structures,
because the underlying ecological structures are highly dynamic and undergo differential changes
in response to changes in their environment. An example that motivates this paper is to under-
stand how age-related physiological changes in the gut and modifications in lifestyle influence
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gut microbial interaction structures (Biagi et al., 2010; Claesson et al., 2011). Motivated by this
goal of uncovering changes in microbial interactions associated with age, we develop a method
for detecting differential microbial community networks.

Microbiome data present at least two challenges. First, the observations in sequencing-based
microbiome studies are often relative abundances of different bacteria, and the absolute microbial
abundances are unavailable. The observation from each sample can be represented by a compo-
sitional vector R = (R1, . . . , Rp)

T with p taxa and the unit-sum constraint
∑p

j=1 Rj = 1 (Rj � 0,
j = 1, . . . , p). Because typical microbial communities consist of both rare and common taxa,
the second obstacle is the sparsity of the compositional vector R; many taxa are absent from the
sample or their abundances are below the detection level. There is a lack of flexible statistical
models that can capture the complex dependency structures among the taxa in a given community.
For instance, methods based on Gaussian graphical models cannot be directly applied to study
the conditional dependence relationships, due to the unit-sum constraint, and naive application
of such models can lead to spurious associations (Aitchison, 1982).

Gaussian graphical models have been applied to centred log-ratio transformed data to study
conditional dependence relationships among microbes (Kurtz et al., 2015), but this transformation
has difficulty in dealing with zeros and the resulting transformed data are not even close to being
Gaussian or sub-Gaussian. Furthermore, graphical models based on the centred log-ratio trans-
formation are difficult to interpret. Biswas et al. (2016) proposed studying conditional microbial
interactions by modelling the residuals from a Poisson regression, but their approach does not
account for the compositional nature of the data. Fang et al. (2017) modelled the conditional
dependence among the latent absolute abundances that generate the compositional data using a
logistic normal distribution, but this method does not address the sparsity issue. Finally, existing
works based on graphical models do not assign uncertainties or statistical significance to the
conditional associations, and are not developed with a focus on differential network analysis.

To address the above challenges, we propose to discretize the compositional vector R into a
vector X of binary measurements {−1, 1} based on a prespecified abundance threshold such as the
median relative abundance. In particular, −1 represents absence or a relative abundance below
the given threshold, whereas 1 represents presence or a relative abundance above the threshold.
After discretizing the data, one can use a binary Markov random field to model conditional
dependencies between the components of the discretized vector X . The pairwise relationships
can be captured by an undirected graph G = (V , E) whose vertex set is V = {1, . . . , p} and whose
edge set E corresponds to conditional dependencies. The binary Markov random field associated
with graph G has the joint distribution

pr�(X ) ∝ exp

⎛
⎝ ∑

(r, t)∈E

θr, tXrXt

⎞
⎠, (1)

subject to a normalizing constant, where θr,t quantifies the conditional dependence between taxa
r and t. With binary X , this model has a clear biological interpretation: positive θr, t implies
co-existence and negative θr, t implies co-exclusiveness.

1.2. Differential network analysis

Let �1 = (θr, t, 1) and �2 = (θr, t, 2) be the matrices that represent the microbial network
among discretized taxa abundances for two age groups. In this paper, we are interested in the
global test

H0 : �1 = �2 versus H1 : �1 |= �2. (2)



Detecting differential microbial networks 403

If the global null in (2) is rejected, it becomes of interest to test for entrywise changes in the
differential network � = �1 − �2 = (δr,t),

H0, r, t : δr, t = 0 versus H1, r, t : δr, t |= 0 (1 � r < t � p), (3)

while controlling the false discovery rate at a prespecified level.
The gut microbial networks of young adults and the elderly often differ only in a small number

of links (Goodrich et al., 2016). Our proposed global test uses the maximum of the standardized
entrywise differences as the test statistic, and is thus particularly powerful against such sparse
alternatives, compared to tests based on the Frobenius norm (Schott, 2007; Li & Chen, 2012). Our
multiple testing procedure for differential network analysis accounts for the multiplicity in testing
the p(p − 1)/2 hypotheses, with both the false discovery proportion and the false discovery rate
controlled asymptotically. The proposed global and multiple testing procedures are implemented
in the R package TestBMN (R Development Core Team, 2019), which is available on GitHub.
The merits of the proposed tests are further demonstrated through extensive simulations and a
gut microbiome study of U.K. twins.

1.3. Our contribution

In an unpublished 2016 technical report from the University of Pittsburgh, Z. Ren developed a
method for estimation of individual entries in � for a single binary Markov random field model.
In contrast, this paper studies global and multiple testing of two Markov random field models with
multiple testing error control. Nodewise logistic regressions are used to develop the entrywise
test statistics, whose dependence structure is much more complicated than in the Gaussian case
(Xia et al., 2015; Cai & Liu, 2016; Xia et al., 2018). The debiased entrywise estimators for testing
Gaussian graphical models are based on the residuals from nodewise linear regressions whose
correlations are straightforward to characterize. However, the estimators in the current paper
depend not only on the residual from each nodewise logistic regression but on carefully defined
projection directions needed for bias correction. By overcoming these challenges, we establish
theoretical properties of the proposed testing procedures.

2. Global and multiple testing of Markov networks

2.1. Notation and problem set-up

Let {X (1), . . . , X (n1)} be the n1 independent binary observations from the first population
and {Y (1), . . . , Y (n2)} the n2 independent binary observations from the second population, often
conveniently written as matrices X ∈ R

n1×p and Y ∈ R
n2×p. For a matrix X ∈ R

n1×p, X−r denotes
the n1 × (p − 1) submatrix with the rth column removed. For a matrix �k = (θr, t, k)1�r, t�p and
k = 1, 2, let θr, −r, k = {θr, t, k , t |= r} denote the (p−1)-dimensional subvector of parameters. For
a symmetric matrix A, φmax(A) and φmin(A) denote the largest and smallest eigenvalues of A. For
a vector a ∈ R

p, the usual vector �1, �2 and �∞ norms are denoted, respectively, by ‖a‖1, ‖a‖2
and ‖a‖∞. The indicator function is denoted by I (·).

To leverage the sparsity in the differential network �, we propose a test based on the maxi-
mum of the standardized entrywise differences between the two matrices (Xia et al., 2015). Our
motivation is that the global null hypothesis in (2) is equivalent to

H0 : max
1�r<t�p

|θr, t, 1 − θr, t, 2| = 0.



404 T. T. Cai, H. Li, J. Ma AND Y. Xia

Therefore one can construct the test statistic Mn, p by first obtaining nearly unbiased estimators
of θr, t, k (k = 1, 2) and then deriving the standardized entrywise difference Wr, t , such that
Mn, p = max1�r<t�p W 2

r, t .
If the global null �1 = �2 is rejected, simultaneous testing of entrywise differences is often of

interest to identify where the two networks differ. To this end, we also consider multiple testing
of all entries in �, as formally defined in (3). A natural test statistic for each individual test in
(3) is the standardized entrywise difference Wr, t . For any given threshold level τ > 0, the null
hypothesis H0, r, t is rejected if |Wr, t| � τ . Our goal is to choose an optimal threshold τ such
that the proposed multiple testing procedure rejects as many true positives as possible while
controlling the false discovery rate at a prespecified level.

2.2. Derivation of the standardized entrywise statistics

To obtain Wr,t , we first derive nearly unbiased estimators of θr, t, k (k = 1, 2) and evaluate their
variances. Without loss of generality, it suffices to focus on estimation of θr, t, 1 from X .

Given X , one can recover the association parameters in a binary Markov random field using
�1-penalized nodewise logistic regression (Ravikumar et al., 2010), because the conditional
distribution of X (i)

r given X (i)
−r is

pr(X (i)
r | X (i)

−r) = exp(X (i)
r

∑
j |=r X (i)

j θr, j, 1)

exp(−X (i)
r

∑
j |=r X (i)

j θr, j, 1) + exp(Xr
∑

j |=r X (i)
j θr, j, 1)

. (4)

Thus the variable Xr can be viewed as the response in a logistic regression where all remaining
variables X−r act as covariates. However, θ̂r, t, 1 obtained via �1-penalized estimation (Ravikumar
et al., 2010) is biased.

To correct for the bias in θ̂r, t, 1, it is instructive to write the rth variable as a nonlinear function
of all remaining variables, i.e., for every node r = 1, . . . , p,

X (i)
r = E(X (i)

r | X (i)
−r) + ε

(i)
r,1 = ḟ (u(i)

r,1) + ε
(i)
r,1 (i = 1, . . . , n1), (5)

where u(i)
r,1 = X (i)

−rθr,−r,1, ḟ (u) = tanh(u) and ε
(i)
r,1 are random variables satisfying E(ε

(i)
r,1 | X (i)

−r) =
0. We adopt the projection-based debiasing approach of Zhang & Zhang (2014). Specifically, for
a suitably chosen score vector vr, t, 1 ∈ R

n1 and û(i)
r,1 = X (i)

−r θ̂r,−r,1, one can show that the estimator

θ̌r, t, 1 = θ̂r, t, 1 +
∑n1

i=1 v(i)
r, t, 1{X (i)

r − ḟ (û(i)
r, 1)}∑n1

i=1 v(i)
r, t, 1 f̈ (û(i)

r, 1)X
(i)
t

(t |= r) (6)

is nearly unbiased under mild conditions on the initial estimate θ̂r,−r,1. The second term on the
right-hand side of (6) projects the residual X (i)

r − ḟ (û(i)
r,1) onto the direction of v(i)

r,t,1, thereby

reducing the bias in θ̂r,t,1 to an acceptable level. As shown in the unpublished 2016 technical
report by Z. Ren, the desired score vector vr,t,1 (t |= r) can be defined as

v(i)
r, t, 1 = (X (i)

t + 1)/2 − g(X (i)
−{r, t}, θ̂r, −r, 1, θ̂t, −t, 1) (i = 1, . . . , n1), (7)
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where for f̈ (u) = 4e2u/(e2u + 1)2,

g(X−{r, t}, θr, −r, 1, θt, −t, 1) = E{f̈ (X−rθr, −r, 1)(Xt + 1)/2 | X−{r, t}}
E{f̈ (X−rθr, −r, 1) | X−{r, t}}

.

Intuitively, the score vector vr,t,1 resembles the residual for regressing Xt on X−{r, t}. The choice
in (7) ensures that vr, t, 1 is uncorrelated with εr, 1 and that θ̌r, t, 1 achieves asymptotic efficiency.
Given Y and the initial estimate �̂2, the nearly unbiased θ̌r, t, 2 can be derived similarly.

Remark 1. Inference for high-dimensional models via the �1 penalty typically requires bias
correction, because the �1 regularization achieves variable selection by shrinking every com-
ponent of the regression coefficients towards zero (Zhang & Zhang, 2014; van de Geer et al.,
2014). Existing work on bias correction focuses primarily on linear models, with the exception of
van de Geer et al. (2014), which is based on inverting the Karush–Kuhn–Tucker conditions and
is applicable to generalized linear models. In contrast, our debiasing approach is based on a local
Taylor expansion of ḟ (u(i)

r,1) about û(i)
r,1 in (5), which yields an approximately linear surrogate to

the nonlinear conditional mean and facilitates the construction of entrywise statistics.

The estimators θ̌r, t, 1 and θ̌r, t, 2 have unequal variances, so we must adjust for their variances
before constructing the test statistic for the global null hypothesis. Denote by v(i),o

r, t,1 the oracle
score vector calculated based on �1,

v(i),o
r, t, 1 = (X (i)

t + 1)/2 − g(X (i)
−{r, t}, θr,−r,1, θt,−t,1) (i = 1, . . . , n1),

and let

Fr, t, 1 = E[{Xt − 2g(X−{r, t}, θr, −r, 1, θt,−t,1)}2 f̈ (ur,1)].

By definition, E{v(i),o
r, t, 1 f̈ (u(i)

r, 1) | X (i)
−{r, t}} = 0, so E{v(i),o

r, t, 1 f̈ (u(i)
r, 1)X

(i)
t } = 2E{(v(i),o

r, t, 1)
2 f̈ (u(i)

r,1)} =
Fr,t,1/2. Hence, for a reasonably good initial estimate θ̂r,−r,1, one expects θ̌r, t, 1 to be close to

θ̃r, t,1 = θr, t, 1 + 1

n1

n1∑
i=1

2v(i),o
r, t, 1ε

(i)
r,1

Fr, t, 1
.

Indeed, it can be shown that |θ̌r, t, 1 − θ̃r, t, 1| = op{(n1 log p)−1/2} for 1 � r < t � p, under

certain conditions. With sr,t,1 = var(2v(i),o
r, t, 1ε

(i)
r,1/Fr, t, 1) = 1/Fr, t, 1, one can use sr, t, 1/n1 as an

approximation to var(θ̌r, t, k).
Finally, let the empirical variance estimates be defined as

šr, t, 1 =
{

4n−1
1

n1∑
i=1

(v(i)
r, t, 1)

2 f̈ (û(i)
r,1)

}−1

, šr, t, 2 =
{

4n−1
2

n1∑
i=1

(v(i)
r, t, 2)

2 f̈ (û(i)
r,2)

}−1

.

The standardized entrywise difference is thus

Wr, t = θ̌r, t, 1 − θ̌r, t, 2

(šr, t, 1/n1 + šr, t, 2/n2)1/2 (1 � r < t � p).
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2.3. Implementation of the testing procedure

Once we have the standardized entrywise statistic Wr, t , we can construct the test statistic for
the global null in (2):

Mn, p = max
1�r<t�p

W 2
r,t = max

1�r<t�p

(θ̌r, t, 1 − θ̌r, t, 2)
2

šr, t, 1/n1 + šr, t, 2/n2
. (8)

Section 3.2 shows that under certain mild conditions, Mn, p−4 log p+log log p converges to a Type
I extreme value distribution under the null. Indeed, the Wr,t (1 � r < t � p) are asymptotically
standard normal under the null and are only weakly dependent. Hence the maximum of p(p−1)/2
such variables squared, that is, Mn,p, should be close to 2 log{p(p − 1)/2} ≈ 4 log p. Let


α = I (Mn, p � qα + 4 log p − log log p), (9)

where qα is the (1 −α) quantile of the Type I extreme value distribution with the cumulative dis-
tribution function exp{−(8π)−1/2 exp(−z/2)}. We reject the hypothesis H0 : �1 = �2 whenever

α = 1.

In the multiple testing problem (3), for any given threshold level τ > 0 and 1 � r < t � p,
each individual hypothesis H0,r,t is rejected if |Wr,t| � τ . Let H0 = {(r, t) : θr, t, 1 = θr, t, 2, 1 �
r < t � p} denote the set of true nulls. Let R0(τ ) = ∑

(r, t)∈H0
I (|Wr,t| � τ) be the total number

of false positives and R(τ ) = ∑
1�r<t�p I (|Wr,t| � τ) the total number of rejections. The false

discovery proportion and false discovery rate are defined, respectively, as

fdp(τ ) = R0(τ )

max{R(τ ), 1} , fdr(τ ) = E{fdp(τ )}.

For a prespecified level α, an ideal choice of τ that is able to control the false discovery proportion
and false discovery rate is

τ0 = inf
{

0 � τ � 2(log p)1/2 : fdp(τ ) � α
}

.

Here the choice of τ is restricted to [0, 2(log p)1/2] because the asymptotic null distribution of
Wr,t is standard normal so that pr{max(r, t)∈H0 |Wr, t| � 2(log p)1/2} → 0 as n1, n2, p → ∞.

However, the ideal τ0 is unavailable because H0 is unknown. To estimate τ0, it is helpful
to understand the properties of Wr, t . Let (τ) be the standard normal cumulative distribution
function and let G(τ ) = 2 − 2(τ). Under the null hypothesis in (3) and some regularity
conditions, one can show that as n1, n2 → ∞,

sup
0�τ�c(log p)1/2

∣∣∣∣pr(|Wr, t| � τ)

G(τ )
− 1

∣∣∣∣ → 0 (10)

uniformly for all 1 � r < t � p, where p = nγ

k , for any c > 0 and any γ > 0. Therefore one
can estimate R0(τ ) by 2{1 − (τ)}|H0| as in Cai & Liu (2016), where |H0| can be estimated by
q = (p2 − p)/2 due to the sparsity of �. In fact, for weakly dependent Wr, t , it can be shown that

sup
0�τ�bp

∣∣∣∣ R0(τ )

G(τ )|H0| − 1

∣∣∣∣ → 0 (11)
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in probability for bp = {4 log p − 2 log(log p)}1/2 as n1, n2, p → ∞. So, we estimate fdp(τ ) by

G(τ )(p2 − p)/2

max{R(τ ), 1} .

This leads to the following estimate of τ0:

τ̂ = inf
[
0 � τ � bp :

G(τ )(p2 − p)/2

max{R(τ ), 1} � α
]
. (12)

If the solution to (12) does not exist, we set τ̂ = 2(log p)1/2. For 1 � r < t � p, the null
hypothesis H0, r, t : δr, t = 0 is rejected if and only if |Wr, t| � τ̂ .

Remark 2. It is important to restrict τ ∈ [0, bp] in (12) for false discovery proportion control,
because the convergence in (11) may not hold for τ > bp. In such cases, direct thresholding
on Wr,t with τ̂ = 2(log p)1/2 is used to control the false discovery rate. Without the constraint
τ � bp, our multiple testing procedure reduces to the Benjamini–Hochberg procedure, which
may not control the false discovery proportion with some positive probability if the number of
true alternatives |Hc

0| is fixed as p → ∞. An alternative approach to approximating R0(τ ) is to
bootstrap, as in Cai & Liu (2016).

3. Theoretical properties

3.1. Assumptions

We make assumptions to establish the theoretical properties of the proposed testing procedures.
For r = 1, . . . , p, let

Qr,1 = E�1{f̈ (X−rθr,−r,1)X−rX T−r}, Qr,2 = E�2{f̈ (Y−rθr,−r,2)Y−rY T−r}

denote the Hessians of the likelihood functions associated with the rth logistic regression in the
first and second populations, respectively. For k = 1, 2, the matrix Qr,k is the Fisher information
matrix associated with the local conditional probability distribution, and is analogous to the
(p − 1) × (p − 1) submatrix of the precision matrix in Gaussian graphical models.

Assumption 1. Assume that log p = o(n1/3
k ) and n1 � n2. For each r = 1, . . . , p, there exist

constants Cmin, Cmax > 0 such that

0 < Cmin � φmin(Qr,k) � φmax(Qr,k) � Cmax < ∞.

Further, assume that the initial estimators �̂k (k = 1, 2) satisfy

max
1�r�p

‖θ̂r, −r, k − θr, −r, k‖1 = op{(log p)−1}, (13)

max
1�r�p

‖θ̂r, −r, k − θr, −r, k‖2 = op{(nk log p)−1/4}. (14)
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The bounded eigenvalue assumption on Qr,k is standard in inference for high-dimensional
Ising models (Ravikumar et al., 2010), and ensures that the (p − 1) variables do not become
overly dependent. It is also crucial for establishing the asymptotic normality of θ̌r, t, k . Initial
estimators satisfying (13) and (14) can be obtained via �1-penalized nodewise logistic regression
if the maximum node degree is dk = o{n1/2

k /(log p)3/2}. The conditions in (13) and (14) are
slightly stronger than those required for entrywise normality in the unpublished 2016 technical
report by Z. Ren, because smaller biases are required for testing procedures in order to provide
significance quantification for each pair of edges.

Assumption 2. For each r = 1, . . . , p, there exists a constant Cw > 0 such that the maximum
neighbourhood weight satisfies

max
1�r�p

∑
t:(r, t)∈E

|θr, t, k | � Cw < ∞.

Assumption 2 implies that X−rθr,−r,1 and Y−rθr,−r,2 are sub-exponential random variables, and
therefore min1�r<t�p Fr, t, k > c∗ > 0 for k = 1, 2 and some c∗ > 0. In view of the conditional
distribution (4), violation of Assumption 2 may lead to degenerate marginal distributions. This
assumption is crucial for controlling the dependence in Lemma 1, and is also used in Santhanam
& Wainwright (2012).

To ensure good performance of the proposed testing procedures, it is important to characterize
the dependence between the standardized entrywise statistics Wr, t and Wr′, t′ for (r, t) |= (r′, t′),
and to understand when such dependences are weak. The reason for Wr, t and Wr′, t′ being depen-
dent is the correlation among vo

r, t, kεr, k for 1 � r < t � p and k = 1, 2. In contrast to the
Gaussian case (Xia et al., 2015), it is difficult to evaluate these correlations analytically in the
current setting due to the unknown normalizing constant in (1). However, the following lemma
says that these correlations are bounded under mild conditions.

Lemma 1. Under Assumption 2, for r |= r′, t |= t′ and k = 1, 2,

|cor(vo
r, t, kεr,k , vo

r′, t, kεr′, k)| � 4C0

c∗ {| sinh(2θr, r′, k)| + | sinh(2θr, t, k) sinh(2θr′, t, k)|},

|cor(vo
r, t, kεr,k , vo

r, t′, kεr, k)| � 4C0

c∗ {| sinh(2θt, t′, k)| + | sinh(2θr, t, k) sinh(2θr, t′, k)|},

|cor(vo
r, t, kεr,k , vo

r′, t′, kεr′, k)| � C1

c∗

⎧⎨
⎩

∑
a=r′,t′

| sinh(2θr, a, k)|
⎫⎬
⎭

⎧⎨
⎩

∑
b=r′,t′

| sinh(2θt, b, k)|
⎫⎬
⎭,

where C0 and C1 are absolute constants that depend only on Cw.

Lemma 1 implies that the correlation among the nearly unbiased estimators θ̃r, t, k , or equiv-
alently the correlation among the Wr, t , is bounded above by a function of sinh(2θr, t, k) for
1 � r < t � p and k = 1, 2. However, establishing such results for high-dimensional
binary Markov random fields is challenging. The proof of Lemma 1 requires careful analy-
sis based on the conditional distributions pr(Xr , Xr′ | X−{r, r′}), pr(Xr , Xt , Xr′ | X−{r, t, r′}) and
pr(Xr , Xt , Xr′ , Xt′ | X−{r, t, r′, t′}).

The next assumption requires that the entrywise conditional associations not be too large and
ensures that Wr,t (1 � r < t � p) only weakly dependent.
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Assumption 3. For a constant ξ > 0, let

At(ξ) = {r : | sinh(2θr, t, 1)| � (log p)−2−ξ or | sinh(2θr, t, 2)| � (log p)−2−ξ }

be small enough that max1�t�p |At(ξ)| = o(pγ ) for 0 < γ < 1/3.

Variants of Assumption 3 are commonly used (Cai et al., 2013; Cai & Liu, 2016; Xia et al.,
2015, 2018). This assumption is also mild for microbial networks because evolutionary stability
and robustness often result in only a small number of strong microbial interactions (Leclerc,
2008).

3.2. Limiting null distribution and optimality of the global test

For 0 < η < 1, let

�(η) = {1 � r � p : | sinh(2θr, t, 1)| > η or | sinh(2θr, t, 2)| > η for some t |= r}

denote the set of indices r such that either Xr is highly correlated with some Xt or Yr is highly cor-
related with some Yt , given all remaining variables. Let η∗ = min{0.5(c∗/C1)

1/2, 0.125c∗/C0}.
Theorem 1. Suppose that Assumptions 1–3 hold. If there exist 0 < η < η∗ and a sequence

of numbers �p,η > 0 such that |�(η)| � �p,η = o(p), then under the null hypothesis in (2), for
any z ∈ R,

pr(Mn,p − 4 log p + log log p � z) → exp{−(8π)−1/2 exp(−z/2)} (15)

as n1, n2, p → ∞, where Mn,p is defined in (8). Under the null hypothesis, the convergence in
(15) is uniform for all X and Y satisfying Assumptions 1–3.

Remark 3. The bounded cardinality condition on �(η) is similar to that in Cai et al. (2013),
and is mild because the magnitude of sinh(2θr, t, k) reflects the conditional association between
each pair of microbial taxa. Most of the entries in �k should be bounded from above, or the
rare taxa might go extinct, which is undesirable for maintaining a robust ecological system. This
condition together with Assumptions 2 and 3 guarantee weak dependence among the Wr, t , and
allows us to apply strategies for extreme values in the Gaussian case.

In addition to the limiting null distribution, our global testing procedure also maintains rate-
optimal power. Consider the matrices

U(c) =
{
(�1, �2) : max

1�r<t�p

|θr,t,1 − θr,t,2|
(sr, t, 1/n1 + sr, t, 2/n2)1/2 � c(log p)1/2

}
. (16)

Let Tα be the set of all α-level tests, that is, pr(Tα = 1) � α for any Tα ∈ Tα .

Theorem 2. (i) Suppose that Assumptions 1–3 hold. The test 
α defined in (9) satisfies

inf
(�1,�2)∈U(4)

pr(
α = 1) → 1

as n1, n2, p → ∞.
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(ii) Let log p = o(nk) for k = 1, 2 and α, β > 0 with α + β < 1. Then there exists a constant
c0 > 0 such that for all sufficiently large n1, n2 and p,

inf
(�1,�2)∈U(c0)

sup
Tα∈Tα

pr(Tα = 1) � 1 − β.

Remark 4. Statement (i) in Theorem 2 says that 
α rejects the null hypothesis in (2) with
high probability when (�1, �2) ∈ U(4), and statement (ii) says that the lower bound of order
(log p)1/2 in (16) cannot be further improved.

3.3. False discovery rate control in multiple testing

Let q0 = |H0|, let q = (p2 − p)/2, and let

Sρ =
{
(r, t) : 1 � r < t � p,

|θr, t, 1 − θr, t, 2|
(sr, t, 1/n1 + sr, t, 2/n2)1/2 � (log p)1/2+ρ

}
.

The following theorem shows that our multiple testing procedure ensures asymptotic control of
the false discovery proportion and false discovery rate at the prespecified level α.

Theorem 3. Suppose |Sρ | � {(8π)−1/2α−1 + ζ }(log log p)1/2 for some ρ > 0 and ζ > 0.
Assume further that q0 � c1p2 for some c1 > 0 and that p � c2nγ

k for some c2 > 0 and γ > 0.
Then under the assumptions of Theorem 1,

lim
(n1, n2, p)→∞

fdr(τ̂ )

αq0/q
= 1,

fdp(τ̂ )

αq0/q
→ 1

in probability as n1, n2, p → ∞.

Remark 5. The condition on the size of Sρ is mild in that it only requires a few standardized
entrywise differences to be at least of order (log p)1/2+ρ , which is necessary to ensure that (11)
holds. The proof of Theorem 3 again relies heavily on knowledge of the dependence among the
Wr,t as characterized in Lemma 1.

4. Simulations

4.1. Data and model selection

We consider (a) the Erdős–Rényi random graph GER(p, d/p) (Erdős & Rényi, 1960) with
average degree d = 4, (b) the Watts–Strogatz model GWS (Watts & Strogatz, 1998), which forms
networks with small-world properties, and (c) the Barabasi–Albert scale-free network model
GBA (Barabási & Albert, 1999), as illustrated in Fig. 1. In all comparisons, the graph sizes and
the sample sizes are taken as p ∈ {50, 100} and n1 = n2 = 100. For a given graph, the nonzero
entries θr, t, k were drawn uniformly from [−0.5, −0.1] ∪ [0.1, 0.5]. Given the two matrices �1
and �2, binary data {X (i)}n1

i=1 ∼ pr�1
(X ) and {Y (i)}n2

i=1 ∼ pr�2
(Y ) were generated by Gibbs

sampling.
To get an initial estimator of �k , we run nodewise �1-regularized logistic regression with

penalty parameter λr, k , using the R package glmnet (Friedman et al., 2010). Symmetric
estimates were obtained by averaging the nodewise estimates. The optimal tuning parameters
λr, k (r = 1, . . . , p; k = 1, 2) were chosen to maximize the performance of the global and the
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(a) (b) (c)

Fig. 1. Illustrations of different graphs used in our simulations: (a) random graph GER(p, d/p), (b) small-world network
GWS, and (c) scale-free network GBA.

Table 1. Empirical Type I errors and powers (%) of the global test with α = 5% and
n1 = n2 = 100. The Type I errors were evaluated over 500 replications, and the powers were

calculated over 200 replications
GER GWS GBA GER GWS GBA

p Method Type I error Power

50

Proposed method 3.0 1.6 3.6 94.5 88.0 91.5
Xia et al. (2015) 8.4 9.4 7.2 69.5 70.0 91.0

PermBMN 5.8 5.8 5.0 97.0 93.5 96.5
PermMLE 4.6 5.2 3.8 98.5 97.0 99.5

100

Proposed method 2.0 3.0 2.4 95.5 94.0 97.5
Xia et al. (2015) 6.2 7.8 7.4 80.0 87.0 94.5

PermBMN 5.4 5.0 4.2 98.0 97.0 99.0
PermMLE 4.6 4.8 4.6 97.0 99.0 100.0

PermBMN, permutation-based test using �̌k ; PermMLE, permutation-based test using the modified maximum
likelihood estimator of �k assuming that the true graph structures are known.

multiple testing procedures. For the global test, the tuning parameter λr,k in each logistic regres-
sion was selected based on the extended Bayesian information criterion (Barber & Drton, 2015).
As the multiple testing procedure relies on the approximation of 2{1 − (τ)}|H0| to R0(τ ), the
tuning parameters needed in multiple testing were chosen by ensuring 2{1 − (τ)}|H0| was as
close to

∑
(r, t)∈H0

I (|Wr, t| � τ) as possible.

4.2. Results

We compare our approach with two-sample testing based on Gaussian graphical models
(Xia et al., 2015) and two other permutation-based methods for global testing. The first per-
mutation method uses the same θ̌r, t, k and šr, t, k as in our approach and takes the minimum
p-value of the entrywise test H0, r, t in (3) as the test statistic. The significance of the global test is
then calibrated using a permutation approach. The second permutation method differs from the
first only in the way the parameters θr, t, k and sr, t, k are estimated. Specifically, it estimates θr, t, k
and its variance using maximum likelihood with specified support of �k and finite-sample bias
correction (Firth, 1993). In our comparisons, the per replication p-values for both permutation
methods were evaluated over 1000 permutations.

Table 1 presents the empirical Type I errors of the global test, and confirms that our method and
the two permutation tests control the Type I errors well in all settings. In comparison, the Type I
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Table 2. Empirical false discovery rates and true positive rates (%) for multiple testing with
false discovery rate α = 10% and n1 = n2 = 100 over 200 replications

GER GWS GBA GER GWS GBA

p Method False discovery rate True positive rate

50
Proposed method 10.0 9.1 10.6 52.9 59.9 61.0
Xia et al. (2015) 13.8 13.7 13.5 51.7 54.9 59.9

100
Proposed method 8.3 9.4 9.2 56.1 57.7 62.9
Xia et al. (2015) 12.2 12.3 11.7 50.5 49.6 57.2

errors of the method of Xia et al. (2015) are slightly inflated, which is not surprising because the
data are not multivariate normal.

To evaluate the power of the global test, we constructed the differential network �

such that five entries in the upper triangular part of � were uniformly drawn from
{−1.5(log p/nk)

1/2, 1.5(log p/nk)
1/2}. Let �0 be generated from one of the three models

GER, GWS or GBA, and let �1 = �0 − � and �2 = �0 + �. The empirical powers, which
are proportions of null hypothesis rejections, are shown in Table 1. Our method yields very high
powers for all settings and uniformly outperforms the method of Xia et al. (2015). The two
permutation-based methods, especially the second one based on the modified maximum likeli-
hood estimator of �k , demonstrate superior performance in terms of power. The downside is that
both permutation methods require heavy computation.

Finally, using the same design �1 = �0 − � and �2 = �0 + �, we examined multiple
testing of individual entries in the differential network � while controlling the false discovery
rate at α = 10%. The true differential network � was constructed to be sparse such that the
number of edges is approximately 0.01p(p − 1), with nonzero entries drawn uniformly from
[−0.5, −0.1]∪ [0.1, 0.5]. The empirical false discovery and true positive rates of our method and
that of Xia et al. (2015) were estimated by

Average
[∑

(r, t)∈H0
I (|Wr, t| � τ̂ )

max{R(τ̂ ), 1}
]

, Average

{ ∑
(i,j)∈H1

I (|Wr, t| � τ̂ )∑
1�r<t�p I (θr, t, 1 |= θr, t, 2)

}
,

where H1 denotes the set of nonzero locations. Permutation-based methods are inapplicable to
multiple testing. Table 2 shows that our multiple testing procedure controls the false discovery
rate well in all scenarios, and returns reasonably high true positive rates. In contrast, the multiple
testing method of Xia et al. (2015) yields slightly higher false positive and lower true positive
rates. The difference in true positive rates between the methods increases with p.

5. Application to gut microbiome data in U.K. twins

We applied the proposed testing procedures to data from a gut microbiome study
of U.K. twins. The original study (Goodrich et al., 2016) investigated whether
host genotype shapes the gut microbiome composition, using 16S rRNA sequenc-
ing data collected from faecal samples of 2731 individuals. The data are available
at http://www.ebi.ac.uk/ena/data/view/PRJEB13747. We are interested in
whether the microbial community structures summarized as conditional dependence relationships
among the microbial taxa are associated with the age of the host.

To ensure robust detection of microbial interactions, samples with total read counts less than
20 were first removed. For each of the remaining 2714 samples, the relative abundance of each
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Fig. 2. (a) Empirical power curves of the proposed method (circles) and the permutation method using �̌k (trian-
gles) by subsampling the two datasets at different proportions. (b) A histogram of the p-values from our method in

back-testing by randomly generating two datasets 1000 times.

genus was calculated by dividing the read count for each genus by the total number of reads in
the sample. Of the 294 genera, only those with at least 0.001% of relative abundance in at least
75% of the 2714 samples were used, which reduces the total number of genera to p = 59. To
examine the association of microbial interactions with host age, we selected 286 young adults
who were at most 43 years and 284 elderly subjects aged at least 74 years. Since these samples
included twins, we randomly chose one individual from each pair of twins, which gave n1 = 171
independent young adults and n2 = 180 elderly subjects in our analysis.

Because of possible errors in sequencing reads, genera with relative abundance lower than
0.001% are expected to be due to noise or sequencing errors. We therefore first discretized the
relative abundances using a cut-off of 0.001%, where for a given genus, −1 represents absence or
extremely low abundance of the genus and 1 represents presence. However, some more abundant
genera are present in over 75% of the samples. For these genera, we used the 25th percentile as
the cut-off to discretize the data, so −1 represents low abundance of the genus and 1 represents
high abundance. One should keep the definitions in mind when interpreting the � parameters.

We applied the global testing procedure to the two groups of subjects and obtained a p-
value of 0.009, indicating that the microbial networks for the two age groups are significantly
different. To assess the stability of our method and perform power comparisons, we generated
1000 subsamples within each age group, with sampling proportions ranging from 0.35 to 0.95.
The empirical powers of our method and the permutation method using �̌k are presented in
Fig. 2(a). Our method performs slightly worse than the permutation method, but we believe that
the gap reduces with larger samples. Another advantage of our method is that it runs much faster
than the permutation method. We also performed back-testing for the global null hypothesis by
randomly splitting the pooled data into two groups with n1 and n2 subjects over 1000 replications.
Figure 2(b) shows the resulting p-values, which are slightly skewed towards the right, indicating
that the proposed test is conservative.

To recover the differential microbial network, we applied the proposed multiple testing pro-
cedure with fdr = 15% and show the results in Fig. 3. The same differential links were selected
by fdr between 14% to 16%. For fdr between 12% to 14%, all edges in Fig. 3 except that
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(Y) 1.78; (E) 0.84

(Y) 1.11; (E) 0.5

(Y) 1.65; (E) 0.77

(Y) 1.22; (E) 0.57

(Y) 1.4; (E) 0.63

(Y) 0.51; (E) 1.31

Faecalibacterium

Bacteroides

Oscillospira

Anaerofustis Blautia

Ruminococcus

Actinomyces

Bifidobacterium

Campylobacter

Fig. 3. Estimated differential microbial network between young and elderly individuals using our multiple testing pro-
cedure with fdr = 15%, where isolated genera are not shown. Each node represents a genus coloured by phylum, and
node size is proportional to the prevalence of 1s among all samples for the corresponding genus. Edge width is propor-
tional to the magnitude of the entrywise test statistic. Turquoise circles, Actinobacteria; purple circles, Bacteroidetes;

red circles, Firmicutes; blue circles, Proteobacteria.

between Bacteroides and Blautia were selected. Here the two values associated with each differ-
ential edge represent the estimated odds ratios between the two genera for the two age groups.
For example, the odds ratio between Faecalibacterium and Campylobacter among young adults
is 0.51, indicating that high abundance in Faecalibacterium is associated with lower odds of
high abundance in Campylobacter. In other words, Faecalibacterium and Campylobacter have
a competitive relationship within the microbial community, which could be due to their com-
petition for space, nutrients, and so on. In contrast, the relationship between Faecalibacterium
and Campylobacter is collaborative for the elderly group, since the odds ratio is 1.31. A collab-
orative relationship between two microbes can be due to cross-feeding, co-colonization or other
reasons (Faust & Raes, 2012). Each pair of values associated with each edge shows a significant
difference, suggesting changes in the microbial community structure as people age. Indeed, the
abundance of Faecalibacterium has been found to be negatively associated with age (Franceschi
et al., 2017). Further, Ruminococcus was significantly enriched in immune-mediated inflam-
matory diseases (Forbes et al., 2016), and Oscillospira was enriched in inflammatory diseases
(Konikoff & Gophna, 2016). Thus Ruminococcus and Oscillospira may also play an important
role in the ageing process, because age is characterized by chronic low-grade inflammation.
Figure 3 provides additional evidence on how these genera are implicated in the ageing process.
More importantly, genera involved in the differential network may be potential microbial tar-
gets that can be manipulated through dietary or medical interventions for healthy ageing. As the
true differential network is unknown, further experimental validation is needed to confirm these
results.

Since the method of Xia et al. (2015) does not perform well for discrete data, we applied their
method to the centred log-ratio transformed relative abundance data and obtained a p-value of
0.007 for the global test, which is consistent with the conclusion from the proposed global test. At
15% false discovery rate, application of the multiple testing procedure of Xia et al. (2015) only
gave one differential edge between Holdemania from the phylum Firmicutes and Butyricimonas
from Bacteroidetes. The difference is largely due to the fact that the centred log-ratio transformed
data are far from being normally distributed.
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6. Discussion

To deal with excessive zeros and the unit sum constraint, in this paper we proposed using a
binary Markov random field to study microbial interactions characterized by their conditional
dependence relationships. Such models are robust and largely free of distributional assumptions
on the data and have a natural interpretation in terms of co-existence or co-exclusiveness of the
microbial communities. For very rare taxa, we suggest using a very small cut-off to discretize the
data. For more common taxa, sample median or quartiles can be used. Using different cut-offs
may lead to different results and thus to models with different interpretations. One may explore
different ways of dichotomizing the data to see whether consistent results can be obtained.

The proposed method for testing binary Markov random fields can be applied to other data with
binary observations, such as cancer somatic mutation data in cancer genomics or characterization
of neural firing patterns and the reconstruction of neural connections in neuroscience. Our methods
can be extended to study more general Markov random fields with each node taking more than
two discrete values.
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