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Abstract

In biological sequences, tandem repeats consist of tens to hundreds of residues of a repeated 

pattern, such as atgatgatgatgatg (‘atg’ repeated), often the result of replication slippage. Over time, 

these repeats decay so that the original sharp pattern of repetition is somewhat obscured, but even 

degenerate repeats pose a problem for sequence annotation: when two sequences both contain 

shared patterns of similar repetition, the result can be a false signal of sequence homology. We 

describe an implementation of a new hidden Markov model for detecting tandem repeats that 

shows substantially improved sensitivity to labeling decayed repetitive regions, presents low and 

reliable false annotation rates across a wide range of sequence composition, and produces scores 

that follow a stable distribution. On typical genomic sequence, the time and memory requirements 

of the resulting tool (ULTRA) are competitive with the most heavily used tool for repeat masking 

(TRF). ULTRA is released under an open source license and lays the groundwork for inclusion of 

the model in sequence alignment tools and annotation pipelines.
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1 INTRODUCTION

Tandem repeats (TRs) such as catcatcatcatcatcat (a ‘cat’ subunit, repeated six times) make 

up more than 3% of the human genome and are found in over 25% of human proteins [6]. 

Identification of TRs is key to characterizing their role in evolution [8, 11, 12], function [2, 

3, 13, 14] and disease [22], though the primary motivation for development of TR–detecting 

software has long been avoidance of false positive matches during sequence annotation [18, 

19, 24]. These false matches arise because TRs are widespread and deviate from the random 

nature assumed in the scoring systems of all sequence alignment software. As a concrete 

example, consider the ‘cat’ repeat sequence above; in a truly random genome of 3 billion 

nucleotides, we expect to see zero copies of this sequence, but the current release of the 

human genome (hg38) contains more than 700 non–overlapping exact copies, and more than 
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1200 instances with a single mutation from the perfect length–18 repeat pattern. These exact 

and inexact copies, owing their existence to replication slippage [21] and subsequent 

mutation, are not homologous to each other, yet would be considered significant matches by 

typical sequence alignment software such as BLAST [1] and HMMER [7].

A common strategy for avoiding false annotation due to repetitive sequence is to somehow 

identify repeat regions, then “mask” (hide) them away from sequence alignment tools, for 

example by changing a masked region in a genome to a sequence of Ns; alignment software 

assigns no score to alignments in such masked regions. An alternative strategy, soft masking, 

marks characters so that they will not serve as alignment seeds, but allows them to be used in 

scoring after seeding is complete. Numerous tools have been developed over the years to 

detect tandem repeats and mask them in sequence annotation pipelines (for review see [15–

17]). Early approaches [19, 25] were superseded at the turn of the century by Tandem 

Repeats Finder (TRF [4]), which remains the most heavily used DNA repeat detector to 

date. TRF models repetitive regions as a series of Bernoulli trials, dependent on the 

identification of pairs of nearby identical length–k runs. TRF is reasonably fast and 

considered effective at recognizing repetitive regions and can report a repeat’s consensus 

subunit, but it does not provide estimates of the statistical significance of its annotated 

repeats and suffers from unstable score distribution on random sequence (see Section 2.3).

A more recent approach in the software TANTAN [9] utilizes a simple hidden Markov 

model (HMM) to quickly compute the probability that each residue is part of a tandem 

repeat. The generative model includes a state for non–repetitive sequence, with transitions 

into states for repeats of various periodicity. While much more sensitive than TRF, 

TANTAN is prone to either entirely missing repeat regions containing insertions or deletions 

(indels) or breaking them into small islands, and is designed only for masking (i.e. it does 

not report a repeat’s consensus subunit).

Though masking with these tools often restricts alignment software from finding a high–

scoring alignment to the masked sequence, false matches are still frequently observed in 

sequences with decayed repeat regions that are missed by repeat–masking software [10]. For 

example, when annotating the human genome with models of transposable element families, 

we found many thousands of examples of high–scoring false matches caused by decayed 

repeats missed by TRF [23]; overcoming these false annotations required significant semi–

manual masking of the transposable element family models.

These unmasked repeats are typically the result of insertions and deletions relative to the 

consensus subunit (e.g. Figure 1, third line), which complicate their detection. It is a 

straightforward process to identify a repeat consisting of perfect copies of a subunit, 

however such perfect repeats typically decay over time, due to substitution mutations and 

short indels. Substitution mutations are relatively straightforward to model: for a subunit of 

length k, assign some score or probability to the character observed at a position i by 

comparing that character with the character offset k positions earlier in the sequence, and 

accumulate these scores/probabilities over a run of positions — repetitive sequence will 

accumulate higher score/probability than nonrepetitive sequence. Indels pose the more 

challenging problem. In the case of a single–letter insertion relative to the length–k 

Olson and Wheeler Page 2

ACM BCB. Author manuscript; available in PMC 2019 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consensus subunit, each of the following k letters should be compared to the character k+1 

positions earlier. The difficulty in identifying decayed repeat regions lies in tracking this sort 

of offset from the standard frame across various lengths of potential insertion and deletion. 

The models underlying TRF and TANTAN both focus on core indel–free runs with 

secondary accommodation of indels. Others have explicitly incorporated indels into their 

model, most notably the “sunflower” model of Nánási et. al. [20]; this approach, though able 

to effectively model complex inexact repeat patterns, results in models too large and slow to 

apply at genomic scale.

Here, we describe an approach based on an HMM that fills the gap between the simple 

model of [9] and the highly expressive model of [20]. The result is a new tool that we call 

ULTRA (‘ULTRA Locates Tandemly Repetitive Areas’) that models repeats of various 

offset length and includes numerous states for indels at each offset. ULTRA finds degenerate 

TRs missed by other software, maintains low false annotation rates across a broad range of 

sequence composition, demonstrates a stable distribution of scores on random sequence, 

reports contiguous repeat regions, and runs at speed comparable to other TR detection 

software. Though it does not currently report consensus subunits or P–values, the framework 

supports such future improvements as relatively straightforward enhancements. While 

ULTRA is initially released as a standalone tool used to detect and mask TRs, it will 

eventually be incorporated directly into sequence alignment tools as an improved model of 

“random” sequence.

In the following sections, we demonstrate ULTRA’s efficacy in labeling approximately 

repetitive sequence regions of various composition (in terms of both coverage and expected 

false annotation), discuss labeling overlap among three tools, describe score distributions, 

and analyze ULTRA’s performance characteristics. We then describe the model, along with 

implementation strategies used to improve speed and space requirements. We focus our 

attention on DNA sequence, as this is the most pressing need. We leave as future work a 

variety of natural extensions: subunit consensus reporting, statistics, incorporation into 

alignment pipelines, application to proteins, and characterization of repeats made possible 

by the new model.

Unlike TRF, ULTRA is released under an open source license. This enables incorporation at 

the source level into other software and analysis pipelines, and provides an opportunity for 

feature enhancement from the community.

2 RESULTS

Measuring the efficacy of repeat annotation tools is complicated by the fact that there are no 

reliable “true repeat” benchmarks. Though there exist advanced methods for simulating 

plausibly complex genomic sequence containing regions of varying sequence bias 

(isochores) and a distribution of transposable elements (e.g. [5]), modeling of tandem 

repeats is less advanced — even in these tools, tandem repeats are simply injected into 

simulated sequence based on the distribution of known tandem repeats. The circularity of 

testing with such simulated sequence limits utility.
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We approach the problem of assessing the efficacy of tandem repeat detecting tools in three 

ways. First, we assess sensitivity to decayed repeats by considering coverage (the number of 

residues labeled as repetitive) of real genomic sequence; this includes analysis of sequence 

with high composition bias. Because increased sensitivity can be achieved simply by 

parameterizing in a way that increases labeling of non–repetitive sequence, we also test the 

extent of false labeling using shuffled genomic sequence. Second, we explore the extent to 

which the tools agree or disagree in their labeling. This includes both quantitative inspection 

of overlapping coverage and a qualitative consideration of the sort of repeats found by one 

tool that are missed by others. Finally, because a stable distribution of scores is necessary for 

reliable incorporation into annotation pipelines, we explore the distribution of scores on 

non–repetitive sequence.

2.1 Sensitivity of Repeat Labeling

We tested the labeling performance of ULTRA, TANTAN, and TRF. To understand how 

well each tool labels decayed repetitive regions in genomic sequence, we applied the tools to 

(i) the human genome (chromosome 18; this has AT content of 60%, representative of the 

entire human genome), and (ii) two AT–rich genomes (Plasmodium falciparum & 

Dictyostelium discoideum; results averaged over both genomes, which are each 80% AT). 

For each tool, we used a pair of parameterizations, one “sensitive” (higher coverage, at the 

cost of higher rate of false labeling), and one “conservative” (lower false labeling rate, with 

accompanying lower coverage). Sensitivity was assessed based on the coverage of genomic 

sequence (the number of nucleotides labeled as being part of a repetitive region), while 

expected false labeling was determined by using each tool to mask window–shuffled 

sequence (chromosomal sequence mononucleotide shuffled in blocks of 10Kb, with the goal 

of preserving the potentially confounding effects of isochore composition variability; see 

Section 3.4). Figure 2 shows the results of these experiments.

Under both sensitive and conservative settings, and on genomes with both moderate and 

biased composition, ULTRA labels substantially more genomic sequence as repetitive than 

TANTAN. This increased coverage does not come at the cost of false annotation: in all 

cases, ULTRA’s estimated false annotation rate is somewhat lower than that of TANTAN, 

and its False Discovery Rate (FDR) is much lower.

The picture for TRF is somewhat more complex. On relatively neutral composition (the 

human genome), ULTRA is clearly much more sensitive, and and less prone to false 

labeling. On AT-rich genomes, the sensitive parameterization of TRF labels ~10% more of 

the genome as repetitive than does ULTRA, but nearly all of that increased coverage appears 

to be the result of false labeling — more than 30% of TRF’s labeled repeats are expected to 

be false. Similar results are seen with the conservative parameterization of TRF, which 

compare unfavorably even to the conservative parameterization of ULTRA.

TRF’s high false labeling rate on sequences with highly–biased composition is due to the 

fact that the model of TRF does not account for sequence composition, and that such biased 

sequence naturally produces regions that looks vaguely repetitive if the context is ignored. 

Another concern is the risk of overextension in AT–rich sequence: when a correctly–labeled 

AT–rich repeat is flanked by more AT–rich non–repetitive sequence, some of that flanking 
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sequence may be incorrectly pulled in as part of the repeat, simply because it slightly helps 

the scoring of the true repeat. Our false labeling test does not identify this sort of problem, 

but manual inspection of sensitive TRF’s annotation of AT–rich sequence suggests that this 

may be a common phenomenon (i.e. is a possible hidden source of additional false labeling).

2.2 Comparing Repeats Labeled by Each Tool

While coverage and false labeling numbers provide summary statistics useful for comparing 

tools and parameterizations, we have found it enlightening to consider how these tools 

overlap in coverage. Figure 3 (top) shows, of all nucleotides labeled by at least one tool, the 

fraction labeled by each collection of tools. It also shows the reciprocal shared coverage of 

nucleotides (bottom). We find it particularly striking that even though ULTRA demonstrates 

much greater coverage, each other tool labels a large number of repeats not labeled by 

ULTRA, much larger than the expected false labeling.

We have manually inspected the collection of tool–unique repeats, and find that when TRF 
and/or TANTAN label a region that is not labeled by ULTRA, the region is typically fairly 

short (under 40 nucleotides in length; see Figure 4 for overall length distribution). 

TANTAN–unique repeats frequently look to us more like low–complexity sequence (high 

levels of AT or CG, often as bursts of mononucleotide strings) than degenerate repeats (see 

Figure 6A&B). Meanwhile, regions labeled by ULTRA and not the others are often longer, 

with more complex patterns of insertion and deletion that, once visualized, suggest the 

repetitive nature of the sequence (see 6C). While we have tried to present an unbiased 

sampling of representative unique matches, we make available our datasets so that others 

may review them and develop their own impression (see Section 4.4).

2.3 Score Distribution

The most common use of tandem repeat detection is to mask a sequence prior to annotation 

of other elements (e.g. genes or transposable elements) based on sequence alignment score. 

An alternative is to compete putative alignment matches with putative repeat regions, 

selecting the annotation with greatest significance. In development of [23] we devised an 

approach that converts TRF scores to P–values, assuming a mixture of Gumbel distributions. 

The method enables comparison of matches in the annotation pipeline by comparing P-

values for TRF matches to E–values for homology search tool hits, but the choice of fat–

tailed distribution is not well supported. This is in part because we don’t know how the 

distribution decays (we selected the Gumbel for simplicity), but primarily because TRF 
score frequencies vacillate wildly (Figure 5A — frequently showing a 10-fold difference in 

counts between two neighboring integer scores). Furthermore, reasonably high–scoring 

repeats found in non–repetitive sequence are much more likely to be labeled as a high–

period repeat than a low–period repeat (e.g. for TRF hits with score >30, the number of 

period–10 repeats is ~200× larger than the number of period–4 repeats).

This instability of score and period distributions was a primary motivator in the development 

of ULTRA. To understand stability of score distribution, we used TRF and ULTRA to label 

large volumes of non–repetitive sequence (uniform nucleotide distribution), and captured the 

frequency of scores. TRF scores are reported as integers, so no additional binning is 
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required. ULTRA scores are floating point; we binned in increments of 0.3 bits to gain 

granular insight. ULTRA’s score distribution shows a much more stable decay (Figure 5B).

TANTAN was not considered in this analysis, as repeat regions are not scored — the only 

provided metric is a per–residue measure of TANTAN’s confidence that the labeled residue 

is part of a repeat. This supports masking, but not a more nuanced comparison of candidate 

annotations.

2.3.1 Performance.—We measured the computational performance of ULTRA, TRF, 

and TANTAN on Human and AT rich sequences (Table 1). TRF runs reasonably quickly on 

sequences with few repeats, but slows with high repeat density. Human centromeres in hg38 

contain simulated repetitive sequence, which leads to a dramatic increase in run time for 

TRF, but not ULTRA or TANTAN. Since labeling simulated sequence is not an appropriate 

use of TRF, we masked centromeres before this test. TANTAN demonstrates excellent 

runtime and memory usage across a broad range of sequences. We found that ULTRA runs 

comparably to TRF in sequences with few repeats, and significantly faster in more repetitive 

sequences. ULTRA’s memory requirements are modest.

3 METHODS

3.1 A Hidden Markov Model for Random Sequence Including Tandem Repeats

ULTRA is based on a model of repetitive sequence interspersed within a background of 

non–repetitive sequence. A hidden Markov model (HMM) is a probabilistic model capable 

of generating sequences that “look like” the modeled sequence, and also of labeling new, 

unlabeled sequence so that regions may be said to have been generated by one state (e.g. the 

non–repetitive state) or another (e.g. the period 3 state, meaning that the sequence consists 

of multiple copies of a three–letter subunit). A high–level representation of the model is 

shown in Figure 7.

3.1.1 A state for non–repetitive sequence.—The central state in ULTRA’s model 

generates non–repetitive sequence. This is a memoryless 0th order state that repeatedly 

emits a single character from a fixed distribution without regard for what has been 

previously emitted. This is effectively the model of background sequence assumed by 

alignment tools based on both score matrices (e.g. BLAST [1]) and profile HMMs (e.g. 

HMMER [7]).

3.1.2 States for repetitive sequence.—ULTRA’s model includes state–sets 

responsible for generating repeats with subunit size (periodicity) of 1 (mono–residue 

repeats) through an arbitrary cap (default in our experiments is 25). Each repeat–period state 

set consists of (i) a core state that produces letters based on previously–observed letters, and 

(ii) a collection of auxiliary states that allow for decay of perfectly periodic repetition 

resulting from insertions and deletions.

There is one core repeat state for each subunit length. The 1st–order state emits (possibly 

degenerate) mono–residue runs, the 2nd–order state emits di–residue repeats, and so forth. 

In a repeat state of order k, the probability of emitting a certain letter at position i, depends 
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on the letter observed at position (i−k). As an example, the letter emission distribution for a 

3rd–order−state (for a repeat with period 3) depends on the letter observed three positions 

earlier. In typical HMMs, a kth–order state has an emission distribution that depends on all k 

most–recently observed letters; our model simplifies this to consider only the letter found k 

positions back, allowing even high–order states to have small emission probability tables. 

The core repeat states are part of the state set pictured in Figure 7, and shown in detail in 

Figure 8.

In addition to the core repeat state, ULTRA’s model contains a collection of states designed 

to allow insertions or deletions (Figure 8). Ideally, these would allow insertions and 

deletions at arbitrary locations in the pattern (as in [20]), but for simplicity, the model only 

allows consecutive insertions or deletions. For example, for a subunit ATCGT, the repeat 

ATCGTATTCGGTATCGT contains two discontinuous insertions; ULTRA will seek identify 

two consecutive insertions instead, e.g. ATCGTATTCGGTATCGT, causing a small number 

of additional offset mismatches. The speed enabled by this simplification appears to be 

worth the dependency on nonconsecutive insertions. In experiments presented here, we 

limited the maximum length of consecutive insertion or deletion to 5 (no apparent loss in 

sensitivity). This limits growth of the number of states in the HMM, which keeps run time at 

an acceptable level.

3.1.3 Scoring a repeat region depends on a non–repetitive model.—With an 

HMM, an observed sequence of letters can be explained as having been generated by any 

sequence of states; the probability of the observed sequence and one particular sequence of 

responsible states is simply the product of the probabilities of transitioning between those 

states and the probabilities of the observed sequence being emitted by those states. Given a 

short sequence S, the ULTRA HMM computes the most–probable state path for S using the 

Viterbi algorithm, based on emission and transition probabilities from Figures 7 and 8.

The score of a repeat region is computed as the log of the ratio of this probability (due to the 

repetitive model) and the probability under a simple model of non–repetitive sequence. The 

non–repetitive model is a single state identical to that described in Section 3.1.1.

3.1.4 Parameterization.—For the current study, we have hand selected apparently–

reasonable parameters. In the future, it may prove valuable to train the parameters of our 

model on trustworthy repeat sequences (though results from [9] suggest that this may not be 

fruitful). Though the model is general, all tests were performed on DNA only; parameters 

have thus only been tested for DNA.

The non–repetitive state (and background) emission probabilities are determined from the 

composition of the sequence to be labeled. To account for composition variability due to 

isochores, ULTRA considers the composition of a large (default 100Kb) window centered 

around each labeled residue. By including this background model, ULTRA effectively 

avoids spurious labeling due to simple sequence composition bias.

Repetitive states have a probability of emitting a letter that matches the previous letter 

(based on appropriate periodicity). In non–repetitive DNA with uniform letter distribution, 
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the expected probability of matching a previous letter is 25%; that number rises as 

composition becomes increasingly biased. To offset this background expectation of 

matching, we employ a simple ad-hoc strategy for setting the expected frequency of emitting 

a match in a repetitive state: if μ is the expected frequency of a match in non–repetitive 

sequence, then the repetitive match probability M = min(1.0, 0.1+2μ). This leads to a match 

probability of 0.61 in human chromosome 18, and 0.78 in 80% AT–rich sequence. The 

probability of each of the three mismatched letters in repetitive states is simply a uniform 

division of the remaining probability, (1−M)/3.

The probability of transitioning from non–repetitive) sequence to repetitive sequence (α) 

was set to 1%. Though higher–period repeats may be less common than lower ones, we 

adopted a flat prior for these tests: each subunit length was considered equally likely. The 

probability of beginning an insertion (λ) or deletion (δ) was set to 5%. The probability of 

extending either was set to 50%. The probability of ending the repeat (ϵ) was set to 4%. We 

have no reason to expect that these are optimal parameters.

3.2 Traceback and score derivation

Repeats are found in a two pass process. In the first pass, a full dynamic programming 

Viterbi matrix is filled in for a sequence block of default size 10Kb, using the model and 

parameters described above. The 10Kb windows are overlapped to ensure traceback quality. 

In the second pass, the standard Viterbi traceback is performed, starting (at the end of the 

matrix) from the state with highest score; this recovers the most–probable assignment of all 

letters in the window to their emitting states. In regions in which the traceback passes 

through repetitive states, the scores at the beginning and end of the repeat–labeled sequence 

are captured; this is the score of the repeat region. If that score is greater than reporting 

threshold, the region is reported as a TR. At present, the distribution of scores is not 

sufficiently characterized to convert these scores to meaningful E–values.

3.3 Collapsing Calculation on the Insert and Delete Paths

ULTRA’s model consists of numerous insertion and deletion (indel) state paths. These are 

key to ULTRA’s improved modeling of the indels that are common in degenerate repeat 

regions, but they also cause a large increase in the state space within which HMM Viterbi 

calculations are made. Here, we describe an optimization that allows ULTRA to include a 

large number of state paths without incurring a significant performance penalty.

All states within insertion and deletion paths have a single parent from which they are 

reached. Additionally, when a length–n insert is found in an order–k repeat state–set, an 

insertion path will consist of a contiguous block of n 0th order states (the insertions relative 

to the repeat) followed directly by a contiguous block of k states with the order k +n. 

(Similarly, in a given deletion path there is a contiguous block of k − n order states followed 

directly by a contiguous block of 2k − n order states.) These properties enable a significant 

reduction in required calculations, demonstrated here in the context of an insertion. After 

having calculated the score for the final state of an insertion path once at position t of the 

target sequence, we can calculate the score for the final state of an alternate indel path at 

position t + 1 by reusing redundant calculations shared by the two paths, and computing the 
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small number of non–redundant calculations. This reduction in calculation is analogous to 

calculating a moving average by only computing values that been removed/added since the 

last time the moving average was computed.

As an example, let Ik,n,k (t) be the final state in the path coming out of a length n insertion 

within the repetitive period–k state set, when emitting the nucleotide at position t. Let θk (t) 
represent the kth order emission score for the letter at position(t). Instead of recalculating the 

entire insertion path, we can perform the following calculation:

Ik, n, k t + 1 =
Ik, n, k t θk t − m − n θ0 t − m + 1 θk + n t + 1

θk t − m − n − 1 θ0 t − m − n θk + n t − m

Figure 9 demonstrates with a concrete example of this reduction applied to three consecutive 

insertions within a period–4 repetitive state. The calculation reduction effectively reduces 

the number of states needed from O(K2) to O(K), where K is the maximum periodicity.

3.4 Sensitivity experiments

Experiments were performed using human chromosome 18 (version hg38), Plasmodium 

falciparum (EPr1), and Dictyostelium discoideum (2.7). False annotation experiments were 

performed by block–shuffling: genomic sequence was broken into contiguous 10Kb blocks, 

and each block was mononucleotide shuffled. This breaks apart all actual repetitive 

sequence, but preserving the potentially confounding effects of composition variability due 

to genetic isochores.

TRF version 4.09 was tested with conservative settings (default from TRF documentation: 

match=2 mismatch=7 indel=7 pm=80 pi=10 minscore=30 maxperiod=25) and sensitive 

changes to those settings recommended in [9] (mismatch=5 indel=5).

TANTAN version 13 was run on the human genome with default settings, constrained to 

maximum period of 25 (–w 25). For AT–rich genomes, we used the ATMask matrix 

provided on the TANTAN website, and increased the probability of starting a repeat as 

recommended (–r 0.01). TANTAN determines which nucleotides to report as repetitive by 

computing labeling confidence. In default settings, it reports all nucleotides for which it is at 

least 50% confident in the annotation — this is the sensitive variant of TANTAN in our 

experiments. To achieve lower false discovery rate, our conservative variant of TANTAN 
used a confidence threshold of >85%.

ULTRA was run with default settings: enter–repeat=0.01 exit–repeat=0.04 insertion=0.05 

deletion=0.05 maxinsertions=5 maxdeletions=5 rolling–window=100,000. ULTRA score 

thresholds were selected based on expected false positive levels (chosen to be integer values 

with false annotation no worse than TANTAN for the corresponding search) — on human 

sequence the resulting score thresholds were 9 (sensitive) and 13 (conservative); on AT–rich 

genomes, 12 (sensitive) and 16 (conservative). At time of manuscript submission, these 

thresholds were set manually, but predicted false labeling from block–shuffled sequence will 

support automatic thresholds upon software release.
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3.5 Complexity and performance

Let K be the maximum periodicity of repeat states, and Φ be the maximum number of 

allowed contiguous insertions, and Δ be the maximum number of allowed contiguous 

deletions (both Φ and Δ are set to 5 by default). Then the total number of states in our 

model, including indel recovery states, is O(K2(Φ+Δ)). The removal of redundant 

calculations described in Section 3.3, reduces the number of computed values for each 

labeled letter to be reduced by a factor of K, so that labeling a sequence of length m requires 

time O(mK(Φ + Δ)).

Testing was performed on a 4.2 GHz Intel Core i7 iMac with 16 GB available RAM running 

MacOS 10.13.4. Custom python and bash scripts were written to run and analyze 

experiments.

4 DISCUSSION

We have developed an HMM–based tool, ULTRA, that efficiently detects tandem repeats 

within a background of non–repetitive sequence. It is effective even in the face of repeats 

decayed by insertions and deletions relative to the repeat subunit. Due to optimizations in 

indel state calculations, the speed and memory requirements of ULTRA are competitive with 

the most used repeat labeling tool, TRF. In both sensitive and conservative modes, ULTRA 
shows excellent sensitivity and false labeling performance on genomes with a variety of 

sequence composition.

At present, ULTRA reports score and subunit size (periodicity) for each repeat, but not 

consensus pattern. Recovering and reporting the consensus will come in the future.

4.1 Parameterization

We acknowkedge that ULTRA utilizes hand-optimized parameters, which may have resulted 

in an over-fitting of the tool to particular inputs. We have tried to avoid this by testing across 

a range of input sequences, and depending on FDR to guide score thresholds. More careful 

consideration of parameterization is called for. In addition, ULTRA has been tested only on 

DNA; while it uses a general model that should apply in straightforward fashion to protein 

repeat annotation, additional parameterization will be required.

4.2 Statistics

The score distributions produced by ULTRA are more stable than the score distributions 

produced by TRF, but statistics of these scores are not yet understood. Reliable statistics will 

improve the value of repeat annotation — rather than simple masking of sequence, the 

significance of a repeat annotation can be held in contrast to the significance of a homology 

search tool hit containing that repeat.

4.3 Non–overlapping Tool Results

The substantial independence of repeat regions labeled by various tools is surprising. Based 

on experience with false sequence homology annotation due to degenerate repeats, we 

expect the the repeats unique to ULTRA will prove more valuable for annotation 
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correctness, as current homology tools have reasonably effective ways to deal with simple 

(non–repetitive) biased composition. Also, the increased abundance of longer and more 

complex repeats found by ULTRA is important because longer repeats are more likely to 

supply enough support in sequence homology tools to bring a false hit above annotation 

threshold for a sequence search tool.

Looking to future applications of the ULTRA model, in which the model is incorporated into 

homology software, and probability/score of repetitiveness is used to offset the score of a 

homology hit: the regions labeled exclusively by TRF and TANTAN in these tests aren’t 

ignored by ULTRA -, their scores simply do not rise above ULTRA’s reporting threshold. In 

the context of annotation, those sub–threshold values for short sequences will still be useful 

for offsetting the scores of false homlogy matches.

4.4 Availability

ULTRA is released under the BSD–3–Clause open source license. Software and 

documentation are available at https://github.com/TravisWheelerLab/ULTRA.

All benchmarks are available at https://wheelerlab.org/publications/Olson18/

Olson18.suplement.tar.gz.
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Figure 1: 
Example of a Tandem Repeat consisting of four perfect CATG copies (first line), 

degenerated by substitution mutations (second line), then insertions and deletions (third 

line). All deviations from the perfect repeat are shown in a gray font.
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Figure 2: 
Repeat labeling of the human genome (chromosome 18, 60% AT–rich) and two AT–rich 

eukaryotes (Plasmodium falciparum and Dictyostelium discoideum). The length of the bar 

(blue + red) gives the total percent of the genome that is labeled as repetitive by the 

corresponding tool/setting. The length of the red bar is an estimate of the extent of expected 

false labeling. Thus, the blue bar shows the proportion of the labeling that is expected to be 

correct. For each dataset and each tool, an estimated False Discovery Rate (FDR) is 

computed as the ration of estimated false coverage to total coverage.
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Figure 3: 
Overlap between the set of nucleotides labeled by three tools. Each tool was run with 

sensitive settings. The Venn diagrams show, among all nucleotides labeled as repetitive by at 

least one tool, the fraction that were labeled by each tool or set of tools. The tables on 

bottom show what percent of nucleotides called repetitive by the top tool were also called 

repetitive by the left tool. For example, in the human sequence, ULTRA labels as repetitive 

52% of the nucleotides labeled repetitive by TANTAN, while TANTAN labels as repetitive 

only 38% of the nucleotides labeled repetitive by ULTRA. Target sequences are the same as 

in Figure 2.
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Figure 4: 
Number of nucleotides labeled in repeats, by length. We considered the repeats labeled on 

human chromosome 18, using each tool at sensitive setting. We counted all nucleotides 

labeled as repetitive, binned according to the length of the repeat.
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Figure 5: 
Score distribution on non–repetitive sequence. TRF was used to label 400GB of non–

repetitive sequence, and demonstrates dramatic swings in score (e.g. on random sequence, 

10× more hits with score 34 than score 33). ULTRA was used to label 144GB of non–

repetitive sequence, and produces scores with a more stable distribution.
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Figure 6: 
A qualitative survey of repeat regions labeled by one tool but not others. (A) TRF–labeled 

repeats not found by ULTRA are typically made up 2–3 copies of a modest–length subunit. 

We have broken the examples into multiple rows to highlight the repeat (implied insertions 

are selected by hand). (B) TANTAN-labeled repeats not found by ULTRA are usually of the 

form shown here: frequently short, often composed of degenerate mono- or di-nucleotide 

repeats. Because of the simplicity of these repeats, they are not broken out across multiple 

lines. (C) ULTRA–labeled repeats not found by the other tools often match this form: a 

fairly long period with repeats containing non–trivial insertion or deletion structure. As with 

TRF repeats, the examples are broken across multiple lines to show the repetitive structure. 

In the case of the ULTRA “alignment” of repeats, the gap structure matches that used by the 

model to identify the repeat (i.e. it allows only consecutive insertions or deletions, and has 

not been optimized).
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Figure 7: 
Hidden Markov model of sequence consisting of mostly non–repetitive sequence (top state), 

containing repeats of various periodicities (other states). Square states are silent (non–

emitting). Cloud shape state sets represent the core state designed to maintain periodic 

repeats, along with states to allow for deviation due to insertion and deletion (see Figure 8 

for expanded description of state sets. Square states are silent. All unlabeled edges have 

probability 1 (represent mandatory transitions).
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Figure 8: 
(A) This diagram shows the handling of insertions and deletions within a sample state set 

(for subunit of size 3). For example, after an insert of length 1 (state I1,1, which emits a letter 

from background), there will be three emissions that must look back to an offset of 4, after 

which the model returns to the default offset of 3. After an insert of length 2 (state I1,2), the 

three following letters will depend on an offset of 5. Deletions begin with d ≥ 1 silent states, 

followed by (3−d) emitted letters at offset (3−d), followed by d letters at an offset of (3*2−d) 

— comparing to the last appropriate match before the deletion. Square states are silent. All 

unlabeled edges have probability 1 (represent mandatory transitions).
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Figure 9: 
Example of the relationship between the calculations required for (i) an insertion of length 3 

within the order-4 state set ending at position t + 7 of the labeled sequence, and (ii) an 

insertion of length 3 within the order-4 state set ending at position t + 8. Most calculations 

are redundant (represented by vertical lines between offset calculations), so the value for 

I4,3,4 at t + 8 can be computed by starting with the value for I4,3,4 at t + 7, subtracting the 

non-redundant values from the top row (no vertical line), and adding the non-redundant 

values from the bottom row (no vertical line).
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Table 1:

Run time and memory requirements for each tool, using human chromosome 18 (75.0 megabases) and AT rich 

sequences (47.7 megabases) as described in Figure 2.

sequence ULTRA TANTAN TRF

Run time
Human chrl8 6m58s 29s 3m43s

AT-rich 5ml9s 26s 20m31s

Memory (Mb)
Human chrl8 315 486 177

AT-rich 263 337 1,200
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