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Abstract

The active form of the small GTPase RhoA is necessary and sufficient for formation of a 

cytokinetic furrow in animal cells. Despite the conceptual simplicity of the process, the molecular 

mechanisms that control it are intricate and involve redundancy at multiple levels. Here, we 

discuss our current knowledge of the mechanisms underlying spatiotemporal regulation of RhoA 

during cytokinesis by upstream activators. The direct upstream activator, the RhoGEF Ect2, 

requires activation due to autoinhibition. Ect2 is primarily activated by the centralspindlin 

complex, which contains numerous domains that regulate its subcellular localization, oligomeric 

state, and Ect2 activation. We review the functions of these domains and how centralspindlin is 

regulated to ensure correctly timed, equatorial RhoA activation. Highlighting recent evidence, we 

propose that although centralspindlin does not always prominently accumulate on the plasma 

membrane, it is the site where it promotes RhoA activation during cytokinesis.

Introduction

Cytokinesis, one of the most photogenic events in the life of a cell, requires precise 

positioning of the division machinery relative to the two segregated masses of DNA. Diverse 

strategies to accomplish this important cellular process have appeared during evolution. In 

plant cells, the division plane is determined by the converging plus ends of interpolar 

microtubules that direct the delivery and ultimate fusion of membranes containing cell wall 

materials to the cell center [1]. Many prokaryotes divide at the midcell. This site can be 

defined by the coordinated action of two inhibitory signals: an assembly inhibitor that 

oscillates between the two cell poles and a second inhibitory signal associated with the 

segregating masses of DNA [2]. The midcell is permissive for the assembly and treadmilling 

of prokaryotic tubulin, ftsZ, which directs the local synthesis of cell wall materials that 

mediate cell fission [3]. In animal cells, the position of the anaphase spindle directs the 

position of the cleavage furrow, as demonstrated by spindle manipulation experiments [4]. 

The spindle generates both positive and negative signals that create and pattern cortical 

contractility. At the peak of the positive signal and/or the minimum of the negative signal, 

the contractile ring, an actomyosin-based structure assembles, constricts, and eventually 
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triggers abscission. Contractile ring assembly requires activation of the small GTPase RhoA 

and zones of active RhoA accumulate at sites of furrow formation [5–7]. Optogenetic 

induction of a membrane-associated zone of active RhoA reveals such zones are sufficient 

for furrow formation [8]. These findings suggest that a primary function of the spindle is to 

generate and pattern zones of RhoA activity.

RhoA directly activates formin-mediated f-actin assembly and indirectly promotes myosin II 

activation [9, 10]. The GTPase associates with the plasma membrane via C-terminal 

prenylation [11], a modification essential for its function. RhoA is activated by a conserved 

RhoGEF, Ect2 (for consistency, we will use the mammalian nomenclature throughout) 

(Figure 1 and 2) [12]. RhoA activation requires the interaction of RhoA•GDP with active 

Ect2 at the plasma membrane. This step is highly regulated, as Ect2 is autoinhibited (Figure 

2) [13] and, in some cell types, not constitutively membrane bound [12]. Here we will 

review the current understanding of this process, with a focus on developments in the last ~5 

years. The important steps that follow RhoA activation, contractile ring assembly, 

constriction and abscission have been recently reviewed [14, 15].

Anaphase spindles are primarily composed of radial arrays of dynamic astral microtubules 

surrounding spindle poles and overlapping plus ends of microtubules at the middle of the 

spindle. Either one can spatially modulate furrow assembly, and a number of cell types enlist 

both strategies [16], presumably improving fidelity. Considerable variety is observed in the 

degree to which a given cell relies on one or the other. Anastral meiotic spindles rely 

exclusively on overlapping microtubules at the spindle midzone, representing one end of this 

spectrum. To a first approximation, overlapping microtubule plus ends are involved in 

promoting the local activation of RhoA at the equator and dynamic astral microtubules 

suppress it at poles. The centralspindlin complex, a major focus of this review, is a crucial 

component of the former. We begin by discussing the myriad domains of centralspindlin and 

how they contribute to RhoA activation. Subsequently we discuss how these reactions are 

spatially constrained to ensure RhoA activation at the equatorial plasma membrane - despite 

the lack of significant accumulation of centralspindlin at this site - and discuss our nascent 

understanding of the mechanism of inhibition of contractile activity by astral microtubules.

Multiple centralspindlin domains contribute to RhoA activation

To activate RhoA and induce a cleavage furrow, the RhoGEF Ect2 itself requires activation. 

This role is performed by centralspindlin, a protein complex conserved in all metazoans. A 

centralspindlin heterotetramer contains a dimer of a kinesin-6 motor protein MKLP1 (aka 

Kif23 in mammals; ZEN-4 in C. elegans; and Pavarotti in Drosophila) and a dimer of a 

RhoGAP protein, Cyk4 (aka MgcRacGAP in mammals; CYK-4 in C. elegans; and 

RacGAP50C/Tumbleweed in Drosophila). Each subunit of the complex contains multiple 

domains required for cytokinesis (Figure 2). While both centralspindlin and Ect2 are well 

conserved, as is the requirement that they interact, certain aspects of their localization 

patterns are not consistent across cell types. In most somatic cells during interphase, 

centralspindlin subunits and Ect2 are primarily nuclear localized [17, 18], but a fraction can 

also be detected in the cytoplasm and/or the membrane [19]. In mammalian cells, membrane 

recruitment of Ect2 is cell cycle regulated [20] and accompanied by prominent recruitment 
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to the spindle midzone, whereas in C. elegans blastomeres it is constitutively membrane-

bound and only weakly detected at the spindle midzone (K. Longhini and MG, unpublished 

results). Prominent centralspindlin localization to the spindle midzone is a conserved feature 

of anaphase cells, but its cortical recruitment is more variable. In Drosophila it is readily 

detected at the cortex [21, 22], in C. elegans it can be detected during mid-cytokinesis [23, 

24], but it is rarely detected at the cortex in cultured mammalian cells, prior to midbody 

assembly when it is highly concentrated on the membrane [25].

MKLP1 has five functional domains. It has an N-terminal motor domain, an extended neck 

linker region, a coiled-coil dimerization motif, an oligomerization motif, and a C-terminal 

globular region. Cyk4 has a short N-terminal unstructured region, a coiled-coil dimerization 

motif, an extended region that interacts with Ect2, a lipid binding C1 domain, and a C-

terminal RhoGAP domain. The N-terminal region of Cyk4 and the extended neck linker 

region of MKLP1 mediate complex assembly which also requires that each protein dimerize 

[26].

While this review focuses on the role of centralspindlin in RhoA activation for furrow 

induction, centralspindlin also is required early in cytokinesis to organize the central spindle 

and during the final stage of cell abscission [27]. In addition to its cytokinetic functions, 

distinct interphase functions for this complex are now being defined. For example, 

centralspindlin recruits Ect2, and thereby activates RhoA, to regulate epithelial junctional 

integrity [19]. The ability of MKLP1 to bundle microtubules is also required in post-mitotic 

germline cell development [28] and neuronal axon extension [29].

Structure and function of MKLP1

Kinesin motor domain

One of the major functions of MKLP1 is to bundle microtubules in the spindle midzone 

during anaphase via its motor domain [17]. Although MKLP1 can associate with 

microtubules as a dimer, these interactions are transient; processive motility requires 

MKLP1 oligomerization [30]. However, MKLP1 oligomers are insufficient to bundle 

midzone microtubules and concentrate centralspindlin at this site. Cyk4/MKLP1 complex 

formation is required for bundling in vivo [25] and establishes a strong preference for 

antiparallel microtubule bundling in vitro [31]. Cyk4 binding conformationally restricts the 

two motor domains of a MKLP1 dimer [31, 32].

MKLP1 oligomerization motif and its regulation

A small, functionally conserved, 16-residue domain in MKLP1 makes an important 

contribution to centralspindlin function during cytokinesis by inducing oligomerization [24, 

30, 33]. Oligomerization potentiates the weak processivity of MKLP1 on microtubules and 

consequently the signature accumulation of centralspindlin on plus ends of antiparallel 

microtubules [30]. In human cells, the ability of centralspindlin to oligomerize is inhibited 

by 14–3-3 proteins that directly bind phosphorylated S710 on MKLP1 prior to anaphase 

[33]. 14–3-3 proteins are highly helical, dimeric, multi-functional proteins that bind to 

specific interactors via phosphoserine motifs [34, 35]. The 14–3-3 binding site on MKLP1 is 
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conserved; it is generated through phosphorylation by Ndr kinases [36]. However, during 

anaphase, the Aurora B kinase subunit of the Chromosome Passenger Complex (CPC), 

phosphorylates MKLP1 at S708 [37–39], which abolishes 14–3-3 binding [33]. Thus, the 

CPC promotes central spindle assembly by inducing oligomerization of centralspindlin.

An additional, vital role for centralspindlin oligomers emerged from analysis of PAR-5, a 

14–3-3 protein in C. elegans [24]. Most species have several 14–3-3 isoforms, some of 

which are functionally redundant, making it challenging to characterize their cellular roles 

[35, 40]. PAR-5 is the only 14–3-3 isoform expressed in the early C. elegans embryo [41, 

42]. Depleting this protein or, importantly, mutating its conserved binding site (S682) on 

ZEN-4/MKLP1 results in embryos with a global increase in active RhoA, and ectopic 

cleavage furrows associated with a striking localization of centralspindlin on the membrane. 

These results reveal a role for centralspindlin oligomers in RhoA activation at the plasma 

membrane. This function of centralspindlin is promoted by the CPC by antagonizing PAR-5 

activity. As the CPC is dispensable for furrow formation in PAR-5-deficient embryos [24], 

centralspindlin oligomerization appears to be the primary function of the CPC in furrow 

formation (Figure 3). Thus, the property of centralspindlin to oligomerize promotes at least 

two functions of the complex, one based on microtubule binding and the other on membrane 

binding. Oligomerization likely increases the avidity of a weak microtubule binding motor 

domain in MKLP1 and a combination of weak membrane tethers in Cyk4.

Structure and function of Cyk4

N-terminal MKLP1 and Ect2 docking sites

The N-terminus of Cyk4 is intimately involved in assembly of the centralspindlin complex 

[25]. C-terminal to this region are important residues that mediate interaction with the 

RhoGEF Ect2 [43, 44]. Although their domain structures suggest that the RhoGEF Ect2 and 

the RhoGAP Cyk4 function antagonistically, there is strong evidence that they cooperate to 

promote RhoA activation. In most cell types, depletion of either Ect2 or Cyk4 results in a 

failure to form an ingressing cleavage furrow. Ect2 and Cyk4 are required for the 

accumulation of RhoA and its effectors at the equatorial plasma membrane [44–47]. 

Depletion of MKLP1 has a weaker affect on contractile ring assembly [44], perhaps due to 

variable extents of depletion.

Ect2 exists in an inactive conformation owing to an intramolecular interaction between N 

terminal BRCT domains and C terminal DH-PH domains [13]. How is this GEF activated to 

promote RhoA function? The N-terminal BRCT domains of Ect2 are phosphopeptide 

binding modules [48] that also bind phospho-Cyk4 [43, 44] relieving autoinhibition.

Chemical inhibitors and analog sensitive mutants of Plk1 reveal that it plays multiple roles in 

cytokinesis. Plk1 kinase activity is required for its spindle midzone localization, yet it 

antagonizes midzone recruitment of PRC1 and centralspindlin during metaphase [49]. Plk1 

inhibition leads to loss of Ect2 from the midzone; RhoA and downstream effectors fail to 

accumulate [50, 51] and Ect2 does not detectably bind Cyk4 [50, 52]. In vitro, Cyk4 

phosphorylation promotes, though is not strictly required for, binding with Ect2 [44, 52]. 

The N-terminus of Cyk4 has seven Plk1 phosphorylation sites, four of which are 
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evolutionarily conserved (S149, S153, S164 and S170). Mutating these sites to alanine 

attenuates assembly of a stable complex between centralspindlin and Ect2, failure to activate 

RhoA, and loss of Ect2 from the midzone [52, 53]. In sum, these results point to a model 

where Cyk4 binding contributes to Ect2 activation.

Although the structure of the Cyk4/Ect2 complex is not known, homology modeling of Ect2 

BRCT domains allowed prediction of residues required for this interaction. Mutational 

analysis revealed that residues T153 and K195 are crucial for Cyk4 binding [52]. Recently, 

T153A and K195M (TK) mutations were generated in full-length Ect2 and expressed in 

cells. While one might expect that the TK mutation of Ect2 BRCT domains would 

phenocopy the non-phosphorylatable mutant of Cyk4, surprisingly, the TK mutant rescues 

cytokinesis defects in the absence of endogenous Ect2. This mutant is strongly impaired for 

its interaction with Cyk4 and accumulates extremely weakly at the spindle midzone and 

equatorial membrane. These results were interpreted to indicate that the Ect2/Cyk4 

interaction is dispensable during wild-type cytokinesis [54]. However, an alternative 

interpretation bears consideration. As the BRCT domains are known to be involved in 

autoinhibition [13], T153 and K195 may participate in binding to the C-terminus of Ect2 to 

mediate Ect2 autoinhibition, perhaps via a C-terminal phosphorylation site or an acidic 

amino acid. If so, the TK mutant might be partially activated due to relief of autoinhibition. 

Importantly, Cyk4 is still required for cytokinesis in these mutants [54]. This suggests that a 

low level of interaction of the TK mutant with Cyk4, undetected via co-

immunoprecipitation, might suffice for RhoA activation. Indeed, the same study shows that 

although cytokinesis requires membrane recruitment of Ect2, the required levels of Ect2 at 

the membrane can be very low, below the limit of detection.

Plk1 phosphorylation of Cyk4 is antagonized by PP2A activity. PP2A binds Cyk4 through 

these phosphorylations and an additional interaction with a nearby LxxIxE motif. Mutation 

of this motif results in hyperphosphorylation of Cyk4 and cytokinesis failure. However, cells 

are able to assemble intact central spindles and cleavage furrows that ingress extensively 

before regressing. Dephosphorylation of Cyk4 by PP2A is thus likely important for the late 

stages of cytokinesis and not for early RhoA activation [55–57].

Membrane binding via the C1 domain

Though conventionally and historically considered a microtubule bundling complex, 

centralspindlin has been reported to localize to the cleavage furrow in some cells [21, 58, 

59]. However the mechanism by which it localizes, and the role of this pool of 

centralspindlin in cytokinesis has only been recently revealed. The Cyk4 component of 

centralspindlin contains a weak membrane-binding C1 domain. In human cells, this domain 

plays a role late in cytokinesis, linking the plasma membrane to the spindle microtubules as 

the midbody forms [60]. Because deletion of the HsCyk4 C1 domain does not impact 

cleavage furrow formation in these cells [60], it suggests that the membrane-binding 

property of the C1 domain is not required earlier for RhoA activation. However, the C1 

domain is essential for centralspindlin-directed RhoA activation in C. elegans [24, 61]. This 

difference is likely due to redundant, microtubule-based mechanisms for generating 

membrane-associated centralspindlin [62], as disrupting spindle organization in human cells 
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uncovers a role for the C1 domain in RhoA activation [24]. Ectopic localization of the 

Drosophila homolog of Cyk4 on the plasma membrane in S2 cells leads to hypercontractility 

[63], supporting the model that membrane-bound centralspindlin promotes RhoA activation.

RhoGAP domain

Although the GAP domain of Cyk4 is capable of serving as a canonical Rho family GAP in 
vitro, with a significant preference for Rac and Cdc42 over RhoA [27, 64, 65], genetic 

analyses indicate that the domain is primarily involved in RhoA activation during 

cytokinesis. Activation of RhoA is a curious function for a RhoGAP protein like Cyk4, 

which would ordinarily be predicted to turn a GTPase “off”. Another RhoGAP, MP-GAP 

(ARHGAP11A), has a conserved role in inactivating RhoA [66–68] (Figure 3).

The Cyk4 RhoGAP domain has been analyzed most extensively in the early C. elegans 
embryo. Two main models have been proposed for its function. One posits that Cyk4 GAP 

domain is primarily required to activate RhoA during cytokinesis. Another model proposes 

that its GAP activity is required during cytokinesis to turn off the GTPase Rac1. We recently 

elaborated on the merits of these models in a separate review [69]. A major concern with the 

latter model is that the experiments to support it have been performed in the presence of a 

parallel RhoA activation pathway peculiar to C. elegans (see NOP-1 section). In the absence 

of this second, non-essential, pathway, Cyk4 GAP mutants do not support furrow induction, 

thus favoring the model where this domain participates in RhoA activation. It is notable that, 

in this context, the active site of the GAP domain of Cyk4 is required for furrowing even 

when Rac1 is mutated [61].

The exact role performed by the Cyk4 GAP domain is likely to be context dependent. In 

Xenopus embryos, inactivating GAP function by abolishing the catalytic arginine finger 

increases the intensity and broadens the zone of RhoA activation during cytokinesis [70]. 

This is consistent with a conventional view of GAP function and favors a model where 

continuous GTPase flux is required for proper cytokinesis. However, deletion of the Cyk4 

GAP domain in these embryos causes dramatic instability of the contractile ring [70], 

suggesting that the GAP domain performs an anchoring function in cytokinesis. Consistent 

with a role for the GAP domain in membrane recruitment, it is required for its recruitment to 

the bridges separating individual nuclei in the syncytial germline in C. elegans [71]. In other 

cell types, the Cyk4 catalytic arginine is either dispensable for furrow induction [72], 

required to limit cell-substrate adhesion via Rac effectors [65], or contrary to expectations 

for a conventional GAP, strictly required for furrow formation [73].

The very C-terminus of Cyk4 mediates a direct interaction with the microtubule bundling 

protein PRC1. While not strictly required for centralspindlin localization to the midzone, 

this interaction promotes stable accumulation of the complex and central spindle assembly, 

in the presence of spindle pulling forces [74].

Summary: Activation of Ect2 by Centralspindlin

Centralspindlin-mediated RhoA activation via Ect2 is complex and multifactorial. Genetic 

analysis indicates it requires physical interactions between all four proteins (Cyk4, MKLP1, 
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Ect2, and RhoA) at the plasma membrane. Formation of this complex involves Plk1-

mediated phosphorylation of Cyk4 and subsequent binding of this site by the auto-inhibitory 

N-terminus of Ect2 [52, 53]. Ect2 membrane recruitment is mediated by its PH domain and 

basic regions in the C-terminus [20]. Membrane recruitment of Cyk4 involves both its C1 

and GAP domains and its ability to bind to MKLP1 [61]. The involvement of the GAP 

domain suggests that active RhoA could contribute to centralspindlin recruitment to the 

membrane and thus Ect2 activation, perhaps enabling positive feedback [61]. The Cyk4 

GAP domain also appears to allosterically activate Ect2; this activation involves RhoA 

binding, potentially inducing a second means of positive feedback. These reactions also 

depend on centralspindlin oligomerization which requires antagonism of 14–3-3 by the CPC 

[24]. The oligomeric state of the complex may permit a division of labor - some GAP 

domains in the complex may directly engage Ect2, whereas others may contribute to 

membrane localization.

While individual interactions between domains have been established in vitro, activation of 

nucleotide exchange activity of Ect2 by centralspindlin has not yet been demonstrated. 

Because low levels of membrane-bound Ect2 are sufficient for furrow formation in vivo, and 

due to the relatively modest activity of Ect2 in vitro, it is likely that the stimulation by 

centralspindlin will be significant. A major challenge for the future is biochemical 

reconstitution of Ect2 activation. It is important to emphasize that not every interaction 

mentioned above is necessarily required during cytokinesis of every cell.

Centralspindlin-independent RhoA activation

Although in most cells, Ect2 activation during cytokinesis requires centralspindlin, in C. 
elegans embryos, centralspindlin is partially redundant with a protein called NOP-1. NOP-1 

is a nematode-specific protein that functions as a global activator of Ect2 during polarization 

and early embryonic development [75]. C. elegans embryos in which centralspindlin 

function is disrupted can form cytokinetic furrows that ultimately regress. However 

simultaneous loss of NOP-1 and centralspindlin abolishes furrow induction and active RhoA 

does not accumulate on the membrane (Figure 3) [75]. The mechanism by which NOP-1 

activates Ect2 is currently unknown; the protein contains low complexity regions but lacks 

other recognizable domains.

However, elimination of this pathway provides a straightforward means to study the role of 

centralspindlin in furrow formation in this system. Thus far, compelling evidence for parallel 

activators of Ect2 during cytokinesis in other organisms is lacking.

Spatial Control of RhoA activation

Spindle midzone

In light of our current understanding of the mechanism by which centralspindlin promotes 

RhoA activation (Figure 3) how is this activity spatially regulated by the spindle? 

Overlapping plus ends of microtubules in the spindle midzone are bundled by, among other 

factors, the coordinated activity of centralspindlin oligomers, the microtubule associated 

protein (MAP) PRC1, and Kif4, a kinesin motor protein that functions in association with 
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PRC1 [76, 77]. The bundling reaction results in stabilization of these midzone microtubules 

and stable accumulation of centralspindlin, and in some cell types, centralspindlin recruits 

Ect2 to the midzone [44].

Centralspindlin accumulation at the spindle midzone positions it in the presumptive plane of 

cell division. However, prominent accumulation at this site is not essential for initiation of a 

furrow, as cells can furrow in a centralspindlin-dependent manner without significant 

centralspindlin concentrating on the spindle midzone, as in PRC1-depleted cells [23, 78, 79]. 

Furthermore, centralspindlin accumulation at the midzone is not always sufficient for 

furrowing as observed in C. elegans embryos expressing a Cyk4 ΔC1 variant [24] (Figure 4). 

While the spindle-bound pool of centralspindlin plays a crucial role in midbody stabilization 

during the terminal stages of cytokinesis [60], the membrane-bound pool of centralspindlin 

is likely the most relevant for RhoA activation and furrow initiation, as the plasma 

membrane is the site of RhoA activation. Microtubule bundles with associated 

centralspindlin may facilitate its association with Ect2 at the plasma membrane if they are 

positioned sufficiently close to the cell cortex, as is seen in human cells expressing the Cyk4 

ΔC1 variant [60] and in Drosophila spermatocytes [62]. The stark difference in phenotype in 

human cells and C. elegans embryos caused by the same Cyk4 ΔC1 allele may be a function 

of the distance between the spindle and the plasma membrane (Figure 4) [24]. Membrane 

and microtubule-associated pools of centralspindlin may compete with each other, however 

this has not been experimentally shown. Once cytokinesis is underway, this is unlikely to be 

a particularly dynamic competition as microtubule-associated centralspindlin exchanges 

slowly [30].

Chromatin modulates CPC accumulation

Centralspindlin binds to the ends of distinct sets of microtubules, depending on the 

organization of the spindle. In monopolar cells, centralspindlin accumulates robustly at a 

clustered subset of microtubule plus ends in the cell periphery [80]. However, these sites do 

not become populated when a bipolar spindle is present, presumably due to the preferential 

recruitment of centralspindlin to antiparallel bundles at the spindle midzone (Figure 5). 

Indeed, in assays with artificial asters, centralspindlin accumulates between adjacent asters 

[81].

Although centralspindlin binds to overlapping antiparallel microtubule ends, some 

overlapping plus ends recruit centralspindlin more efficiently than others. When cells 

contain multiple spindles, centralspindlin accumulation is favored at the overlapping plus 

ends between asters which had segregated chromosomes (“sister asters”) as compared to 

neighboring asters that did not participate in chromosome segregation [81]. The preference 

for sister asters is probably imposed by their strong accumulation of the CPC, apparently as 

a consequence of the dissociation of CPC from chromosomes and its subsequent binding on 

the nearest antiparallel microtubules (Figure 5) [82]. CPC accumulation creates gradients in 

Aurora B kinase activity [83] that appear to propagate CPC accumulation from an initial site 

at the center of an overlap zone to adjacent regions [81]. This bias in CPC accumulation is 

then amplified through a positive feedback loop in which Aurora B kinase activity promotes 

microtubule stabilization [84], and stabilized microtubules preferentially recruit CPC. This 
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model is supported by experiments in which hyperactivation of the CPC or artificial 

stabilization of microtubules reduces the disparity in accumulation of CPC on sister asters 

relative to adjacent asters [81]. The CPC, in turn, regulates centralspindlin recruitment to 

microtubules, at least in part, by regulating centralspindlin oligomerization.

Chromosome Passenger Complex and MKLP2

The CPC also regulates centralspindlin recruitment to the membrane (Basant and Glotzer, 

unpublished). Suggestively, in human cells, CPC localizes to the equatorial cell cortex prior 

to furrow invagination [85]. The mechanism of CPC accumulation on the equatorial 

membrane is not well understood. INCENP, the scaffolding subunit of the CPC, contains a 

long, flexible, charged, single alpha helical (SAH) domain that has microtubule binding 

activity required for its localization to the spindle midzone, but it is dispensable for its 

accumulation at the cell cortex [86, 87]. Curiously, this helical region also associates with f-

actin [84].

Factors that regulate CPC recruitment may regulate local RhoA activation (Figure 5). In 

mammalian cells, one such regulator is the kinesin-6 motor protein MKLP2. CPC and 

MKLP2 interact and prominently co-accumulate on the spindle midzone, as well as at the 

equatorial cortex [88]. MKLP2 is structurally related to MKLP1, however, MKLP2 does not 

interact with Cyk4. Nevertheless, these kinesins are regulated by similar mechanisms. 

Microtubule binding of both motors is inhibited by direct Cdk1 phosphorylation and 

activated by dephosphorylation upon mitotic exit; they also both oligomerize [30, 89, 90]. 

During anaphase, MKLP2 promotes dissociation of the CPC from chromosomes. This 

suggests a hierarchy of localization dependence: MKLP2 > CPC > centralspindlin.

Given this hierarchy, what are the determinants of MKLP2 localization? MKLP2 contains a 

myosin binding domain and its localization depends on myosin accumulation. Myosin has 

been proposed to promote MKLP2 localization [91]. However, given that myosin II 

accumulation is RhoA dependent and RhoA activation requires centralspindlin, and CPC 

and MKLP2 promote membrane localization of centralspindlin, this model appears circular, 

in that it suggests that a downstream effector of MKLP2 promotes its recruitment. Perhaps 

low levels of active RhoA can be generated at the equator prior to MKLP2/CPC 

accumulation.

Indeed, although MKLP2 localization is important, in cultured human cells with bipolar 

spindles, furrow formation is not strictly dependent on either MKLP2 or CPC, though 

cytokinesis fails to complete in their absence. The simplest interpretation is that a weak, 

albeit functional, MKLP2/CPC-independent mechanism promotes and regulates cortical 

accumulation of centralspindlin that creates an initial concentration of equatorial myosin that 

is then amplified by MKLP2 and CPC-induced recruitment of centralspindlin.

An additional mystery surrounds the role of MKLP2. While the function of Aurora B and 

centralspindlin are largely similar in C. elegans and vertebrate cells, C. elegans lacks an 

MKLP2 ortholog, raising the question of how CPC dissociates from chromosomes during 

anaphase in such cells. One possibility is that MKLP1 fulfills the function of both MKLP1 

and MKLP2 in these organisms; however, Aurora B does not remain chromosome bound in 
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C. elegans embryos depleted of MKLP1 [92]. Alternatively, another factor may contribute to 

CPC localization. A third possibility is that CPC may not have as high an affinity for 

chromatin in these organisms as it does in vertebrate cells, in which case specific factors 

would not be required for its dissociation during anaphase. Curiously, although the MKLP2 

ortholog in Drosophila regulates CPC localization, it is not essential for cytokinesis in most 

cells [93].

Astral microtubules

Experiments in a variety of systems indicate the existence of a second pathway for spatial 

control of RhoA activation that works in parallel to the local accumulation of centralspindlin 

at the cell equator (Figure 4). This mechanism might be responsible for the initial, CPC-

independent, equatorial activation of RhoA discussed above. Although the underlying 

molecular mechanism is not known, this pathway appears to involve inhibition of cortical 

contractility by dynamic astral microtubules, a model proposed many decades ago [94, 95].

Many insights into astral inhibition have come from studies of the early C. elegans embryo. 

When microtubules are attenuated, spindle assembly occurs in the embryo posterior, aligned 

with the short axis of the elliptical cell. Under these conditions, one furrow will form in the 

embryo anterior, distal to the astral microtubules and second furrow will form between the 

two asters [96]. Likewise, furrow formation still occurs when the spindle midzone in C. 
elegans embryos is disrupted genetically or by laser ablation and the position of the resulting 

furrow can be predicted from the position of the spindle asters in anaphase [97]. When the 

midzone is disrupted by inactivation of centralspindlin, these furrows are dependent on the 

presence of the aforementioned RhoA activator NOP-1, which given the lack of conservation 

of NOP-1, raises the possibility that these observations might not represent features of astral 

inhibition in all cell types. However, the well-conserved centralspindlin-directed furrowing 

pathway, when hyper-activated in C. elegans, is also restricted by astral inhibition. Depletion 

of 14–3-3/PAR-5 or mutation of MKLP1 such that it is not subject to regulation by 14–3-3/

PAR-5 and the CPC, results in embryos that still furrow at the equator, albeit with less 

precision than in wild-type. This is surprising, as RhoA is initially globally activated under 

these conditions. When such embryos are treated with nocodazole to misposition the spindle 

to the posterior, ectopic oligomeric centralspindlin induces furrows in the anterior of the 

embryo, away from the asters, both in the presence or absence of NOP-1 [24]. These results 

suggest that astral microtubules can regulate contractility that results from either NOP-1- or 

centralspindlin-directed RhoA activation in the embryo. The simplest explanation of these 

results is that dynamic microtubules do not regulate NOP-1 or centralspindlin, but rather a 

common downstream factor.

Astral microtubules also regulate contractility in other contexts. For example, dynamic 

microtubules locally inhibit RhoA activation in both cultured mammalian cells and excitable 

cortices observed in activated echinoderm and Xenopus blastomeres [98, 99]. Microtubule 

disruption results in hypercontractility in C. elegans embryos [100].

The molecular basis for astral inhibition is not fully understood. Optogenetic experiments in 

cultured human cells indicate that dynamic astral microtubules do not impact the 

contractility resulting from artificial accumulation of a minimal RhoGEF domain [8]. If the 
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astral pathway is active in these cells, then it must act upstream of the activators of RhoA, as 

it does not inhibit ectopically activated RhoA or the downstream effectors. In C. elegans 
embryos, Aurora A and its activator TPXL-1 are required for microtubules to inhibit 

accumulation of f-actin and the RhoA effector anillin from the anterior cortex [101]. 

Interestingly, Aurora A is largely dispensable for clearance of these downstream components 

from the posterior cortex, suggesting the existence of a separate regulatory mechanism.

A subset of astral microtubules may also play a positive role in delivering activators of 

contractility. For example, equatorially-directed astral microtubules can contribute to 

equatorial CPC localization [102] and centralspindlin localization (Figure 4, 5) [45]. In 

Xenopus, an SxIP motif in centralspindlin enables it to bind microtubule plus ends via EB1, 

but this motif is not well-conserved [103]. In echinoderm zygotes, but not in subsequent 

divisions, equatorially-directed microtubules appear to be preferentially stabilized [104, 

105]. It is not clear whether this is a common role that microtubules play, nor is it known 

what distinguishes this subset of microtubules from the larger, radial array of microtubules 

that surrounds the spindle poles.

Concluding remarks

Activation of RhoA with precise spatiotemporal control during cytokinesis involves 

intricate, often redundant, mechanisms to regulate the centralspindlin-Ect2 complex. The 

importance of this complex in furrow induction and several aspects of regulation were well-

established. Formerly, much attention focused on the role of this complex at the spindle 

midzone, particularly since the centralspindlin/Ect2 complex accumulates prominently at 

this site. However, protein abundance does not necessarily correlate with function. 

Additionally, given that RhoGEFs are potently activated by tethering to the plasma 

membrane [8, 106] and the demonstration that centralspindlin-mediated RhoA activation 

during cytokinesis in C. elegans embryos requires membrane targeting domains in 

centralspindlin and correlates with the degree of membrane recruitment [24, 61], we propose 

that the plasma membrane is the primary site where centralspindlin/Ect2 complex induces 

RhoA activation during cytokinesis. Recent observations support the conjecture that 

biologically relevant levels of this complex do not require high levels of protein 

accumulation [54].

In no way does this proposal imply that association of centralspindlin with the plasma 

membrane is independent of microtubules. In fact, we suggest that microtubules both 

promote and inhibit the membrane association of centralspindlin and hence its ability to 

complex with Ect2 (Figure 5). First, by promoting equatorial accumulation of CPC, 

microtubules indirectly induce direct binding of centralspindlin to the plasma membrane. 

Second, through the ability of antiparallel microtubule bundles to recruit centralspindlin 

directly and indirectly via CPC, such bundles at the periphery of the spindle midzone may 

bring centralspindlin/Ect2 in the immediate vicinity of the plasma membrane. Third, plus-

end directed trafficking by centralspindlin could promote its delivery to the plasma 

membrane [30, 45]. In addition to these mechanisms that promote membrane associated 

centralspindlin/Ect2, the spindle midzone may functionally sequester centralspindlin/Ect2. 

Finally, through mechanisms that are yet to be fully defined, astral microtubules are 
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proposed to inhibit the accumulation of centralspindlin and/or Ect2 at polar regions of the 

cell. We must also consider that there are examples of polarity-derived cues directing the site 

of cleavage furrow formation, independent of the spindle [22]. Presumably such cells have 

the capacity to locally induce RhoA activation, much like the pseudocleavage furrow of the 

early C. elegans embryo. As emphasized throughout this review, different cells are known to 

utilize different combinations of these mechanisms to promote equatorial activation of 

RhoA. Indeed, it is likely that the aforementioned redundancy has impeded our ability to 

understand the mechanism of cytokinetic furrowing.

The coming years promise to reveal important features of the above mechanisms. We need 

to better understand how asters clear RhoA activators from the poles, how CPC localization 

on the membrane is controlled, and the molecular details by which centralspindlin enhances 

Ect2 activity towards RhoA and whether active RhoA has a direct role in this process 

thereby generating positive feedback. Finally, while these core mechanisms are largely 

conserved among metazoans, a number of additional context-dependent factors such as 

polarity proteins, inter-cellular tension [107, 108], cell adhesion [8, 109], cell size, and 

relative abundance of cytokinetic proteins can impact the position of the division plane; 

these mechanisms also remain to be fully understood.
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Figure 1. How is RhoA activated at the equatorial plasma membrane?
The centralspindlin complex (green) prominently accumulates at the spindle midzone and is 

responsible for recruiting and activating the RhoGEF Ect2 (orange) to the mid-plane during 

anaphase. Both Ect2 and active RhoA (blue) have been detected on the equatorial 

membrane, where they promote formation of an actomyosin-based contractile ring. There is 

also evidence for a pool of membrane-bound centralspindlin. Does this pool activate Ect2-

RhoA at the plasma membrane, especially in cells where the spindle midzone does not lie 

adjacent to the membrane?
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Figure 2. Domain organization of RhoA, Ect2 and centralspindlin.
Primary structure and predicted domains of the main proteins involved in RhoA activation 

during cytokinesis. The protein-protein interaction regions are indicated as are the main 

functional interactions. (N) N-terminal domain; (NL) neck linker region; (CC) coiled-coil 

domain; (PBC) poly-basic cluster.
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Figure 3. Molecular pathway leading to RhoA activation during cytokinesis.
GTP-bound RhoA activates formin-mediated actin assembly, myosin motors and binds a 

scaffold protein anillin, to generate a functional contractile ring. The RhoA GEF Ect2 is 

spatiotemporally regulated by centralspindlin. Polo-like kinase 1 phosphorylates Cyk4 

permitting its interaction with Ect2, once Cdk1 activity falls in anaphase. 14–3-3 proteins 

bind MKLP1 preventing centralspindlin oligomerization. Aurora B kinase phosphorylation 

of MKLP1 prevents 14–3-3 binding, thus activating a functional, oligomeric form of 

centralspindlin that can localize at the central spindle and the plasma membrane. PAR-5 is 

the only active 14–3-3 protein in the early C. elegans embryo. NOP-1 is a C. elegans-

specific Ect2 activator.
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Figure 4. Spatial control of RhoA activity by the mitotic spindle.
Furrow induction involves centralspindlin-dependent RhoA activation at the equatorial 

plasma membrane and astral inhibition at the poles (red). Centralspindlin (green) also 

strongly accumulates at midzone microtubules, but this location can be too distant from the 

membrane to directly induce RhoA activation. A. In small cells, in which the spindle extends 

towards the membrane (top), centralspindlin can concentrate near the plasma membrane; in 

such cells the Cyk4 C1 domain is not required to generate a furrow. In cell types where the 

central spindle is far away from the plasma membrane (bottom), the membrane-binding C1 

domain of Cyk4 is critical in localizing centralspindlin and thereby activating RhoA at the 

equator to generate a furrow. Equatorial accumulation of membrane-bound centralspindlin is 

likely induced by a combination of spindle midzone accumulation, local CPC activity, and 

directed microtubule-based transport.

B. Astral microtubules negatively regulate RhoA activity at the poles. In cells where the 

centralspindlin complex is globally activated (in the absence of 14–3-3 proteins), asters can 

still restrict furrow formation to the equatorial region (top). In the absence of RhoA 

activators (such as a cyk-4;nop-1 double mutant C. elegans embryo), cytokinetic furrows do 

not form (bottom).
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Figure 5. Spatial control of RhoA activity by the CPC.
A. Schematic of a binucleate cell undergoing mitosis. During anaphase, the CPC localizes at 

(1) the spindle midzone near separating chromosomes and subsequently propagates to 

nearby overlapping microtubules. CPC can also accumulate on (2) microtubules from 

overlapping adjacent asters but less efficiently than at sister asters. It also can accumulate at 

(3) the plasma membrane. Known requirements for its association at each site are listed. The 

complex may not occupy all these sites in every cell type and the regulators of its 

localization are not fully conserved, and therefore require further investigation.

B. The CPC (gray) is known to accumulate at the equatorial region of dividing veterbrate 

cells, specifically at the central spindle and the plasma membrane during anaphase. This 

could result in zones of centralspindlin activity where centralspindlin (green) locally forms 

clusters and accumulates with high avidity, allowing Ect2 (orange) and RhoA (blue) 

activation at the equatorial membrane and subsequent recruitment of actomyosin to generate 

the contractile ring. Centralspindlin is inactive (pale yellow) in other regions of the cell 

because of 14–3-3/PAR-5 (red) inhibition.
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