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Abstract

Read-across has become a primary approach to fill data gaps for chemical safety assessments. 

Chemical similarity based on structure, reactivity, and physic-chemical property information is a 

traditional approach applied for read-across toxicity studies. However, toxicity mechanisms are 

usually complicated in a biological system, so only using chemical similarity to perform the read-

across for new compounds was not satisfactory for most toxicity endpoints, especially when the 

chemically similar compounds show dissimilar toxicities.

This study aims to develop an enhanced read-across method for chemical toxicity predictions. To 

this end, we used two large toxicity datasets for read-across purposes. One consists of 3,979 

compounds with Ames mutagenicity data, and the other contains 7,332 compounds with rat acute 

oral toxicity data. First, biological data for all compounds in these two datasets were obtained by 

querying thousands of PubChem bioassays. The PubChem bioassays with at least five compounds 

from either of these two datasets showing active responses were selected to generate 

comprehensive bioprofiles. The read-across studies were performed by using chemical similarity 

search only and also by using a hybrid similarity search based on both chemical descriptors and 

bioprofiles. Compared to traditional read-across based on chemical similarity, the hybrid read-

across approach showed improved accuracy of predictions for both Ames mutagenicity and acute 

oral toxicity. Furthermore, we could illustrate potential toxicity mechanisms by analyzing the 

bioprofiles used for this hybrid read-across study. The results of this study indicate that the new 

hybrid read-across approach could be an applicable computational tool for chemical toxicity 

predictions. In this way, the bottleneck of traditional read-across studies can be overcome by 

introducing public biological data into the traditional process. The incorporation of bioprofiles 
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generated from the additional biological data for compounds can partially solve the “activity cliff” 

issue and reveal their potential toxicity mechanisms. This study leads to a promising direction to 

utilize data-driven approaches for computational toxicology studies in the big data era.

Keywords

computational toxicology; read-across; biosimilarity; hybrid approach; toxicity mechanisms; big 
data

1. Introduction

Numerous chemicals are used in our ordinary life, and over 100,000 chemicals have been 

put on the market (Johnson et al. 2017). However, only a small portion of these compounds 

have been tested for their toxicity potentials, and the toxicities of a great number of new 

chemicals wait to be evaluated. Traditional experimental toxicology protocols are usually 

based on animal tests, which are expensive and time-consuming (Hartung 2009). Moreover, 

these traditional protocols have raised ethical concerns regarding the well-being of animals 

(Balls 1994; Baumans 2004; Rollin 2003). This situation leads to an urgent need to develop 

alternatives for animal tests, so the regulatory agencies are developing pre-screening and 

prioritization programs to fill toxicity data gaps.

In 2007, the U.S. National Research Council recommended both high-throughput screening 

(HTS) and computational models as essential chemical toxicity evaluation tools in 21st-

century toxicology (Gibb 2008). The HTS techniques have been widely applied in chemical 

screening with advantages of low expenses and faster turnaround time, which resulted in rich 

biological data accumulating in publically available databases (Zhu and Xia 2016). 

Motivated by these available data, computational toxicology has advanced to a big data era 

(Ciallella and Zhu 2019; Zhao and Zhu 2018; Zhu et al. 2014).

Quantitative structure-activity relationship (QSAR) approaches have been widely used in 

traditional computational toxicology modeling (Hansch et al. 1995; Schultz et al. 2003). 

QSAR models were based on the hypothesis that chemically similar compounds are likely to 

exhibit similar biological activities, including toxicities. Since all QSAR models were 

developed based on chemical structure information, the “activity cliff” issue (Maggiora 

2006) (i.e., chemically similar compounds with distinctly different toxicity results) brings 

prediction errors to QSAR models, especially when using existing QSAR models to predict 

new compounds.

Along with QSAR modeling studies in the past decade, the read-across strategy was 

developed to predict toxicity for new compounds using similar compounds with known 

toxicity results (Dimitrov and Mekenyan 2010; Modi et al. 2012; Raies and Bajic 2016; 

Schultz et al. 2015). Various software tools were developed to perform read-across studies in 

the toxicology field in recent years, such as ToxMatch and the OECD QSAR Toolbox. 

ToxMatch (Gallegos-Saliner et al. 2008; Van Ravenzwaay et al. 2016) is an open-source 

software application that encodes several chemical similarity calculation tools to facilitate 

the systematic development of chemical groupings and read-across. The OECD QSAR 
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Toolbox (http://www.qsartoolbox.org/) (Dimitrov et al. 2016) is a software to systematically 

group chemicals into categories using chemical similarity read-across, trend analysis, or 

QSAR predictions. Similar to traditional QSAR models, these read-across tools are only 

based on the chemical structure information, which cannot deal with predictions of complex 

biological activities (e.g., animal toxicity). In order to solve the above issue, Low et al. (Low 

et al. 2013) proposed a hybrid approach, termed as chemical-biological read-across (CBRA), 

that relies not only on chemical descriptors but also on biological profiles generated from 

short-term experimental assays (i.e., biological descriptors). However, the CBRA approach 

was based on a small set of assays, which were manually selected. This method is applicable 

only when all experimental assay data are available for compounds in the training set and the 

target new compounds.

In this study, we developed a new hybrid read-across method to evaluate the chemical 

toxicity potentials. Unlike traditional read-across methods, the similarity between two 

compounds in this study was calculated by combining chemical similarity, which was based 

on chemical structures, and biosimilarity, which was based on publically available biological 

data. For biosimilarity searches, a large set of biological data was obtained and optimized 

from PubChem database using the in-house Chemical In Vitro-In Vivo Profiling (CIIPro) 

portal (Russo et al. 2017). This hybrid read-across method showed advantages compared 

with the traditional read-across strategy on modeling and predicting both Ames mutagenicity 

and acute oral toxicity datasets. It could be used as a universal strategy to deal with other 

complex toxicity endpoints when extra biological data are available.

2. Material and methods

2.1. Datasets

The two toxicity datasets used in this study were curated in-house or obtained from 

MultiCASE, Inc. (http://www.multicase.com/). They were selected because they are two of 

the largest toxicity datasets available, which contain thousands of diverse compounds. The 

first dataset contains 3,979 unique organic compounds with the Ames mutagenicity testing 

results collected from public sources (Hansen et al. 2009). These mutagenicity testing data 

were categorized as toxic (activity as 1) for 1,718 compounds and non-toxic (activity as 0) 

for 2,261 compounds. The second dataset (Zhu et al. 2009) contains 7,332 unique organic 

compounds with rat acute toxicity results. These acute toxicity results were previously 

collected and curated from ChemIDplus (https://chem.nlm.nih.gov/chemidplus/) and shown 

as the lethal dose (unit as moles per kilogram) that cause the death of 50% testing rats 

(LD50). In this study, the quantitative toxicity results were expressed as the negative 

logarithm values of LD50 (mol/kg) (− log10 LD50 ) ranging from −0.343 to 10.207.

2.2. Chemical similarity calculations

A total of 192 2-D chemical descriptors for each compound were generated using Molecular 

Operating Environment (MOE) software (version 2013) (http://www.chemcomp.com/), such 

as physical properties, atom and bond counts, and van der Waals surface area information. 

(Labute 2000). The descriptors were standardized and rescaled to range from 0 to 1. The set 

of MOE 2-D chemical descriptors for a compound could be treated as a 192-dimensional 
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vector (a1, a2, …, a192). The pairwise chemical similarity Schem was calculated based on the 

Euclidean distance dEuc between two compounds, using Equation 1:

Schem = 1 − dEuc = 1 − ∑i = 1
192 (ai −bi)

2 (1)

2.3. Biosimilarity calculations

Biological data of all compounds in these two datasets were obtained from the PubChem 

database (https://pubchem.ncbi.nlm.nih.gov/) using the CIIPro portal (http://

ciipro.rutgers.edu/) (Russo et al. 2017). The biosimilarity Sbio between two compounds was 

calculated using Equation 2 (Ribay et al. 2016; Russo et al. 2017):

Sbio =
Aa ∩ Ba + Ai ∩ Bi · w

Aa ∩ Ba + Ai ∩ Bi · w + Aa ∩ Bi + Ai ∩ Ba
(2)

Here, Aa and Ba represent the active responses for compounds A and B in the same set of 

bioassays, respectively. And Ai and Bi represent the inactive responses. Our previous work 

(Kim et al. 2016) showed that the biosimilarity values rely on active data more than inactive 

data, since the active data indicates more significant information than inactive. The term w 
weights the inactive responses less than active in biosimilarity calculations. In this study, w 

was defined as the ratio total active responses
total inactive responses  for each compound pair and ranged from 0 to 1.

2.4. Read-across predictions and evaluations

The read-across prediction of a compound in the test set was made by the nearest neighbor 

compound in the training set. For traditional read-across, the prediction was made by the 

toxicity value of its chemical nearest neighbor, which was identified by chemical similarity 

calculations. Furthermore, the hybrid read-across prediction was made by the toxicity value 

of its chemical and biological nearest neighbor, which was identified by calculating 

biosimilarity between the test set compound and its chemical nearest neighbor in the training 

set.

Since the read-across procedure was performed by using the above two datasets with 

different types of toxicity values, universal statistical metrics were needed to evaluate the 

performance of the models developed individually. The same parameters were used to 

evaluate the computational models in our previous studies (Kim et al. 2014; Solimeo et al. 

2012; Wang et al. 2015). The results were harmonized by using 1) sensitivity (percentage of 

compounds predicted correctly within the toxic class, Equation 3), specificity (percentage of 

compounds predicted correctly within the nontoxic class, Equation 4), and CCR (correct 

classification rate or balanced accuracy, Equation 5) for the Ames mutagenicity dataset; and 

2) coefficient of determination (R0
2, Equation 6) and mean absolute error (MAE, Equation 

7) for the acute oral toxicity dataset.
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Sensitivity = true positives
true positives + f alse negatives (3)

Speci f icity = true negatives
true negatives + f alse positives (4)

CCR = Sensitivity + Speci f icity
2 (5)

R0
2 = i

n (Xi X)(Y i Y)
n × (σx × σy)

2

(6)

MAE = 1
n ∑i

n |predicted valuei − true valuei| (7)

3. Results

3.1. Overview of the workflow

Figure 1 summarized the workflow of the hybrid read-across procedure used in this study. 

For all compounds in the test set, 192 MOE 2-D chemical descriptors were used to calculate 

the chemical similarity for identifying their chemical nearest neighbors in the training set. 

Then, our in-house profiling tool CIIPro was used to extract all relevant biological data and 

to generate bioprofiles for these compounds. Biosimilarity was calculated to determine, for a 

target compound, whether its chemical nearest neighbor is also biosimilar. A read-across 

toxicity prediction was made when the chemical nearest neighbor was also identified to be 

biosimilar.

3.2. Bioprofile generation

The bioprofile was generated by extracting all relevant biological data from PubChem 

database using the CIIPro portal for all the compounds in these two datasets. Over 50,000 

PubChem bioassays with at least one compound in the datasets showing an active response 

were extracted as the original bioprofile. This original bioprofile contains over ten million 

data points for all the compounds in these two datasets. However, PubChem assays 

containing very few data points in the original bioprofile would be useless for read-across. 

Thus, to optimize this original bioprofile, the bioassays with less than five active responses 

within either of the two databases were removed. This effort resulted in 1,716 bioassays in 

the bioprofile for 2,025 compounds in the Ames mutagenicity dataset, with a ratio of active 
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data (’1’) to inactive data (‘−1’) of 8.38%, and 1,091 bioassays in the bioprofile for 2,208 

compounds in the acute toxicity dataset, with an active/inactive data ratio of 7.51%.

The optimized bioprofiles could reveal rich biological information for compounds in these 

two datasets. For example, 4′-Chlorodiazepam (CID 1688), which is a mutagen in Ames 

dataset, contains 69 PubChem bioassays testing results in the bioprofile and 21 of them were 

active responses. Most of these 21 PubChem bioassays are related to toxicity testing, such as 

cytotoxicity assay (AID 449705) and hepatotoxicity related assays (AID 678712, 678713 
and etc.). Another compound, 4-Dihydroxypyrimidine (CID 1174) from acute oral toxicity 

dataset, which has LD50 value of 0.00034 mol/kg, contains 651 PubChem bioassays testing 

results in the bioprofile and 159 of them were active responses. Not surprisingly, most of 

these assays are also related to toxicity testing, including some assays from Tox21 program 

related to identify antagonists of cell signaling pathways (AID 1224838, 1259244 and etc.).

3.3. Similarity calculation

Using chemical descriptors and bioprofiles generated above, pairwise similarity was 

calculated for all compounds in these two dataset, respectively. For each target compound, 

its nearest neighbor was defined as the most similar compound, which should be the 

compound with the largest Schem and/or Sbio in the dataset. The hypothesis of traditional 

QSAR models and read-across studies is that chemically similar compounds have similar 

bioactivities. For this reason, it is worth to compare the two types of similarity indices based 

on chemical descriptors and bioprofiles. Figure 2 shows the distribution of compounds with 

at least one chemical nearest neighbor (Schem > 0.80) for these two datasets. These 

compounds and their chemical nearest neighbors were also classified as biosimilar (Sbio > 

0.80) and biodissimilar (Sbio < 0.80).

The similarity distribution in Ames mutagenicity dataset fulfilled the hypothesis of 

traditional read-across. As shown in Figure 2A, when two compounds are chemically 

similar, they are more likely to be biosimilar (represented by blue bars) than biodissimilar 

(represented by orange bars). However, in oral acute toxicity dataset, two chemically similar 

compounds are likely to have dissimilar bioprofiles, as shown in Figure 2B. This result 

showed an opposite condition to the above hypothesis. These results indicated the reason 

that much better modeling results (i.e. higher predictivity) could be obtained previously from 

QSAR studies of Ames mutagenicity (Bakhtyari et al. 2013; Hillebrecht et al. 2011; Votano 

et al. 2004; Xu et al. 2012) than those of acute oral toxicity dataset (Devillers and Devillers 

2009; Lagunin et al. 2011). In this study, it was also expected that read-across based on only 

chemical structures would likely to cause significant prediction errors for the acute oral 

toxicity.

3.4. Read-across for toxicity prediction

In traditional read-across studies, prediction of a new compound was obtained from the 

experimental toxicity value of its nearest neighbor identified using chemical similarity. 

However, since biological systems are complex and two chemically similar compounds 

could show opposite toxic effect in biological test, prediction errors could always occur 

using the traditional read-across strategy. This issue is known as an “activity cliff’ (Cruz-
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Monteagudo et al. 2014; Maggiora 2006; Tropsha 2010; Zhu et al. 2009). In order to solve 

this problem, a hybrid read-across study was performed based on the combination of 

chemical similarity and biosimilarity calculation.

Figure 3 showed the distribution of read-across prediction for all target compounds on Ames 

mutagenicity dataset obtained from five-fold cross validation procedure. Traditionally the 

toxicity prediction of a target compound was made if there was a chemical nearest neigbor 

that could be identified from training set (i.e. Schem > 0.90). The predictivity of the 

traditional read-across was indicated as CCR of 0.80, sensitivity of 0.84 and specificity of 

0.77 (Table 1). In this study, we further applied biosimilarity results into read-across 

prediction. To this end, the biosimilairty value of a compound with its chemical nearest 

neighbor was also calculated. Based on the correlation between chemical similarity and 

biosimilarity results, as shown in Figure 3, compound pairs (the target compound with its 

nearest neighbor) can be classified as: 1) both chemically similar (Schem > 0.90) and 

biosimilar (Sbio > 0.80) (area A); 2) chemically similar (Schem > 0.90) and biodissimilar 

(Sbio ≤ 0.80) (area B); 3) chemically dissimilar (Schem ≤ 0.90) and biosimilar (Sbio > 0.80) 

(area C); or 4) chemically dissimilar (Schem ≤ 0.90) and biodissimilar (Sbio ≤ 0.80) (area D). 

When the hybrid read-across was performed, a compound was predicted if its chemical 

nearest neighbor was also biosimilar (as area A in Fig. 3.). The predicitvity was moderately 

increased and CCR increased from 0.80 to 0.82 (Table 1).

For acute oral toxicity dataset, traditional read-across strategy resulted in low prediction 

accuracy (R0
2 = 0.36, MAE = 0.55) (Table 1). Furthermore, we also integrated biosimilarity 

result into the traditional read-across prediction. Based on the correlation between chemical 

similarity and biosimilarity results, as shown in Figure 4, pairs of a target compound with its 

chemical nearest neighbor can be classified as: 1) both chemically similar (Schem > 0.90) and 

biosimilar (Sbio > 0.80) (red dots); 2) chemically dissimilar (Schem ≤ 0.90) and/or biosimilar 

(Sbio ≤ 0.80) (black dots). By applying hybrid read-across approach, a compound was 

predicted by its chemical nearest neighbor if they are also biosimilar (as red dots in Fig. 4.). 

Through this way, the prediction accuracy was increased significantly (R0
2 = 0.68, MAE = 

0.44) (Table 1).

4. Discussion

The hybrid read-across approach used in this study increased predictivity for compounds in 

both datasets. The slight decrease of specificity of Ames dataset fits to the results obtained 

from our previous study (Ribay et al. 2016). The biosimilarity, which relies mostly on active 

data, is more meaningful for the predictions of toxicants instead of non-toxicants (Russo et 

al. 2019). With additional similarity calculations based on bioprofiles, read-across prediction 

can be strengthened by comparing the bioprofiles of chemical nearest neighbors. Several 

examples of the nearest neighbors (both chemically similar and biosimilar) identified by 

hybrid read-across, were listed in the Supplemental Table S1 and S2.

By analyzing the bioprofiles, it is also feasible to find the “activity cliffs” existing in these 

two datasets. Table 2 and 3 show five representative activity cliffs in these two datasets. 

Some of these nearest neighbor compounds are chemically similar but have opposite toxicity 
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results. For example, masoprocol (CID 1593), which is a lipoxygenase inhibitor (Gowri et 

al. 2000), is shown as a mutagen in Ames dataset. However, its chemical nearest neighbor 

diphenolic acid (CID 2265) is a non-mutagen in Ames dataset. The only difference in the 

structures of these two compounds is the radical group between the two benzene rings (Table 

2). If one of these two compounds is in the training set and the other is in the test set, a 

prediction error will occur. However, when comparing their bioprofiles, which are shown in 

Table 2, a significant difference can be noticed. Moreover, the biosimilarity value between 

these two compounds is only 0.189, indicating the biodissimilarity of these two compounds. 

A similar condition can also be seen in acute oral toxicity dataset (Table 3). For example, 

Blasticidin S (CID 258) is an antibiotic isolated from Streptomyces griseochromogenes 

(Takeuchi et al. 1958) with a −log10 LD50 value of 4.706. Its chemical nearest neighbor 

AC1L1K32 (CID 5317), however, has a −log 10 LD50 value of 1.913. The only difference in 

the structures of these two compounds is the substituent on the para-position of the benzene 

ring, which causes Blasticidin S to be acutely toxic. The biosimilarity between these two 

compounds is 0.030. These two compounds can also potentially induce the “activity cliff’ 

issue.

Some compounds were considered to be chemical nearest neighbors based on calculation 

results, but they are not actual similar in structure. This issue is due to the limitation of 

chemical descriptors, which cannot distinguish their structural diversity. A potential solution 

is to various chemical descriptors in the modeling process, such as reported in our previous 

studies (Solimeo et al. 2012; Zhao et al. 2017). For example, as shown in Table 2, compound 

with CID 926 is a dinucleotide and related to nicotinamide adenine dinucleotide (NAD) 

(Belenky et al. 2007), a cofactor in cells. Its chemical nearest neighbor Coumaphos (CID 

2871) is a organothiophosphorus cholinesterase inhibitor that acts as an anthelmintic, 

insecticide, and as a nematocide (Gregorc et al. 2018). Their chemical similarity Schem was 

0.903 but their structures actually differ significantly. This issue is due to the limitation of 

chemical descriptors, which cannot distinguish their structural diversity. The biosimilarity 

calculation result (Sbio = 0.323) indicated their difference and can avoid this prediction error 

in read-across process.

Previous QSAR models were usually questioned as “black box” (Fraczkiewicz et al. 2009; 

Polishchuk et al. 2013) by providing predictions without explaining the mechanisms of the 

toxicity. By examining the bioassays included in the bioprofiles, the hybrid read-across in 

this study could reveal the potential toxicity mechanisms. For example, the bioprofiles in 

Table 2 listed totally 12 PubChem bioassays (AIDs 651741, 651838, 720635, 720637, 
743012, 743014, 743015, 743064, 743065, 743122, 1224892, 1259243). Among them, there 

were five assays related to cytotoxicity (AIDs 651838, 743012, 743014, 743015, 743064), 

two assays related to mitochondria membrane potential testing (AIDs 720635, 720637), and 

five assays related to antagonists of signaling pathways (AIDs 651741, 743065, 743122, 
1224892, 1259243). These bioassays could be used for investigating the mechanism of 

compounds in Ames dataset for their mutagenicity. Similar analysis could also be done for 

acute toxicity dataset, all the information for bioassays list in Table 2 and 3 could be found 

in details from PubChem through their AID. Thus, using the hybrid read-across strategy 

demonstrated in this study, these prediction results could be further analyzed through 
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investigating the bioprofiles. This strategy could be applied in future study studies for other 

toxicity endpoint predictions.

5. Conclusion

Traditional read-across was based on the use of chemical structure information and induce 

prediction errors in many toxicity studies. The availability of public big data sources 

provides rich biological data for the compounds of interest (e.g., environmental compounds). 

This study shows that the hybrid read-across, which was based on the combination of 

chemical structure information and biological data, has certain advantages compared with 

the traditional read-across, especially for complex animal toxicities (i.e., acute oral toxicity). 

Although the integration of biological data into the read-across procedure brought new 

challenges (e.g. biased data and missing data), the development of new similarity approaches 

can make this practice applicable to predict new compounds. The bioprofiles generated from 

public biological data also provided new opportunity to reveal relevant toxicity mechanisms 

for potential toxicants. The hybrid read-across workflow developed in this study can be 

applied for other toxicity endpoints. The use of public big data sources in the predictive 

modeling can advance the computational toxicology into a big data era.
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Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 31100523), the Beijing 
Municipal Education Commission (Grant No. KM201410005030), and Beijing municipal colleges and universities 
young talents cultivation plan. This study was partially supported by the National Institute of Environmental Health 
Sciences [grant number R15ES023148], the Colgate-Palmolive Grant for Alternative Research, and the Johns 
Hopkins Center for Alternatives to Animal Testing (CAAT) grant.

References

Bakhtyari NG, Raitano G, Benfenati E, Martin T, Young D. 2013 Comparison of in silico models for 
prediction of mutagenicity. Journal of Environmental Science and Health, Part C 31:45–66.

Balls M 1994 Replacement of animal procedures: Alternatives in research, education and testing. Lab 
Anim 28:193–211. [PubMed: 7967458] 

Baumans V 2004 Use of animals in experimental research: An ethical dilemma? Gene Ther 11 Suppl 
1:S64–66. [PubMed: 15454959] 

Belenky P, Bogan KL, Brenner C. 2007 Nad+ metabolism in health and disease. Trends in 
Biochemical Sciences 32:12–19. [PubMed: 17161604] 

Ciallella HL, Zhu H. 2019 Advancing computational toxicology in the big data era by artificial 
intelligence: Data-driven and mechanism-driven modeling for chemical toxicity. Chemical Research 
in Toxicology. In press

Cruz-Monteagudo M, Medina-Franco JL, Perez-Castillo Y, Nicolotti O, Cordeiro MN, Borges F. 2014 
Activity cliffs in drug discovery: Dr jekyll or mr hyde? Drug Discov Today 19:1069–1080. 
[PubMed: 24560935] 

Devillers J, Devillers H. 2009 Prediction of acute mammalian toxicity from qsars and interspecies 
correlations. SAR QSAR Environ Res 20:467–500. [PubMed: 19916110] 

Dimitrov S, Mekenyan O. 2010 Chapter 15:An introduction to read-across for the prediction of the 
effects of chemicals. Issues in Toxicology:372–384.

Guo et al. Page 9

Ecotoxicol Environ Saf. Author manuscript; available in PMC 2020 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dimitrov SD, Diderich R, Sobanski T, Pavlov TS, Chankov GV, Chapkanov AS, et al. 2016 Qsar 
toolbox – workflow and major functionalities. Sar & Qsar in Environmental Research 27:203–219. 
[PubMed: 26892800] 

Fraczkiewicz R, Zhuang D, Zhang J, Miller D, Woltosz W, Bolger M. 2009 Busting the black box 
myth: Designing out unwanted admet properties with machine learning approaches. CICSJ 
Bulletin 27:96–102.

Gallegos-Saliner A, Poater A, Jeliazkova N, Patlewicz G, Worth AP. 2008 Toxmatch-a chemical 
classification and activity prediction tool based on similarity measures. Regulatory Toxicology and 
Pharmacology 52:77–84. [PubMed: 18617309] 

Gibb S 2008 Toxicity testing in the 21st century: A vision and a strategy. Reprod Toxicol 25:136–138. 
[PubMed: 18093799] 

Gowri MS, Azhar RK, Kraemer FB, Reaven GM, Azhar S. 2000 Masoprocol decreases rat lipolytic 
activity by decreasing the phosphorylation of hsl. Am J Physiol-Endoc M 279:E593–E600.

Gregorc A, Alburaki M, Rinderer N, Sampson B, Knight PR, Karim S, et al. 2018 Effects of 
coumaphos and imidacloprid on honey bee (hymenoptera: Apidae) lifespan and antioxidant gene 
regulations in laboratory experiments. Sci Rep 8:15003. [PubMed: 30301926] 

Hansch C, Hoekman D, Leo A, Zhang L, Li P. 1995 The expanding role of quantitative structure-
activity relationships (qsar) in toxicology. Toxicol Lett 79:45–53. [PubMed: 7570673] 

Hansen K, Mika S, Schroeter T, Sutter A, Laak AT, Stegerhartmann T, et al. 2009 Benchmark data set 
for in silico prediction of ames mutagenicity. Chemistry Central Journal 3:1–1. [PubMed: 
19134189] 

Hartung T 2009 Toxicology for the twenty-first century. Nature 460:208–212. [PubMed: 19587762] 

Hillebrecht A, Muster W, Brigo A, Kansy M, Weiser T, Singer T. 2011 Comparative evaluation of in 
silico systems for ames test mutagenicity prediction: Scope and limitations. Chemical Research in 
Toxicology 24:843–854. [PubMed: 21534561] 

Johnson AC, Donnachie RL, Sumpter JP, Jurgens MD, Moeckel C, Pereira MG. 2017 An alternative 
approach to risk rank chemicals on the threat they pose to the aquatic environment. Sci Total 
Environ 599-600:1372–1381. [PubMed: 28531948] 

Kim MT, Sedykh A, Chakravarti SK, Saiakhov RD, Zhu H. 2014 Critical evaluation of human oral 
bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharm Res 
31:1002–1014. [PubMed: 24306326] 

Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016 Mechanism profiling of hepatotoxicity 
caused by oxidative stress using antioxidant response element reporter gene assay models and big 
data. Environmental Health Perspectives 124:634–641. [PubMed: 26383846] 

Labute P 2000 A widely applicable set of descriptors. Journal of Molecular Graphics & Modelling 
18:464–477. [PubMed: 11143563] 

Lagunin A, Zakharov A, Filimonov D, Poroikov V. 2011 Qsar modelling of rat acute toxicity on the 
basis of pass prediction. Mol Inform 30:241–250. [PubMed: 27466777] 

Low Y, Sedykh A, Fourches D, Golbraikh A, Whelan M, Rusyn I, et al. 2013 Integrative chemical-
biological read-across approach for chemical hazard classification. Chem Res Toxicol 26:1199–
1208. [PubMed: 23848138] 

Maggiora GM. 2006 On outliers and activity cliffs--why qsar often disappoints. Journal of Chemical 
Information & Modeling 46:1535. [PubMed: 16859285] 

Modi S, Hughes M, Garrow A, White A. 2012 The value of in silico chemistry in the safety 
assessment of chemicals in the consumer goods and pharmaceutical industries. Drug Discovery 
Today 17:135–142. [PubMed: 22063083] 

Polishchuk PG, Kuz’Min VE, Artemenko AG, Muratov EN. 2013 Universal approach for structural 
interpretation of qsar/qspr models. Molecular Informatics 32:843–853. [PubMed: 27480236] 

Raies AB, Bajic VB. 2016 In silico toxicology: Computational methods for the prediction of chemical 
toxicity. Wiley Interdiscip Rev Comput Mol Sci 6:147–172. [PubMed: 27066112] 

Ribay K, Kim MT, Wang W, Pinolini D, Zhu H. 2016 Predictive modeling of estrogen receptor binding 
agents using advanced cheminformatics tools and massive public data. Front Environ Sci 4:1–16.

Rollin BE. 2003 Toxicology and new social ethics for animals. Toxicol Pathol 31 Suppl:128–131. 
[PubMed: 12597441] 

Guo et al. Page 10

Ecotoxicol Environ Saf. Author manuscript; available in PMC 2020 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Russo DP, Kim MT, Wang W, Pinolini D, Shende S, Strickland J, et al. 2017 Ciipro: A new read-across 
portal to fill data gaps using public large-scale chemical and biological data. Bioinformatics 
33:464–466. [PubMed: 28172359] 

Russo DP, Strickland J, Karmaus AL, Wang W, Shende S, Hartung T, et al. 2019 Nonanimal models 
for acute toxicity evaluations: Applying data-driven profiling and read-across. Environ Health 
Perspect 127:47001. [PubMed: 30933541] 

Schultz TW, Cronin MTD, Walker JD, Aptula AO. 2003 Quantitative structure–activity relationships 
(qsars) in toxicology: A historical perspective. Theochem 622:1–22.

Schultz TW, Amcoff P, Berggren E, Gautier F, Klaric M, Knight DJ, et al. 2015 A strategy for 
structuring and reporting a read-across prediction of toxicity. Regul Toxicol Pharmacol 72:586–
601. [PubMed: 26003513] 

Solimeo R, Zhang J, Kim M, Sedykh A, Zhu H. 2012 Predicting chemical ocular toxicity using a 
combinatorial qsar approach. Chemical Research in Toxicology 25:2763–2769. [PubMed: 
23148656] 

Takeuchi S, Hirayama K, Ueda K, Sakai H, Yonehara H. 1958 Blasticidin s, a new antibiotic. J 
Antibiot (Tokyo) 11:1–5. [PubMed: 13525246] 

Tropsha A 2010 Best practices for qsar model development, validation, and exploitation. Molecular 
Informatics 29:476–488. [PubMed: 27463326] 

van Ravenzwaay B, Sperber S, Lemke O, Fabian E, Faulhammer F, Kamp H, et al. 2016 Metabolomics 
as read-across tool: A case study with phenoxy herbicides. Regul Toxicol Pharm 81:288–304.

Votano JR, Parham M, Hall LH, Kier LB, Oloff S, Tropsha A, et al. 2004 Three new consensus qsar 
models for the prediction of ames genotoxicity. Mutagenesis 19:365–377. [PubMed: 15388809] 

Wang W, Kim MT, Sedykh A, Zhu H. 2015 Developing enhanced blood-brain barrier permeability 
models: Integrating external bio-assay data in qsar modeling. Pharm Res 32:3055–3065. [PubMed: 
25862462] 

Xu C, Cheng F, Chen L, Du Z, Li W, Liu G, et al. 2012 In silico prediction of chemical ames 
mutagenicity. Journal of Chemical Information & Modeling 52:2840. [PubMed: 23030379] 

Zhao L, Wang WY, Sedykh A, Zhu H. 2017 Experimental errors in qsar modeling sets: What we can 
do and what we cannot do. Acs Omega 2:2805–2812. [PubMed: 28691113] 

Zhao L, Zhu H. 2018 Big data in computational toxicology: Challenges and opportunities In: Ekins S 
(Eds.) Computational Toxicology: Risk Assessment for Chemicals. 1111, John Wiley & 
Sons,Inc.page 291–312.

Zhu H, Martin TM, Ye L, Sedykh A, Young DM, Tropsha A. 2009 Quantitative structure-activity 
relationship modeling of rat acute toxicity by oral exposure. Chemical Research in Toxicology 
22:1913–1921. [PubMed: 19845371] 

Zhu H, Zhang J, Kim MT, Boison A, Sedykh A, Moran K. 2014 Big data in chemical toxicity research: 
The use of high-throughput screening assays to identify potential toxicants. Chem Res Toxicol 
27:1643–1651. [PubMed: 25195622] 

Zhu H, Xia M. 2016 High-throughput screening assays in toxicology. Springer Science+Business 
Media LLC, New York.

Guo et al. Page 11

Ecotoxicol Environ Saf. Author manuscript; available in PMC 2020 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The highlights for this study are:

Two large toxicity datasets Ames and rat acute toxicity were used in this study for 

evaluating a hybrid read-across strategy based on both chemical descriptors and 

public biological data.

This hybrid read-across strategy showed improved accuracy of predictions 

compared to the traditional read-across.

This hybrid read-across strategy, which is based on public big data, can not only 

solve the “activity cliff’ issue of traditional read-across studies but also illustrate 

potential toxicity mechanisms.
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Fig. 1. 
The hybrid read-across workflow
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Fig. 2. 
The comparison of biosimilarity results of the compounds with their chemical nearest 

neighbors for (A) Ames mutagenicity; (B) Rat acute oral toxicity. A biosimilarity threshold 

(0.80) was set to evaluate whether a target compound and its chemical nearest neighbor are 

biologically similar or not. The blue columns represent the numbers of compounds which 

are also biosimilarity to their chemcial nearest neighbors (Sbio>0.80); the red columns 

represent the numbers of compounds which are biodissimilar to their chemical nearest 

neighbors (Sbio<0.80).
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Fig. 3. 
The distribution of read-across predictions for compounds in Ames mutagenicity. The green 

crosses are correct predictions and the red round dots are incorrect predictions. The read-

across predictions were divided into four areas by using two threshold values (Chemical 

similarity = 0.90 and Biosimilarity = 0.80): The area A includes compound pairs with high 

chemical similarity and high biosimilarity; the area B includes compound pairs with high 

chemical similarity and low biosimilarity; the area C includes compound pairs with low 

chemical similarity and low biosimilarity; and the area D includes compound pairs with low 

chemical similarity and high biosimilarity.
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Fig. 4. 
The correlation between experimental and predicted acute toxicity values for compounds in 

acute oral toxicity dataset (Values shown as −log10 LD50). The red dots represent compound 

pairs with high chemical similarity and high biosimilarity; the black dots represent pairs in 

other cases (i.e. either chemically disimiar or biodisimiar). The dots between two dashed 

lines represent accurate predictions (absolute errors less than 0. 50).
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Table 1

Comparisons of traditional read-across and hybrid read-across prediction results.

Parameters Traditional read-across Hybrid read-across

Ames mutagenicity

Sensitivity 0.84 0.90

Specificity 0.77 0.74

CCR 0.80 0.82

Acute oral toxicity

R0
2 0.36 0.68

MAE 0.55 0.44
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Table 2

The five representative compounds and their chemical nearest neighbors in Ames mutagenicity dataset.
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*
Bioprofiles AIDs: 651741, 651838, 720635, 720637, 743012, 743014, 743015, 743064, 743065, 743122, 1224892, 1259243.

*
For bioprofiles, the red color indicates an active response, the blue color indicates an inactive response and white color indicates no data available.
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Table 3

The five representative compounds and their chemical nearest neighbor in acute oral toxicity dataset.
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*
Bioprofile AID: 720635, 720637, 743012, 743014, 743015, 743064, 743065, 1159529, 1224871, 1224874, 1259243.

*
For bioprofiles, the red color indicates active response, blue color indicates inactive response and white color indicates no data available.
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