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Abstract

Introduction: Forgetting shapes learning in two different ways. It impedes learning when

important lessons are forgotten. Equally, it can be difficult to enact new lessons if we do not

let go of old beliefs and practices that are no longer useful. A learning health system (LHS) that

wishes to improve health service delivery will need to find ways to remember processes that

shape quality and safety ‐ using data that often resides beyond electronic health records. An

LHS will also need to “forget”, or programmatically decommission, obsolete practices, whose

persistence otherwise leads to unnecessary system complexity and inertia to change.

Discussion: New forms of data needed to improve health services include process metrics

extracted from digital systems; human‐level metrics that capture workflow patterns and clinician

behaviors; and multivariate process patterns that can identify service “syndromes.” To avoid

inertia to change, system complexity must be reduced by retiring (or forgetting) inefficient or

unhelpful work practices. Biological models of programmed cell death provide a rich set of

mechanisms to decommission elements of health services. These models suggest health service

elements should be able to detect the end of their useful life and should contain internal

mechanisms to orchestrate decommissioning—in contrast to current service decommissioning,

which is an externally initiated, top‐down down‐driven process.

Conclusions: An LHS should take advantage of digital infrastructure to bring together people,

sensors, analytics, and quasi‐autonomous mechanisms for service adaptation. By drawing inspira-

tion from biology, we can design LHSs that do not just remember but also actively forget.
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1 | INTRODUCTION

We should learn from the past. To not do so is to waste opportunity

and resource on failed strategies and practices. This is the fundamental

proposition for building a learning health system (LHS)—to harness the

treasure trove of clinical data stored in electronic health records (EHRs)

so that every patient's experience adds to the knowledge base,1–3 and

every new patient's care is as effective as we can make it.4

Beyond questions of diagnosis and treatment, an LHS should

focus on improving the quality, safety, and effectiveness of health care

processes.5 There is little point in discovering the best way to treat a

patient, if poor execution leads to unnecessary harm, cost, or suffering.
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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Yet today health care services everywhere still struggle with quality

and safety challenges, despite a decade of intense focus on the prob-

lem.6 There is too much variation in patient care, and too much waste

and harm in the system.
2 | QUESTIONS OF INTEREST

“Forgetting” is the complement of learning; and in this paper, I explore

two different roles that forgetting can take in the LHS. First, much of

the data and knowledge that is needed to address questions of quality

and safety is today forgotten, and will likely never be captured just in
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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clinical records. Finding ways to capture these process data will likely

require a broadening of the LHS vision beyond the EHR.

Secondly, forgetting is not always negative. It is just as impor-

tant to engineer ways of forgetting obsolete practices in an LHS,

as it is to discover new ones. Coming to grips with these two

aspects of a forgetting health system are likely to be major chal-

lenges in bringing forth the truly adaptive, self‐optimizing health care

systems of the future.
3 | DISCUSSION

3.1 | Process information is lost

Quality and safety are ultimately process‐centric properties of a sys-

tem. They are shaped both by system defences that constrain unsafe

actions, and system affordances that give latitude to actions that may

come with risk. If we are to build learning systems that minimise

patient risk, then it will be necessary to measure process execution.

The state of the art in quality and safety measurement, however, sig-

nificantly lags our ability to measure patient outcomes. Critical incident

reports, for example, capture only a small proportion of adverse out-

comes, are not representative of true event frequencies, and are not

available in real time.7 There are emerging digital technologies that

trigger alerts when certain high‐risk actions occur, such as repeat

orders for a medication within a short time window.8 In general,

however, we still do not necessarily know which processes of service

delivery should be instrumented nor which events are the most impor-

tant to flag.

As a result, much process data still sit in the heads of those who

work within an organization.9 The nuances of what was done, when

it was done, and why the execution of events was in one sequence

and not another stay on the shop floor. There is a significant difference

between work as imagined (for example, in a documented treatment

plan) and work as done (the real‐time execution of that plan).10

Responding to the evolving logic of events in the physical world,

clinicians must find ways of satisfying multiple competing demands

and will not always be able to reconcile what is recommended practice

with what could or should be done.11

Creating a learning health service that can optimise process execu-

tion would require concerted effort to “instrument the enterprise” and

capture service information at a number of levels:

• Automated process‐level metrics: Treatment and diagnostic

events recorded in the EHR are one source of process informa-

tion. For example, time stamps on events such as the creation of

a medication or test order, and the steps that follow as the

order is executed, can provide valuable information on process

quality and efficiency.12,13 Process mining of human‐computer

interaction logs can provide rich information about the effective-

ness of workflows and software systems. Nonclinical systems

are also a significant source of process data. Telephone meta-

data including Global Positioning System positioning data and

online social network engagements can be used to monitor pop-

ulation‐level health services, emergency services, and to
generate consumer‐derived data—a rich source of quality and

safety data.14

• Human‐level metrics: Measuring what patients and clinicians do

can be very revealing but currently requires significant invest-

ment in data capture, for example, through direct observation

or analysis of video and audio records. New classes of sensor,

such as wearable cameras, or contact and location sensors can

make workflow patterns in health services visible and open to

detailed analysis. For example, wearable proximity sensors allow

hospitals to trace likely infection transmission routes in hospital

wards as patients, visitors, and staff move about and interact,

suggesting modified infection control procedures.15

• Process patterns: Making sense of the causation behind system

performance is a major challenge, as many service problems have

complex origin, and will not yield to simple statistical analysis. Indi-

vidual metrics can only tell us so much, and learning how different

variables interrelate is essential to modifying the behavior of what

is a genuinely complex system. For example, “syndromes” or tell‐

tale multivariate patterns may signify the likely source of hospital

information systems problems.16 Process mining and other

machine‐learning methods underpin the discovery of such

patterns.17,18
3.2 | Learning in complex systems also requires
forgetting

In patient safety, there has been a dawning recognition that creating

safe systems cannot rely simply on focusing on what goes wrong

(Safety 1) but that there also needs to be attention to what goes right

(Safety 2).10 We probably need to see a similar change in framing for

LHSs, moving from a focus solely on learning what is right (LHS 1) to

also forgetting what was wrong (LHS 2) (Box 1). Just because the evi-

dence shows a practice is obsolete does not mean it instantaneously

disappears There needs to be a concerted effort to communicate the

need for change, and then embed the change into work practices.
Box 1: A typology of learning health systems

LHS 1: A system with explicit systemic learning mechanisms

characterized by the use of information to generalize

lessons within the system

LHS 2: A system with explicit systemic learning and

decommissioning mechanisms characterized by the

use of information to both generalize lessons from

within the system and maintain efficient system

function through controlled decommissioning or

forgetting
Terms such as decommissioning, disinvestment, reconfiguring,

rationing, and de‐adoption describe the process of planned removal

of old, unwanted practices such as a type of surgery, investigation, or
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therapy. Collectively, these processes try to identify “low‐value care”—

practices that are not supported by economic measures of value.19–21

Decommissioning is usually a top‐down intervention, involving

change‐management strategies such as community engagement, and

the use of champions.

Standardisation also seeks to eliminate “unwarranted” local var-

iation.22 Whilst standardisation clearly has an important role, it

poses a challenge to the LHS, because its intent is to suppress

local adaptation, yet creating variation is the whole point of the

LHS.23 Another well‐known challenge to standardisation is that

not everything is a good target for homogenisation. It is no doubt

a good thing for computer systems to share a standard way to

describe data or to construct messages. It is less clear that the

design of user interfaces should be identical across different clinical

services, which have different workflows, tasks, and goals. The

overemphasis on top‐down standardisation at the expense of local

variation has been a poor policy choice in the realm of health

information technology.24 So it is too with clinical practices. Proce-

dural variation in surgery seems to confer versatility that allows

surgeons to vary their approach, depending on the specific needs

of a patient.25 Centres of excellence can have very good reason

to do things differently to other health services, because of the dif-

ferent mix of patients they see, the unique resources they have,

and the accumulated local evidence supporting their specialised

approaches.

Decommissioning and standardisation can have limited impact in

the real world. We may know only too well what does not work, but

all our attempts to avert history repeat may have little impact. Indeed,

health systems display a remarkable reluctance to shift performance

in response to imposed change. Several decades of effort to improve

the quality and safety of health care, for example, have in most cases

had only marginal success in reducing rates of harm and adverse

events.6

This system inertia—the resistance of a system to change despite

clear evidence that change is essential—is an emergent property of

the structure of health services, and is likely a function of system com-

plexity.26 Put simply, the more dependencies there are in a system, the

harder it is in general to change behavior. Further, complexity grows

over time, as we accrete new practices but do not entirely abandoning

the old. One solution to growth in complexity and inertia is to actively

reduce system complexity, freeing up the system to flex and adapt.

Discovering mechanisms to overcome system inertia through complex-

ity reduction thus becomes a foundational challenge in the construc-

tion of any LHS.

Local variations thus have the tendency to accrete over time and

add to system complexity. They can persist in the processes, proto-

cols and built structures of an organization, and in the workarounds,

customizations, and annotations that happen to physical spaces.27

Important lessons are thus embedded in the physical structure of

the organization, and the physics of the way people act within that

structure. With time, the canvas of a new organization is overlaid

with accreted experience, lessons learned, and adaptations directly

embedded into workflow. These structural memories are not inert,

passive, or idly awaiting analysis. Rather, they sit there every

moment—shaping work, constraining behavior, and altering human
perceptions, actions, and intent. The task of forgetting old practices

is thus non‐trivial, as many are never documented or described, but

simply become part of the fabric of work.
3.3 | Programmed cell death as a model for the
forgetting health system

How one approaches mindful forgetting in health systems remains lit-

tle explored. Whilst we have blunt top‐down strategies like

standardisation or decommissioning, there are no obvious complemen-

tary bottom‐up processes that remove unwanted local variations

whilst preserving what is important. Equally, there is much still to be

learned about the best way to implement these mechanisms so that

no harm is done in the process.

Biology may be able to help, as it has provided organizational sci-

ence many metaphors and insights over the years, some more power-

ful than others.28,29 Biological processes can also provide us with a set

of mechanisms that parallel the organizational challenge of forgetting

the unwanted and simplifying the complex. Specifically, programmed

cell death (PCD) has exactly these roles in the organism.26 It targets

cells that require removal because they are no longer functioning

well—for example, in the removal of precancerous cells. The PCD is

also crucial in homeostasis. In embryogenesis or organism develop-

ment, PCD helps craft organ structure by shaping which cells should

continue to grow and which must die—for example, creating the

spaces between fingers. The biology of cell death is complex and

includes at least three different mechanisms of apoptosis,30 necrosis,

and autophagy.31,32

From the point of view of organizational development and

function, the specific molecular mechanisms of cell death are prob-

ably of less interest than the functional design of these different

death pathways. What is of interest is that PCD is adaptive to cir-

cumstances, can work from bottom up to top down, and has

evolved sophisticated machinery to minimise unnecessary harm to

healthy parts of the organism—all very desirable properties for the

LHS.

At a high level of abstraction, the machinery of PCD has the fol-

lowing general features (Figure 1):31–34

• There is a separation between signalling functions, which convey

messages and execution functions, which terminate cells based

on state information.

• There are different roles for signalling. Some signals trigger cell

death, others signal permission to continue operation.

• Signals can be generated at any of 3 levels:
◯ Macro: Top‐down signals originate far from a cell and come

from high‐level control mechanisms (called the extrinsic

pathway for apoptosis in biology). If a cell loses contact

with its surrounding cells and environment, it self‐

terminates;

◯ Micro: When a cell becomes dysfunction, for example through

irreparable internal damage, it releases local signals in a bot-

tom‐up fashion, to trigger self‐destruction (known as the

intrinsic apoptosis pathway);



FIGURE 1 There are different control and
execution pathways for programmed cell
death including apoptosis, necrosis, and
autophagy. These can be mapped into
separate signalling and decommissioning

mechanisms to manage unneeded functional
units within an organization (however such
units are defined). Separate signalling and
execution mechanisms may exist at the level
of whole of organization (macro), local external
environment (meso), or internally to a unit
(micro). Some signalling mechanisms share a
common decommissioning process but may be
external to a unit (extrinsic path) or within it
(intrinsic path). Signals can tell a unit to
continue functioning (+) or to decommission
(−). Decommissioning machinery can sit
outside a unit or within it.
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◯ Meso: “Middle‐out” mechanisms include necrosis, which is

triggered by events in the local external cellular environ-

ment; and autophagy, which is triggered by events on a

cell's surface but co‐opts distant cells to conduct cell

termination;

• The different roles and sources of signals mean that a variety of

signal receptor types and locations are needed. Cells contain both

external surface “death receptors” to receive these external (macro

or meso) signals, as well as a separate internal (micro) detection

process;

• There is modularity in PCD design. Once a death signal is received

by a cell from whatever source, a common internal mechanism

executes the signal to die;

• There is redundancy in PCD design. Additional machinery exists

external to the cell that can also terminate it. For example, if sig-

nals on its surface indicate that it appears to be dysfunctional,

other specialized cells can destroy it (autophagy).

• There is variety in PCD design. Different classes of event trigger

different pathways and mechanisms, and each class of cells may

be regulated by a different bundle of pathways and mechanisms.
3.4 | Programmatic organizational decommissioning

What might biology teach us about programmatic forgetting in the

LHS? The first observation is that there is a substantial gap between

the elegance and richness in purpose and design of what we find in

biology and current organizational mechanism. Where biology sculpts,

organizations amputate and graft. The current health system approach

to organizational forgetting is only top down. Decommissioning pro-

ceeds by telling us what is bad, and standardisation does it by telling

us what is good. There is no dialogue between the local and top, as

there is in biology, and there is none of the variety of mechanism nor

local autonomy.
If we take biology as our guide, then for an LHS to be adaptive, the

capacity to learn and change practice must happen at multiple levels

from the local to the global. Whilst there is no obvious organizational

equivalent of a biological cell, we can still talk about an organizational

“unit,”which operationally is substitutable with another similar “chunk”

or element. Examples of units include a clinical guideline or a workflow;

different units come together to constitute larger organizational

“organs” like a hospital ward.

For programmatic organizational decommissioning (POD), we

would require that each organizational unit be designed with its

demise in mind. Each unit must be able to determine whether it should

continue to operate or should terminate. It should also ideally contain

the machinery for that termination. There should be clear mechanisms

for the local to signal the central, and vice versa, so that there can be

an ongoing and emergent “discussion” about where change is needed,

and what needs to be retained. Box 2 contains some examples of the

trigger rules one could build for different units, or aggregations of

units, using the machinery of POD at different levels, from bottom

up to top down.

In biology, rogue cells that fail to terminate can become cancer-

ous. To minimise this risk, there is redundancy in design of PCD, so

that if one mechanism fails, there is a good chance such cells will

be caught by an alternate mechanism. In organizations, rogue units

(such as a particular clinical practice) might also incorrectly persist

and proliferate. POD thus requires backup mechanisms, just as with

PCD, to police for such dysfunction. It should be possible within a

digital infrastructure to monitor the process data generated by func-

tional units to determine whether or not they are performing well.

We should be checking to see whether they respond to decommis-

sion signals, and if they do not, remove them using an externally

imposed mechanism. We can imagine software agents combing such

a network, behaving like “cyber‐immune” cells, checking digital enti-

ties for credentials of good health, as well as the digital footprints

of physical entities. Failure to prove good health could trigger a cen-

tral response.35
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Box 2: Programmatic organizational
decommissioning

Simple examples of rules designed to trigger decommissioning

mechanisms within or external to functional units:

• Micro: When new elements are added to data entry

forms or computer screens, other elements will need to

be retired to avoid increasing complexity and reducing

functionality, eg, (Delete/Hide/Archive/Deprioritize)

me if my (error/usage/incompleteness) rate puts me in

the bottom 1% of elements.

• Meso: The arrival of a new clinical guideline should

require old ones to retire, eg, Retire me if (a more

recent guideline exists/recent evidence contradicts my

content).

• Macro: Legacy information systems accrete with time

and can constrain innovation by limiting the choice of

new systems and absorbing resources through

maintenance costs, eg, Decommission me if my (cost of

maintenance and usage benefit) is worse than that of a

newer replacement.
4 | CONCLUSION

It has been said that “the challenge of the LHS may require a novel

emergent science of large‐scale learning systems best seen as an

evolution from the science of information systems, through a science

of cyber‐physical systems, and ultimately to a science of cyber‐

physical–social ecosystems.”3

Biological organisms have evolved deep interconnected systems

for cellular signalling and action, which support the growth of the

organism and differentiation into functional organs, and which deliver

homeostatic balance in response to external changes. Our challenge

with health systems does not stop with becoming better at remember-

ing the past. Our larger goal should be to develop an LHS that takes

advantage of digital infrastructure to bring together people, sensors,

analytics, and quasi‐autonomous mechanisms for service adaptation.

For a complex adaptive system, there is no learning without com-

plementary forgetting. We thus need to move our conception of the

LHS from one focussed just on learning, to one that also is expert at

forgetting, from LHS 1 to LHS 2. Hopefully, by drawing inspiration

from biology, we can design these socio‐technical machines “to under-

stand the process of design from within the system, to design a system

that more or less designs itself”36
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