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Abstract

Brain activity is a dynamic combination of different sensory responses and thus brain activity/state 

is continuously changing over time. However, the brain’s dynamical functional states recognition 

at fast time-scales in task fMRI data have been rarely explored. In this work, we propose a novel 

5-layer deep sparse recurrent neural network (DSRNN) model to accurately recognize the brain 

states across the whole scan session. Specifically, the DSRNN model includes an input layer, one 

fully-connected layer, two recurrent layers and a softmax output layer. The proposed framework 
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has been tested on seven task fMRI datasets of Human Connectome Project. Extensive experiment 

results demonstrate that the proposed DSRNN model can accurately identify the brain’s state in 

different task fMRI datasets and significantly outperforms other auto-correlation methods or non-

temporal approaches in dynamic brain state recognition accuracy. In general, the proposed 

DSRNN offers a new methodology for basic neuroscience and clinical research.

Index Terms

dynamic brain state; recurrent neural network; fMRI; brain networks

I. Introduction

UNDERSTANDING the nature of brain’s activities and functions has been one of the major 

goals since the inception of neuroscience. During the past few decades, researchers have 

developed various methods to characterize and analyze the brain activity patterns, such as 

GLM [1], ICA [2], and sparse representation based methods [3–7]. The underlying 

assumption used in previous studies is that the brain networks and activation patterns/states 

are temporally stationary across the entire fMRI scan session. However, there are 

accumulating evidences [8–12] indicating that brain activities and states are under dramatic 

temporal changes at various time scales. For instance, it has been found that each cortical 

brain area runs different “programs” according to the cognitive context and the current 

perceptual requirements [9], and the intrinsic cortical circuits mediate the moment-by-

moment functional state changes in the brain [9]. That is, in the brain’s dynamic functional 

process, parts of the brain engage and disengage in time, allowing a person to perceive 

objects or scenes, and to separate remembered parts of an experience, and to bind them all 

together into a coherent whole [8, 13]. What’s more, it is still under dynamic changes even 

in resting state within time scales of seconds to minutes [14]. Inspired by these observations, 

more and more researchers are motivated to examine the temporal dynamics of functional 

brain activities [15–19].

Currently, a dominant analysis technique used for describing the temporal dynamics of 

functional brain activities is the use of sliding windows [16, 20, 21]. Sliding window based 

approaches pre-specify the temporal resolution of the changing pattern (window size), and 

map the spatial distribution of the networks and provide measures of dependence, e.g., linear 

correlation between the timecourse for interested pair of voxels, regions, or networks [22]. 

These methods range from windowed versions of standard seed-based correlation or 

independent component analysis (ICA) techniques to new methods that consider information 

from individual time points [14, 16, 19–21, 23–27]. In addition to sliding window 

approaches, researchers also tried some alternative methods over the past few years. For 

instance, change point detection methods have been proposed to determine “brain state” 

changes based on the properties of data-driven partitioned resting state fMRI (rs–fMRI) 

data, such as amplitude and covariance of time series [10, 15, 18, 28–31]. In contrast to 

methods based on relationships between brain regions, event-based approaches assume that 

the brain activity is primarily composed of distinct events and these events can be 

deciphered from the BOLD fluctuations [32, 33] or through deconvolution of a given 
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hemodynamic model from the time series [34, 35]. More recently, Vidaurre and his 

colleagues proposed to describe brain activity as a dynamic sequence of discrete brain states 

using Hidden Markov Model (HMM) to provide a rich description of the brain activities [36, 

37]. In general, these approaches have enriched the description of functional brain activities 

and contributed to the better understanding of the temporal dynamics underlying brain 

activities.

However, these approaches might still have possible limitations. First, as the most widely 

used approach, the parameters of sliding window techniques are debatable, such as the 

window length and type. For example, a long temporal).window will miss fast dynamics, 

while short window will have insufficient data to provide reliable estimation, and it is 

difficult to achieve convincible results without “gold standard”. Second, most of these 

approaches make conclusions based on the relative changes between paired voxels or brain 

regions which ignore the temporal dependence of the whole sequence of brain activities/

states. In addition, with the limited time scales, they may not be able to catch the fast 

temporal scale dynamics. Last but not least, many of these methods are designed for rs-fMRI 

data [22] and how to model the temporal dynamics of task fMRI (tfMRI) data has been 

rarely explored. Therefore, developing a comprehensive and systematic spatial-temporal 

brain dynamic activity modelling framework that can naturally recognize dynamic brain 

states at fast time-scales from task fMRI data is still needed.

Recently, Recurrent Neural Networks (RNNs) have shown particularly outstanding 

performances in many research areas, such as handwriting recognition [38, 39], language 

modeling [38,40], machine translation [41], and speech recognition [42], which involve 

modeling sequential signals. Furthermore, a few attempts using RNNs in neural encoding 

[42] and responding [48] have shown that RNNs are feasible in modeling dynamic 

biological signals. A prominent feature of RNNs is that they can easily and effectively 

capture both short and long term temporal dependences in data sequences and model the 

inner dependent relationships using their internal memories. Specifically, RNNs maintain 

memory cells to preserve the information of the past sequences and learn when and how to 

restore these memories to make predictions, rather than predicting based only on local 

neighborhoods in time. Therefore, RNNs can inherently acquire the temporal dependence of 

the sequential data, which is quite suitable for the problem of modeling temporal dynamic 

activities and recognizing the fast time-scale brain states in task fMRI data.

Inspired by the great ability in modeling the temporal dependence of sequential data using 

RNN models, in this paper, we propose a five-layer deep sparse recurrent neural network 

(DSRNN) to recognize the dynamical brain states at fast time-scales in tfMRI data. Briefly, 

the proposed DSRNN model includes an input layer, one fully-connected layer, two 

recurrent layers and a softmax output layer. We tested the proposed DSRNN model with 

more than 800 subjects in the seven task fMRI datasets provided by the Human Connectome 

Project (HCP), including working memory, gambling, motor, language, social, relational, 

and emotion tasks [49]. Notably, the proposed DSRNN model achieved outstanding brain 

state recognition accuracy (over 90 percent averagely), compared with auto-correlation 

methods (Adaptive Autoregressive Classifier, AAR [50, 51]) and traditional non-temporal 

modeling approaches (Softmax and SVM). Also, the associated important brain regions in 
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recognized brain states show meaningful consistence with traditional task-activated areas, 

which provides us novel insight on understanding the brain activities and functions. In 

general, our work demonstrate that the proposed DSRNN model has great advantage in 

recognizing the dynamical brain states at fast time-scales, and it offers a novel methodology 

for the study of dynamical functional brain activities.

II. Materials and Methods

The proposed deep sparse recurrent neural network (DSRNN) is a five-layer deep neural 

network model, including an input layer, one fully-connected layer, two recurrent layers and 

a softmax output layer. Specially, the fully-connected layer plays a role of extracting 

activated brain regions and reducing data dimension, and the cascaded recurrent layers are 

used to capture temporal dependence in time series. In this section, we will introduce the 

fMRI datasets, basic theory of recurrent neural network, and the structure and mechanism of 

DSRNN in details.

A. Data Acquisition and Pre-processing

In this paper, we adopted the Human Connectome Project (HCP) 900 Subjects Data Release 

as test beds, which include behavioral and 3T MR imaging data for over 900 healthy adult 

participants [52]. Seven categories of behavioral tasks are involved, including Working 

memory, Gambling, Motor, Language, Social, Relational, Emotion tasks. The design 

information of seven tasks is shown in Table 1. In total, there are 788 subjects executed all 

seven behavioral tasks, and 786 subjects’ task fMRI (tfMRI) time series with good data 

quality are used in this work. All the datasets are available on https://

db.humanconnectome.org. The detailed acquisition parameters were set as follows: 220 mm 

FOV, inplane FOV: 208×180 mm2, flipangle=52, BW=2290 Hz/Px, 2 × 2 × 2 mm3 spatial 

resolution, 90×104 matrix, 72 slices, TR=0.72s, TE=33.1ms. The preprocessing of these 

tfMRI data sets includes skull removal, motion correction, slice time correction, spatial 

smoothing, and global drift removal (high-pass filtering). In our implementation, a 4 × 4 × 4 

mm3 downsampling is applied to reduce computational cost. Next, we will introduce these 

tasks briefly and more detailed procedures are available in section A of supplementary 

materials. Supplementary materials are available in the supplementary files /multimedia tab.

In working memory (WM) task, a version of the N-back task was used to assess working 

memory [53]. It was reported that the associated brain activations were reliable across 

subjects [53] and time [54]. Gambling task was adapted from Delgado et al. [55], and prior 

works demonstrated that the task elicits activations in the striatum and other reward related 

regions which are robust and reliable across the subjects [55–58]. Motor task was developed 

by Buckner and his colleagues which has been proven that it could identify effector specific 

activations in individual subjects [59]. Language task was developed by Binder et al. [60]. 

There are two subtasks: story and math where the math blocks was designed to provide a 

comparison task that was attentional demanding. In Social task, an engaging and validated 

video task was chosen as a measure of social cognition, giving evidence that it generates 

robust task related activation in brain regions associated with social cognition and it is 

reliable across subjects [61–64]. Relational task was adapted from the one developed by 
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Smith et al. [65] which demonstrated to localize activation in anterior prefrontal cortex in 

individual subjects. Emotion task was adapted from Hariri and his colleagues who have 

shown this task could be used as a functional localizer [66] with moderate reliability across 

time [67].

B. Recurrent Neural Networks

Recurrent neural networks (RNNs) are feedforward neural networks with edges connecting 

adjacent time steps. This distinct architecture is similar to biological neuronal networks, 

where lateral and feedback interconnections are widespread. The internal states of RNNs 

preserve memories of previous state information and capture the temporal dependences of 

input signals. RNNs have been applied successfully in many diverse sequence modeling 

tasks [38–48, 68]. Fig. 1(a) illustrates a specific and basic recurrent cell unit and its recursive 

equation is as follows:

ht = tanh Uht − 1 + Wxt + b (1)

where U , W are the weight matrices for hidden states and input features and b is bias 

parameters. ht denotes the hidden state. Typically, vanilla RNNs (established by basic 

recurrent cell units) are very dificult to train due to the vanishing gradient problem [69]. In 

contrast, LSTM (Long Short-Term Memory) units [70] and GRU (Gated Recurrent Unit) 

units [41] were specifically designed to overcome this problem and have since become the 

most widely-used cell architectures.

Each LSTM unit maintains a cell state that acts as its internal memory by storing 

information from previous time series. The contents of the cell state are controlled by the 

gates of the unit, and determine unit’s hidden state. The first–layer hidden state of an LSTM 

unit is defined as follows:

ht = ottanh ct (2)

ot = σ Uoht − 1 + Woxt + bo (3)

where ⊙ denotes elementwise multiplication, ct is the cell state, and ot is the output gate 

activation. The output gate controls what information would be retrieved from the cell state. 

The cell state of an LSTM unit is defined as:

ct = f tct − 1 + itct (4)
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f t = σ U f ht − 1 + W f xt + b f (5)

it = σ Uih
t − 1 + Wix

t + bi (6)

ct = tanh Ucht − 1 + Wcxt + bc (7)

where ft is the forget gate activation, it is the input gate activation, and ct is an auxiliary 

variable. Forget gate controls what old information would be abandoned from the cell state, 

while input gate controls what new information would be stored in cell state. Furthermore, U 

f, U i, U c and W f, W i, W c are the corresponding weights and b f, bi, bc are the biases (i.e., 

the learnable parameters of the model).

The GRU unit is a simpler alternative to LSTM unit. They combine hidden state with cell 

state, and input gate with forget gate. The first-layer hidden state of GRU unit is defined as 

follows:

ht = 1 − zt ⊙ ht − 1 + zt ⊙ ht (8)

zt = σ Uzh
t − 1 + Wzx

t + bz (9)

rt = σ Urh
t − 1 + Wrxt + br (10)

ht = tanh Uh rt * ht − 1 + Whxt + bh (11)

where zt is update gate activation, rt is reset gate activation, and ht is an auxiliary variable. 

Like the gates in LSTM unit, those in GRU unit also control the information flow. As 

LSTM, trainable parameters, such as weights U z, U r , U h and W z, Wr, W h, and biases b z, 

b r, b h, determine the activations of the gates.

As shown in Fig. 1(d), a recurrent neural network can be unfolded as a deep feedforward 

network along time. Conversely, when the numbers of units and connections are limited, a 

desirable function computed by a very large feedforward network might alternatively be 
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approximated by recurrent computations in a smaller network. Recurrent network can 

expand computational power by multiplying the limited physical resources for computation 

along time.

C. Deep Sparse Recurrent Neural Network

As described beforehand, the feedforward sweep alone might not provide the sufficient 

evidences that the output layer needs to confidently recognize brain states. Instead, an ideal 

model should integrate later-arriving lateral and top-down signals to converge on its ultimate 

response. Therefore, in order to better capture the temporal dependences preserved in fMRI 

time series and recognize the dynamical brain states, a five-layer DSRNN model is 

proposed, as shown in Fig 2. Adjacent layers are fully connected, and the connections 

between layers are forward. The fully connected layer plays a role as a filter of activated 

brain regions, which aims to winnow and combine significant fMRI volumes with proper 

weight values. Then, two recurrent layers are employed following the same structure, as 

shown in Fig.2, so that various scales of temporal dependences can be captured. The hidden 

state of second recurrent layer is defined similarly to that of first recurrent layer, except for 

replacing the input with the hidden state of first layer. Finally, we apply a softmax layer to 

obtain a vector of class probabilities:

yt = so f tmax Uyht + by (12)

p ytk = 1 x1, x2, ⋯, xt = yt (13)

where softmax (x) = exp(x)/∑iexp xi .

In the training process of DSRNN, the optimization objective is made up of three 

components shown as follows:

J(W, b) = CE(y y)
+ β OFull + λ WFull

(14)

The first term is the overall error cost. In the case of multiclass classification, the error cost 

is defined as the cross entropy (CE) between the true labels {y} and the predicted labels y . 

The cross entropy for the discrete distributions P and Q over a given set is defined as 

follows:

CE(P, Q) = − ∑
i

P(i)logQ(i) 15
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The second term is the sparseness penalty of the activation (output) OFull of fully connected 

layer, and L1 norm helps to concentrate task related volumes in only a few patterns. β 
controls the weight of sparseness penalty term.

The last term is also a sparseness penalty which forces WFull to be sparse. WFull is the 

weight matrix of fully-connected layer. We use L1 norm as the penalty cost, and λ is the 

weight parameter of this penalty term. Because activated brain regions are extracted from 

WFull proper sparseness of WFull can help to remove those brain areas which are not 

sensitive to task events and to make significantly activated brain regions stand out.

DSRNN adopts the feedforward sweep to extract elementary features, and then uses 

subsequent recurrent computations to explain the nonlinear interactions of these features. In 

such a process, the information maintained in fMRI signals would be gradually uncluttered 

in the low-level representation and contextualized by the high-level representation. 

Therefore, the higher level brain states are recognized accurately and brain dynamics are 

modeled gradually.

The recognition accuracy is defined as the proportion of correctly recognized labels, and the 

calculation is as follows:

Accuracy =
N LabelsRec = = LabelsGT

 SequenceLength  16

where LabelsRec are the recognized label sequences, and LabelsGT are the ground truth 

labels. Therefore, numerator is the number of time points which are correctly recognized.

In this paper, the DSRNN model is implemented with Ten-sorflow. Truncated back 

propagation through time is employed in conjunction with AdamOptimizer to train the 

models by iteratively minimizing the objective function (Equation (14)). Besides, dropout 

operation [71] was applied on the inputs of each recurrent layer, which enhances the 

generalization of DSRNN model. The DSRNN model was run on the computing platform 

with two GPUs (Nvidia GTX 1080 Ti, 12G Graphic Memory) and 64 G memory.

D. Random Fragment Strategy

In this paper, the datasets we used are from the Human Connectome Project (HCP) 900 

Subjects Data Release. In HCP, all subjects followed the same task designs, and the recorded 

event label sequences were almost the same. However, if the whole fMRI series and event 

label sequences were used for training, it would cause a severe overfitting problem, that is, 

the DSRNN would only learn the task designs, rather than the temporal dependences hidden 

in fMRI time series, and the training process would be meaningless.

In order to overcome this drawback of datasets, we propose a novel training strategy: 

random fragment strategy (RFS). In this strategy, sequence fragment with random length is 

cut from random location of the sequence. Thus, in each iteration, new different sequence 

fragments are fed to DSRNN. In this paper, the fragment length ranges from 30%~50% of 
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the whole sequence length. By creating huge amounts of distinct sequences with different 

lengths, RFS enriches the diversity of datasets and makes sure that the DSRNN learns the 

temporal dependences preserved in fMRI time series, rather than changeless arrangement of 

task events.

III. Results

A. Overview of the DSRNN Model

In order to validate the proposed DSRNN framework, we tested the DSRNN model on the 

Human Connectome Project (HCP) 900 Subjects Data release. Specifically, there are seven 

task fMRI datasets with more than 800 subjects which is one of the biggest publicly 

available tfMRI dataset. In the following sections, we will first go over the details of the 

DSRNN model and then discuss the brain state recognition results and associated important 

brain areas and the effects of different parameter settings. For convenience, we take motor 

task as an example, which includes the maximum stimulus events in HCP data sets.

As shown in Fig. 3(a)~3(b), the 3-D whole brain fMRI recordings of time t , where brain 

state is hidden, are sent to the input layer of DSRNN after being stretched into a 1–D 

(28549∗1) vector. Then, the fully connected layer extracts activated brain regions, and 

converts the original large dimension (28549) recordings into small size (32) activations. 

Specially, activated brain regions are gradually filtered during the whole training process, 

and represented by the weights of fully connected layer, as shown in Fig. 3(d) ~ 3(e). As 

determined beforehand, we arranged 32 neuron units in fully connected layer, therefore, we 

obtained 32 groups of activated brain regions. After all the trainable parameters of DSRNN 

are settled, the activated brain regions are confirmed. In Fig. 3(e), it is easy to observe that 

there are a few specific brain areas activated in each group. In general, original recordings 

contain raw brain information, and they are definitely redundant. After this filtering process 

of fully connected layer, only those significant and distinctive information are preserved, and 

the redundancy is reduced largely (from 28,549 to 32). Therefore, the brain state 

corresponding to each task event can be indicated by only a few activated brain region 

groups. The activations of these region groups make up the outputs of fully connected layer, 

as shown in Fig. 3(f), where the vector size is much smaller than those in Fig. 3(b).

After assembling the output vectors (Fig. 3(f)) along time, we can obtain an activation trace 

map, as shown in Fig. 3(g), where the brain state shift can be illustrated more clearly. In this 

paper, we regard task design as ground truth since different task stimulus events are 

presented to the participants according to the task design paradigm. Comparing activation 

traces with the ground truth at the top of Fig. 3(g), it is easy to recognize matching relations 

between them. In addition, some activated region groups have similar shapes in activation 

trace, which indicates that these groups of regions may be activated simultaneously and they 

functionally cooperate with each other. Then, we further cluster all the region groups into 

several classes based on their activation traces, and the clustered trace map is shown in Fig. 

3(h). In motor task, there are five different motion events: left foot, right foot, left hand, right 

hand, tongue. In Fig. 3(h), it is easy to observe that there are 5 clustered activation traces 

matching 5 motion events closely. We pick up the brain activation map corresponding to 
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each motion, and show them in Fig. 3(i). In this way, the whole brain activation maps of 

each task event are obtained.

In addition, the activation traces are fed to recurrent layers to capture temporal dependences, 

which is vitally important to model dynamic system. With the outputs of the 2nd recurrent 

layer, softmax classifier can make an accurate recognition of brain states, as shown in Fig. 

3(j).

B. Brain State Recognition via DSRNN

In this paper, we adopted HCP 900 Subjects data release as testbeds, including 786 subjects 

with good data quality, which guarantees the diversity and universality of the experiment. 

Although a 4 × 4 × 4 mm3 down-sampling is applied to reduce training data size, we still 

cannot put all subjects’ data in our computing platform’s memory (64G Memory, 24G 

Graphic Memory in total). Thus, we have to randomly pick up as many subjects as memory 

can hold. The quantity of training and testing subjects of each task is shown in Table 2.

In Fig. 3(f) ~ 3(g), activation traces are obtained from fully connected layer, before where all 

processes have no relationships with temporal dependences processing. Since the human 

brain is a deep and complicated neural network[44], in which feedforward, lateral, and 

feedback connections are widespread, we suppose that there must be recurrent information 

flow of dynamics hidden in the fMRI time series. This is also the reason why we employed 

recurrent layers in DSRNN model. To validate this supposition, we compared the recurrent 

classifier (DSRNN model) with an auto correlative classifier (Adaptive Autoregressive 

Classifier, AAR) and two non-temporal classifiers (Softmax and SVM) respectively, as 

shown in Fig. 4.

After training hundreds of subjects, DSRNN model achieved outstanding performance in 

test datasets, and the results are illustrated in Fig.5 and Fig. 6. From Fig. 5, it is easy to 

appreciate that DSRNN model recognized brain states of seven tasks with the highest 

accuracies (above 90%, except relational task 88%). The rank of recognition accuracy from 

high to low is: DSRNN > AAR > Softmax ≈SVM. Fig. 6 illustrates the recognized brain 

states using different methods across all subjects. It is easy to observe from Fig. 6 that 

DSRNN model detected every subtask block in each task accurately. It accurately 

recognized not only the task durations, but also the change points of states. In DSRNN’s 

series, event blocks are very clear, even for the “Interval/Cue” blocks. In contrast with 

DSRNN, auto-correlation classifier (AAR) and non-temporal classifiers (Softmax and SVM) 

perform much worse at the state change points, and there are also plenty of noises which 

make event blocks ambiguous. Besides, DSRNN’s recognition of the first event block in 

each task is not so accurate, compared with other blocks behind. This is quite reasonable, 

because DSRNN needs some input sequences to initially build its preservation of memory.

Before maintaining enough temporal information of previous series, the recognition cannot 

reach the best performance. This result further indicates the importance of temporal 

dependences in brain state recognition.
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To conclude, our works demonstrated that DSRNN has better performance in brain state 

recognition than other models, especially those non-temporal classifiers.

C. Brain Activation Maps

An important characteristic of the proposed DSRNN model is that we can also obtain the 

important activated brain areas involved in brain state recognition. During brain state 

recognition, distinctive activated brain regions for each task event were extracted (illustrated 

in Fig. 3(i)). In this paper, we applied DSRNN model on seven HCP tasks, therefore, seven 

groups of brain activation maps of each task were obtained. In order to interpret these 

associated brain areas involved in brain state recognition, we compared these spatial maps 

with the activation maps obtained by GLM method, we find that interesting correspondence 

between these maps. For convenience, we also take motor task as an example and put other 

task’s result into the section B of supplementary materials. Supplementary materials are 

available in the supplementary files /multimedia tab.

The activation maps for the motor task are shown in Fig. 7. Events of Left foot and right foot 

show great activations in the posterior portion of the frontal lobe. For left hand and right 

hand, besides these distinctions, activations in precentral cortex are very clear. In addition, 

bilateral precentral cortex are activated during tongue movement. In motor task, we can see 

clear spatial differentiation of the activations in motor cortex: left and right hand/foot motion 

have expected contralateral activation locations, whereas tongue motion activates bilateral 

regions.

D. Effects of hyper parameters in DSRNN

In DSRNN, there are a few hyper parameters, such as cell unit number of each layer, 

recurrent layer number, and recurrent cell unit type, which determine the performance of 

DSRNN. Therefore, before the experiment, we need to determine all these hyper parameters 

carefully. In this paper, we picked up 100 subjects from working memory task datasets as 

test samples. By five-fold cross validation (80 subjects for training and 20 for test in each 

trial), we explored the effects on DSRNN’s recognition performance of each hyper 

parameter, and the exploration results are shown in Fig. 8 and Fig. 9.

According to previous RNN studies [48], two recurrent layers might capture multi-scale 

temporal dependences in series, and they outperformed the network with only single 

recurrent layer. So in the exploration of hyper parameters, we assumed that DSRNN with 

two recurrent layers might perform better than only one layer. Based on this assumption, we 

explored the effects of three hyper parameters: the cell number of fully connected layer, the 

cell unit number of each recurrent layer, and the cell type of recurrent layer. In Fig. 8(a), 

with GRU unit being the recurrent cell, DSRNN reached the highest performance when fully 

connected layer cell number was 32, and 128 GRU units were in each recurrent layer. Then, 

we repeated the experiment with LSTM unit and basic cell unit, and the results are shown in 

Fig. 8(b) and Fig. 8(c). In Fig. 8(b), network with 32 cells in fully connected layer and 128 

LSTM units in each recurrent layer also performed slightly better than others. Compared 

with the results of GRU units, LSTM units achieved lower recognition accuracy by about 

5%, on average. As to basic recurrent unit, the accuracy of recognition was even worse, 
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which was less than 70%, and some were even below 60%. Therefore, after comparing the 

performances of different combinations of three hyper parameters (the cell number of fully 

connected layer, the cell unit number of each recurrent layer, and the cell type of recurrent 

layer), we determined the architecture of DSRNN, which included a 32–cell fully connected 

layer, and two 128-GRU-based recurrent layers.

As all other hyper parameters were confirmed, we explored the influences of different 

recurrent layer numbers on DSRNN’s performances. In order to make a comparison, we 

made sure that both architectures had the same number of recurrent cell units (GRU), so that 

the performance would be only determined by the cell arrangement. The results are shown in 

Fig. 9. When there were only a small number of recurrent units, all units arranging in 

parallel in one layer achieved better recognition accuracy than cascaded arrangement. With 

the increase of cell number, the accuracies of both architectures improved, and the two-layer 

improved more. With a total of 256 recurrent cell units, both architectures reached the top, 

and two-layer architecture performed better. This result demonstrated that with sufficient 

cell units, arrangement of two cascaded recurrent layers could capture time dependences 

better than using only single layer arrangement.

E. Effects of free parameters in DSRNN

Based on the optimal structure of DSRNN, the free parameters of DSRNN, which should be 

determined before formal experiments, can be explored. In this paper, there are three free 

parameters that we needed to focus on: two sparseness penalty weights β and λ, and keeping 

proportion of dropout.

To investigate β and λ, we tried orders of magnitude ranging from 1e–6 to 1e–1. The 

recognition results of different combinations of β and λ are shown in Fig. 10. It is easy to 

see that λ has greater influences on DSRNN model than β, while β provides fine-tuning to 

DSRNN’s performance. When β and λ both were set 1e–3, DSRNN model achieved the 

best performance.

Dropout operation is also introduced to enhance the generalization of DSRNN model. As all 

other parameters are decided, it is feasible to select the best proportion based on all seven 

tasks. We tried the proportion from 0.4 to 1.0, and found that DSRNN performed the best at 

0.9. It can be inferred that there is high consistency among subjects in each task, and 

DSRNN can model fast time-scale brain states effectively and robustly.

IV. Discussion and Conclusion

In this paper, a 5–layer deep sparse recurrent neural network (DSRNN) model is proposed to 

model the dynamic brain states in task fMRI data. With outstanding capability of capturing 

sequence temporal dependence, DSRNN can recognizes brain states accurately. In addition, 

the associated brain activated regions also demonstrate meaningful correspondence with 

traditional GLM activation results which provide us novel insight on functional brain 

activities. Comparing with common auto-correlation modeling method (AAR) and 

traditional nontemporal modeling approaches (Softmax and SVM), DSRNN achieved 

obviously outstanding recognition accuracy.
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Though current DSRNN model has achieved excellent performances in brain states 

recognition accuracy, it still can be developed in a few aspects. Firstly, although the fully 

connected layer applied in DSRNN extracted distinctive activated brain regions successfully, 

there are many other neural network structures, such as CNN, DBN, etc., to be further 

revisited. These models are also widely used in computer vision and feature extraction, and 

have more complicated structure than fully connected layer. Better performance might be 

achieved if these models are employed. Secondly, in this paper, we recognize the brain states 

of each single task and obtained seven different state recognition models. Each model can 

identify subtasks or brain states of only one category of task. In the future, we can train one 

DSRNN model with all seven tasks. In this way, more distinctive activation maps and more 

differences can be obtained among tasks. Thirdly, as a proposal, DSRNN model might be 

applied online in the future. Because once the DSRNN model is trained successfully, real-

time tfMRI data time seies can be fed online and the brain behaviors can be detected in quite 

a short time. This application can be used widely as a brain states identifier.

Finally, there are several potential applications in basic neuroscience and clinical research 

with the proposed DSRNN model. For instance, it has been observed that dynamic 

performance can be sensitive to psychiatric or neurologic disorders, and the associated brain 

areas in brain state recognition may provide novel insight for clinical diagnosis. Besides, 

many literatures suggest that the brain activities and states are under dynamical changes and 

the proposed model provide a useful tool to recognize the brain states at fast time-scale in 

task fMRI data. In general, our proposed DSRNN model offers a new methodology for basic 

and clinical neuroscience research.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A schematic illustration of RNN cell models. (a) The nonlinear basic recurrent cell unit; (b) 

Long short-term memory unit; (c) Gated recurrent unit; (d) The interconnections in a 

common recurrent hidden layer. Neurons in recurrent layer are fully interconnected and new 

hidden states can be influenced by all former states. Squares indicate linear combination and 

nonlinearity. Circles indicate element wise operations. Gates in the units control the 

information flow between adjacent time points.
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Fig. 2. 
Overview of the DSRNN model. The stretched fMRI vector sequences are fed to the input 

layer of DSRNN model. One fully connected layer is used to extract activated brain regions. 

Two recurrent layers with dropout are cascaded to model temporal dynamics. Finally, a 

softmax classifier is arranged for the brain state recognition.
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Fig. 3. 
Illustration of DSRNN modeling process. (a) Raw brain tfMRI images series. (b) 

Vectorization of tfMRI image series after sampling. (c) Hierarchy diagram of DSRNN 

model. (d) Weight matrix between input layer and fully connected layer. (e) Visualization of 

activated brain region groups represented by weight matrix of fully connected layer. (f) 

Output time series of fully connected layer. Each column vector indicates the activation of 

32 distinctive brain region groups. (g) Visualization of fully time-scale output time series of 

fully connected layer, also the activation traces of 32 brain region groups. Motor task is used 

as an example, and the ground-truth temporal distribution of event blocks is illustrated at the 

top. (h) Visualization of clustered activation traces.(i) Visualization of brain activation maps 

corresponding to 5 motions, based on 32 brain region groups (e) and their clustered 

activation traces (h). Brain activation maps from I to VI are corresponding to the motion 

events of right foot, left foot, tongue, left hand and right hand, respectively. (j) Recognition 

of brain states.
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Fig. 4. 
Brain states recognition with recurrent layers, Softmax, SVM and AAR based on activation 

traces.
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Fig. 5. 
Brain state recognition accuracies of seven tasks.
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Fig. 6. 
Brain state series of seven tasks. In each subgraph, five state series from top to bottom are 

ground truth (GT), and series recognized by DSRNN,AAR, Softmax and SVM, respectively.
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Fig. 7. 
Activation maps of motor task.
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Fig. 8. 
The exploration results of hyper parameters. (a) Results of GRUbased network. (b) Results 

of LSTM-based network. (c) Results of basic unitbased network. The horizontal axis 

represents the number of neurons in fully connected layer, and the vertical axis indicates the 

recognition accuracy. All networks contain two recurrent layers, and bars in different colors 

indicate different numbers of cell units per recurrent layer.
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Fig. 9. 
The exploration results of DSRNN with different numbers of recurrent layers. The 

horizontal axis represents the total number of recurrent cell units, and the vertical axis 

indicates the recognition accuracy. Bars in different colors indicate different recurrent layer 

numbers.
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Fig. 10. 
The exploration results of sparseness penalty weights: beta and lambda. The horizontal axis 

indicates the values of lambda, and the vertical axis denotes the recognition accuracy. Bars 

in different colors indicate different beta values.
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Fig. 11. 
The exploration of dropout proportion based on seven tasks. The horizontal axis indicates 

the proportion, and the vertical axis denotes the recognition accuracy. Curves in different 

colors indicate different tasks.
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TABLE II

Training and testing subject numbers of seven tasks.

Task Train Test

WM 240 240

GAMBLING 320 320

MOTOR 320 320

LANGUAGE 300 300

SOCIAL 320 320

RELATIONAL 320 320

EMOTION 400 360
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