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Abstract

Fabricating powerful neuromorphic chips the size of a thumb requires miniaturizing their basic 

units: synapses and neurons. The challenge for neurons is to scale them down to submicrometer 

diameters while maintaining the properties that allow for reliable information processing: high 

signal to noise ratio, endurance, stability, reproducibility. In this work, we show that compact spin-

torque nano-oscillators can naturally implement such neurons, and quantify their ability to realize 

an actual cognitive task. In particular, we show that they can naturally implement reservoir 

computing with high performance and detail the recipes for this capability.

I. Introduction

Reservoir computing is a neural network-based theory, designed to process temporal inputs 

(Fig. 1) [1], [2]. A reservoir is composed of non-linear units, or neurons, that are connected 

recurrently through fixed connections (Fig. 1a). Input waveforms modify the activities of 

neurons inside the reservoir and the perturbed activities propagate through the recurrent 

network. The outputs of the reservoir are linear combinations of some or all neuron 

responses in the reservoir. The coefficients of these weighted sums are trained to obtain the 

desired outputs. A reservoir can classify waveforms due to the non-linearity of its neurons. It 

can also perform prediction tasks due to the recurrent connections which allow for fading 

memory of past inputs [3]. The limited number of connections to train make reservoir 

computing an excellent approach to evaluate novel technologies for neuromorphic 

computing.

In particular, we have recently shown experimentally that a single nanodevice, the spin-

torque nano-oscillator, can implement reservoir computing through time multiplexing [4]. 

Spin-torque nano-oscillators (Fig. 2a) are magnetic tunnel junctions driven by dc current 
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injection into a regime of sustained magnetization precession [5]. Magnetic oscillations are 

converted into voltage oscillations VOSC through tunnelling magneto-resistance (Fig. 2c). 

Despite the sub-micrometer diameter of such a spintronic artificial neuron, the experimental 

results for spoken digit recognition reach the state of the art for existing hardware and 

software (99.6 % recognition). In the present work, by analyzing a simple task, the 

classification of sine and square waveforms, we give a recipe for high classification 

performance with spin-torque nano-oscillators.

II. Experimental Procedure

Our oscillators have FeB free layers with diameters of 375 nm, and a magnetic vortex as a 

ground state. A schematic of the experimental set-up is provided in Fig. 2b. We use the dc 

current to set the amplitude of voltage oscillations V∼ in the absence of inputs, and apply the 

input waveforms as a superimposed ac current. To compute, we use the fact that the 

amplitude of voltage oscillations across the junctions, V∼, is a non-linear function of the 

injected current (Fig. 2d).

Using time-multiplexing, a reservoir can be emulated with a single oscillator, which plays 

the role of all neurons one after the other (Fig. 1b) [3]. This strategy requires that the state of 

this neuron at time t+dt depends on its state at time t, just as a downstream neuron usually 

depends on the state of upstream neurons. This behavior can be achieved by pre-processing 

the input through multiplication with a binary fast-paced sequence that drives the oscillator 

into a transient state.

Figure 3 illustrates the procedure for reservoir computing. An input waveform, composed of 

randomly arranged sine and square waves with the same period, is shown in Fig. 3a [6]. The 

pre-processed input is displayed in Fig. 3b. It multiplies the input segment-wise with a 

binary sequence which has a total duration τ and is composed of Nθ points separated by a 

time interval θ (Nθ = τ/θ). The number of points in the binary sequence, Nθ, defines the size 

of the emulated network. For clarity, we have chosen in Fig. 3 to illustrate the working 

principle with a small neural network of only 12 neurons (Nθ = 12). The non-linear response 

of the amplitude of voltage oscillations V∼ to the pre-processed input is shown in Fig. 3c.

The response of the network is shown in Fig. 4a in a zoom-in of the response V∼ to a single 

input segment of duration τ. Due to the oscillator non-linearity, each voltage amplitude value 

V∼i(i = 1…12) is a non-linear transform of the input value. In addition, V∼i + 1 depends on V∼i. 

Indeed, magnetic oscillations have a relaxation time of about 300 ns, larger than the time 

interval θ = 100 ns between each V∼i. The equivalent ring neural network is illustrated in Fig. 

4c. The output of the neural network (Fig. 4b) is a sum of all V∼i:output = ∑i = 1
Nθ wiV

∼
i

weighted by the strength of each connection, wi chosen to make the output match the target. 

The target for the output is a constant value for each waveform: one for squares, and zero for 

sines [6]. This output is reconstructed on a computer from the sampled experimental 

oscillator response V∼ by calculating the optimal weights through matrix inversion. Fig. 5 

shows the reconstructed output obtained by experimentally emulating a 24-neuron network. 
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The root mean square (rms) deviation between target and output is 11 %, which is small 

enough to distinguish between sines and squares without any error (perfect classification) for 

the chosen choice of parameters: dc current = 7.2 mA, magnetic field = 447 mT, input 

amplitude = 500 mV (equivalent to 6 mA).

III. Results

The classification performances vary strongly depending on the experimental parameters. 

Indeed, the voltage amplitude V∼ (Fig. 6), the non-linearity noise ∂2V∼/ ∂I2 (Fig. 7) and the 

voltage noise ΔV (Fig. 8), vary considerably with dc current and magnetic field. Since spin-

torque oscillators have a small magnetic volume, thermal noise affects the magnetization 

dynamics. The resulting voltage amplitude noise is large for large non-linearity, which 

quantifies the sensitivity of the system to perturbations [7]. The correlation between voltage 

noise and non-linearity appears clearly in the comparison of Figs. 7 and 8. Neuron non-

linearity is a key ingredient for classification as it allows the separation of input data [3]. On 

the other hand, noise in neuron response V∼ is detrimental for classification as it directly 

affects the output (∑i = 1
Nθ wiV

∼
i).

Fig. 9 shows the classification performance as a function of dc current and field. We find 

good performance by choosing a bias point with intermediate non-linearity and therefore 

intermediate noise, and where the neuron output V∼ changes strongly in response to the ac 

input. Such bias points allow enough non-linearity to classify while keeping large enough 

signal to noise ratios to distinguish between outputs. As can be seen from Fig. 10, the larger 

the ac input variations (between 300 mV and 500 mV), the lower the rms deviations between 

output and target. Indeed, larger inputs lead to larger responses and improved signal to noise 

ratios.

Fig. 10 shows the evolution of the rms deviations between the output and the target as a 

function of the length of the time interval θ between V∼ samples. The evolution is completely 

different when the target is in exact phase with the input (Fig. 10a) and when the target is 

shifted by τ/2 with respect to the input (Fig. 10b). Indeed, classification of sines and squares 

requires the network to have a short term memory of past inputs: some input points in the 

two different patterns are identical (+1 and −1 at their extrema). Therefore they can only be 

distinguished if the output of the network depends on the previous values of the input. When 

input and target are in phase (Fig. 10a), the only source of memory in the network comes 

from the relaxation time of the oscillator, of the order of 300 ns in our case [3]. This is why 

the classification performances degrade for θ > 300 ns in Fig. 10a. For sampling intervals 

that are too long, V∼i + 1 does not depend on V∼i anymore, and input sines and squares become 

difficult to separate. When θ is much smaller than the oscillator relaxation time, the 

oscillator cannot respond to the rapidly varying pre-processed input. Changes in V∼ become 

very small, the signal to noise ratio degrades and poor classification follows.

There is an optimum for the sampling interval θ (in our case θopt = 100 ns for ac input 

amplitudes of 500 mV). However, there is another way to endow the network with memory. 
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Since the output is reconstructed offline after recording the whole response V∼ to inputs, it is 

possible to shift the target with respect to the input [8]. In that case, some of the samples V∼i

used for reconstructing the output belong to the previous segment τ. In other words, the 

current output is reconstructed partly from the present value of the input and partly from the 

last value of the input. The best results with this strategy, shown in Fig. 10b, are obtained 

when the number of samples is evenly distributed between the past and current input value. 

As in Fig. 10a, results are bad for small θ due to the low signal to noise ratio but they do not 

degrade for large θ values. The artificially introduced memory compensates for the loss of 

intrinsic memory.

IV. Conclusion

Spin-torque nano-oscillators naturally provide the important features for implementing a 

reservoir computer. The recipe for high performance classification is the following: 

intermediate non-linearity and a high signal to noise ratio in the neural output. For tasks 

requiring short term memory, the intrinsic memory coming from magnetic relaxation times 

can be sufficient. When output reconstruction is done offline, an alternative strategy to 

endow the network with longer term memory is to shift the target with respect to the input. 

In the future, it will be interesting to introduce on-line long term memory through time-

delayed feedback strategies.
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Fig. 1. 
(a) Illustration of reservoir computing concept. The network is composed by a large number 

of interconnected non-linear neurons. The internal connections are kept random and fixed 

and only external connections are trained. (b) Single neuron reservoir computing approach 

using time-multiplexing: the input is preprocessed in order to emulate neurons 

interconnected through time.
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Fig. 2. 
(a) Spin-torque nano-oscillators used for neuromorphic computing: magnetic tunnel junction 

(CoFe/MgO/FeB) driven by spin transfer torque. (b) Schematic of the experimental set-up. 

A dc current IDC as well as a fast-varying waveform encoding the input Iin are injected in the 

spin-torque nano-oscillator. (c) The microwave voltage VOSC emitted by the oscillator is 

measured with an oscilloscope. For computing, the amplitude V∼ of the oscillator is used, and 

measured directly with a microwave diode. (d) Voltage amplitude V∼ as a function of current 

at μ0H = 430 mT. The typical resulting excursion of current amplitude is highlighted in 

magenta when an input signal with maximum amplitude ±3 mA (corresponding to ±250 

mV), is injected.
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Fig. 3. 
(a) Input waveform. The task is to discriminate sines from squares at each red point. There 

are 8 discrete red points in each sine and square waveform. (b) Zoom-in on the preprocessed 

input waveform for a sine and a square. The corresponding fast binary input sequences are 

numbered from 1 to 16 (8 for the sine, 8 for the square. (c) Envelope V∼(t) of the 

experimental oscillator emitted voltage amplitude (μ0H = 466 mT, IDC = 7 mA). The 

trajectories created in response to the input waveform are numbered from 1 to 16 (8 for the 

sine, 8 for the square).
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Fig. 4. 
(a) Oscillator voltage amplitude V∼ changes corresponding to a single time segment τ: Here, 

12 neurons (12 samples V∼i separated by the time step θ) are used to construct the output. (b) 

The transient states of the oscillator give rise to a chain reaction emulating the neural 

network with a ring structure (c) Target for the output reconstructed from the voltages V∼i in 

each time segment τ:output = ∑i = 1
N wiV

∼
i
.
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Fig. 5. 
Reconstructed output (red) and target (grey) in response to an input waveform with 80 

randomly arranged sines and squares. The magnetic field is μ0H = 447 mT, and the applied 

current 7.2 mA. The results are based on 24 neurons separated by θ = 100 ns.
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Fig. 6. 
Amplitude Voltage V∼ of the oscillator in the steady state: map in the IDC - μ0H plane.
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Fig. 7. 

The non-linearity ∂2V∼/ ∂I2 of the oscillator: map in the IDC - μ0H plane.
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Fig. 8. 
Amplitude noise ΔV∼ of the oscillator in the steady state: map in the IDC - μ0H plane.
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Fig. 9. 
Root mean square of output-to-target deviations: map as a function of dc current IDC and 

magnetic field μ0H. The oscillator voltage amplitude curves (in red) in response to the input 

waveform (in gray) are plotted for selected dc currents (3, 4.5, 6.5, 7.5 and 9) mA and 

magnetic field μ0H = 380 mT. Here Vin= 300 mV and θ = 100 ns is used. RMS map 

corresponds to the target shifted by τ/2 with respect to the input.

Riou et al. Page 13

IEEE Trans Electron Devices. Author manuscript; available in PMC 2019 May 09.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 10. 
Root mean square of output-to-target deviations as a function of the time step θ (separation 

between transient states of the oscillator V∼i) for different amplitudes of the input signal (300, 

400 and 500) mV: (a) the target is in exact phase with the input and (b) the target is shifted 

by τ/2 with respect to the input.
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