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Abstract

We present a hybrid approach for Bethe-Salpeter equation (BSE) calculations of core excitation 

spectra, including x-ray absorption (XAS), electron energy loss spectra (EELS), and nonresonant 

inelastic x-ray scattering (NRIXS). The method is based on ab initio wave functions from the 

plane-wave pseudopotential code ABINIT; atomic core-level states and projector augmented wave 

(PAW) transition matrix elements; the NIST core-level BSE solver; and a many-pole self-energy 

model to account for final-state broadening and self-energy shifts. Multiplet effects are also 

approximately accounted for. The approach is implemented using an interface dubbed OCEAN 

(Obtaining Core Excitations using ABINIT and NBSE). To demonstrate the utility of the code we 

present results for the K edges in LiF as probed by XAS and NRIXS, the K edges of KCl as 

probed by XAS, the Ti L2,3 edge in SrTiO3 as probed by XAS, and the Mg L2,3 edge in MgO as 

probed by XAS. These results are compared with experiment and with other theoretical 

approaches.

PACS number(s)

78.70.Dm; 78.20.Bh; 71.15.Qe

I. INTRODUCTION

Recently there has been considerable progress in the theory of optical response beyond the 

independent-particle approximation.1 For example, methods based on time-dependent 

density-functional theory (TDDFT) and the GW/Bethe-Salpeter equation (GW/BSE) 

approach have been extensively studied.1–4 While computationally simpler than the BSE, 

TDDFT is currently limited by approximations to the exchange-correlation functional. On 

the other hand, the GW/BSE approach includes an explicit treatment of quasiparticle effects 

within Hedin’s GW self-energy approximation5 and particle-hole interactions, both of which 

are often crucial to a quantitative treatment. In the GW approximation the electron self-

energy is related to the product of the one-electron Green’s function and the screened 

Coulomb interaction, which are respectively denoted by symbols G and W. A number of 
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codes based on these approaches have been developed both for periodic6–8 and aperiodic 

systems.9,10

Calculations of core-level spectra, on the other hand, pose additional theoretical challenges. 

Core-hole effects, energy-dependent damping, self-energy shifts, and atomic multiplet 

effects all complicate the theory. Consequently relatively few GW/BSE treatments presently 

exist.11–14 To address these challenges, we present here a hybrid GW/BSE approach for 

periodic systems encompassing x-ray absorption spectra (XAS) and related core-excitation 

spectra. Quasiparticle damping and self-energy shifts are included in terms of a many-pole 

self-energy and the quasiboson formalism. Our BSE Hamiltonian also accounts 

approximately for atomic-multiplet effects in the spectra by explicitly including intra-atomic 

Coulomb and spin-orbit interactions. Also, in contrast to atomic-multiplet models that rely 

on crystal-field parameters, our implementation includes self-consistent potentials for an 

extended system. While multi-electron excitations and correlation effects beyond the 

quasiparticle approximation can also be treated with the quasiboson formalism, such effects 

are presently neglected. Also, although our approach is designed for periodic systems, 

aperiodic systems can be modeled using supercells. However, the method is limited to a 

range of order 102 eV above a given core threshold due to the limited size of the plane-wave 

basis sets in practical calculations. Thus the method is complementary to the real-space 

Green’s function (RSGF) approach for core spectra,13,15,16 which is applicable over a very 

broad spectrum of excitation energies up to about 104 eV. Though formally equivalent to the 

GW/BSE of this work, the RSGF implementation uses finite clusters and spherical scattering 

potentials which can be inaccurate near threshold.

GW/BSE calculations of core-level spectra rely on a number of theoretical and many-body 

considerations. A key ingredient is the screened electron-core hole interaction. In the BSE, 

this interaction is typically treated via linear response, which in itself can be a demanding 

task. In contrast, many current calculations of core-excitation spectra are based on effective, 

independent-electron models with various ad hoc treatments of the screening effects.17–19 

For example, a number of implementations use a final-state Hamiltonian with a self-

consistently screened core hole,7,14,17,19–21 as in the final-state rule. A second important 

ingredient is a complex, energy-dependent self-energy to account for final-state self-energy 

shifts and damping. As shown below, such quasiparticle effects are important for a 

quantitative account of peak positions, heights, and widths in the spectra. Although small 

near an absorption edge and often neglected, final-state damping becomes particularly 

important above about 10 eV where interband and plasmon excitations can be important. A 

third important ingredient is an account of intra-atomic interactions that lead to multiplet 

effects in the spectra. Finally, the approach should include accurate self-consistent potentials 

and a basis that encompasses the near edge structure over a range of about 10 eV to 100 eV.

In order to address the above considerations our core-level GW/BSE approach is based on 

several key elements: (1) Orbitals for occupied and unoccupied Kohn-Sham levels from a 

self-consistent plane-wave pseudopotential code; (2) atomic core-level states and projector 

augmented wave (PAW) transition matrix elements; (3) the NIST core-level Bethe-Salpeter 

equation solver (NBSE); (4) a many-pole GW self-energy model (MPSE) to approximate 

final-state broadening and self-energy shifts; and finally (5) atomic-multiplet effects are 
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included through the inclusion of core-hole spin-orbit splitting and atomic multipole 

interactions. In the present implementation ABINIT22 is used for the Kohn-Sham wave 

functions; however, this is not a strict restriction and the code can be adapted to other plane-

wave pseudopotential codes. For the multiplet calculations, the electron/core-hole wave 

function is expressed in terms of electron PAW/core-hole product states, with the Coulomb 

interaction matrix elements between these product states calculated using an atomic 

structure program. Both orbital-and spin-degrees of freedom are included.23 However, our 

approach neglects multielectron excitations and interference between intrinsic and extrinsic 

losses, although such effects can be included, in principle, in terms of an effective spectral 

function and the quasiboson model. We also neglect the effects of dynamic disorder. Other 

sources of error in the approach arise from the pseudopotentials, the PAW derived transition 

matrix elements, and the adiabatic RPA core-hole screening approximation. Thus our 

approach is not applicable to strongly correlated systems. Moreover, vibrational damping is 

neglected. While often small in the near-edge regime, such damping is sometimes important, 

e.g., in the final-state dependent broadening in SrTiO3,24,25 and in cases where symmetry 

breaking effects of disorder are important.

Within the scope of the above approximations, our hybrid GW/BSE approach provides a 

first-principles method for calculations of near-edge spectra, including x-ray absorption 

spectra (XAS), electron energy-loss spectra (EELS), and nonresonant inelastic x-ray 

scattering spectra (NRIXS), also known as x-ray Raman spectra, at finite momentum 

transfer q. The core-BSE calculations are quite efficient compared to those for optical 

spectra based, e.g., on AI2NBSE, since the core-level subspace is smaller than the valence 

band manifold. The approach is implemented using an interface dubbed OCEAN (Obtaining 

Core Excitations using ABINIT and NBSE), which generates relevant input files for the 

various modules and serves as a driver for all steps of the calculation. This interface is a 

generalization to core excitations of AI2NBSE, a recently developed interface for valence 

excitations.6 In the current implementation, the OCEAN package can handle up to about 50 

atoms per unit cell and spectra up to about 100 eV above threshold.

The remainder of this paper is as follows. Section II summarizes the theory underlying our 

approach. Section III presents illustrative results for the K edges in LiF and KCl, the Mg 

L2,3 edge in MgO, and the Ti L2,3 edge in SrTiO3. Finally, Sec. IV presents a summary and 

prospects for future development.

II. THEORY

A. BSE for core-level spectra

Core-level x-ray absorption spectra (XAS), electron energy-loss spectra (EELS), and 

nonresonant inelastic x-ray scattering (NRIXS) are all related to the loss function L(q, ω) = 

−Im ε−1(q, ω), which is proportional to dynamic structure factor S(q, ω). Here q is the 

momentum transfer, while ω is the photon energy in XAS and the energy transfer in NRIXS 

and EELS. (Unless otherwise specified we use Hartree atomic units with e = ħ = m = 1 

throughout this paper.) For XAS we have |q| = ω/c, where c ≈ 137.036 is the speed of light. 

Formally the loss function is given by
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L(q, ω) = − 4π
q2 Im 〈Ψ0 ∣ P†[E0 + ω − H + i η]−1 P ∣ Ψ0〉 . (1)

Here P̂ is the operator that couples the many-body ground state |Ψ0〉 with the probe photon, 

e.g., eiq·r for NRIXS. In the case of XAS, a slightly different formula provides the spectrum. 

This formula involves a different operator, namely (ê · r) + (i/2) (ê · r) (q · r) + ···, where ê is 

the electric field direction. Ĥ is the particle-hole Hamiltonian including self-energy and 

lifetime effects as described below, and η is a positive infinitesimal. Our approach for 

calculating Eq. (1) is adapted from the treatments of the BSE in the quasiparticle 

approximation of Soininen and Shirley19 and Shirley,23 which are summarized below. 

Satellite effects due to multielectron excitations are neglected, though they can be 

approximated a posteriori in terms of an effective spectral function in our self-energy 

approximation.

In order to evaluate the core-loss function in Eq. (1), we make the approximation that the 

excited states of a system can be described using a basis set of electron-hole states {|Φnk+q, 

αk〉}. Each electron-hole state has an electron in band n with crystal momentum k + q, and a 

core hole denoted by an atomic level α, with the corresponding orbitals in each cell 

combined using a phased sum to form a Bloch state with crystal momentum k. Our 

calculations also account for electron and hole spin degrees of freedom, which are not 

explicitly written in what follows. The Hamiltonian Ĥ is represented by an effective particle-

hole Hamiltonian Ĥeff

Heff = He − Hh + Heh . (2)

Here Ĥe/h account for the single-particle energies of the electron and hole states, including 

the spin-orbit interaction for the core states and self-energy and/or lifetime corrections:

He = H0 + ∑,
Hh = εc + iΓ,

(3)

where Ĥ0 is the noninteracting single-particle Hamiltonian, εc is the core level energy, Σ is 

the final state self-energy and Γ the core-hole lifetime. The electron-hole interaction is given 

by

Heh = VD + VX, (4)

where V̂
D and V̂

X account for the direct and exchange electron-hole interactions, 

respectively. The highly localized nature of core states allows for division of the screening of 
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the direct term V̂
D into a short-range part calculated using the RPA, and a long-range part 

treated with a model dielectric function,26 while the exchange term V̂
X is unscreened. In 

order to treat multiplet effects the shortest range electron-core hole interaction is expressed 

using a compact multiplet Hamiltonian based on the core atomic orbitals, PAW functions, 

and the related Slater F and G integrals, following the treatment of Ref. 23.

Inserting a complete set of electron-hole states {|Φ〉}, Eq. (1) becomes

Im [ε−1(q, ω)] = − 4π
q2 ∑

Φ, Φ′
Im [〈Ψ0 ∣ P† ∣ Φ〉 × 〈Φ ∣ [ω − Heff + iη]−1 ∣ Φ′〉〈Φ′ ∣ P ∣ Ψ0〉

] .

(5)

To obtain the particle-hole states, {|Φ〉}, the band states ϕn,k+q(r) are calculated for both 

occupied and unoccupied levels using the ground-state Kohn-Sham Hamiltonian, while the 

core states χα,k(r) are taken to be Bloch states derived from the atomic core states for a 

given absorption edge calculated with an atomic Hartree-Fock code. A transition |Ψ0〉 → |
Φnk+q,αk〉 has a matrix element of the form

〈Φn, k + q, αk ∣ P ∣ Ψ0〉 = N−1∑
R

eik · R〈ϕn, k + q ∣ P ∣ χα, R〉

= 〈ϕn, k + q ∣ P ∣ χα, R = 0〉 .

(6)

Here N is the number of unit cells in the crystal. Making use of an appropriate sum over 

identical core states located at every lattice site {R}, the particle-hole state is thus 

constructed to have good crystal momentum q. The resolvent in Eq. (5) is then calculated 

using a Lanczos algorithm which was found to converge within about 100 iterations.23

B. PAW transition matrix elements

The transition matrix between the ground state and one-electron excited states in Eq. (6) is 

then calculated locally by expressing the conduction band states in terms of atomic states 

centered about the specific core-hole located at position τ within the unit cell using the 

projector augmented wave (PAW) expansion27

ϕn, k + q(R + r + τ) ≈ ei(k + q) · R∑
vlm

Avlm
nk + qFvl

ps(r)Y lm(r), (7)
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where { Fvl
ps} are the PAW basis functions with angular quantum numbers l and m. The 

index ν denotes the use of multiple PAW basis functions per angular momentum to 

adequately span the space. In terms of these PAW basis functions, transition matrix elements 

are found easily using an atomic structure program. Further details are given elsewhere.23

C. Many-pole self-energy

One of the key considerations in calculations of core excitation spectra is the treatment of 

the final-state self-energy shifts and damping effects observed in experimental spectra. A 

number of methods for this purpose now exist.28 Because these effects are small near an 

excitation threshold they are often neglected. However, they become increasingly important 

when the excitation energy exceeds plasmon and interband energies of order 10 eV, and thus 

become crucial at high excitation energies. To treat these effects we have implemented the 

efficient many-pole GW self-energy model (MPSE) of Kas et al.29 This MPSE is a 

straightforward extension of the Hedin and Lundqvist single plasmon-pole GW self-energy 

model, and is based on the calculated dielectric response specific to a given material, e.g., as 

obtained using AI2NBSE.

In brief, our implementation of the MPSE is as follows. We first represent the loss function 

in the optical regime L(ω) = −Im[ε−1(q = 0,ω)] as a weighted sum over closely-spaced δ 
functions at ωj with weights wj = L(ωj)Δj chosen to preserve the loss-function sum rule. The 

inclusion of many (typically of order 102) poles allows for smooth, energy dependent 

broadening and quasiparticle shifts in excitation energies, and accounts for losses in the 

near-edge region well below the dominant excitations. As an example, Fig. 1 shows a 

comparison of the imaginary part of the dielectric function ε2(ω) for LiF as measured 

experimentally and that calculated by AI2NBSE. The pole representation also permits a 

straightforward way to extrapolate the long-wavelength limit ε−1(q = 0,ω) to finite 

momentum transfer. Our MPSE uses the same the dispersion relation as in the original 

Hedin-Lundqvist plasmon-pole model.29 We then calculate the self-energy Σ = iGW within 

the GW approximation, where the Green’s function G is taken to be the free propagator of 

an electron gas and W = ε−1v is calculated using the many-pole model of the dielectric 

function. Using the same strategy as for the plasmon-pole model, the resulting self-energy 

can be expressed as a Hartree-Fock exchange term, plus a weighted sum of plasmon-pole-

like, dynamically screened exchange terms, each with a different plasma frequency ωj. Thus 

the model retains the efficiency of the plasmon-pole model yet yields accurate calculations 

of the self-energy over a broad energy range from near the Fermi level to of order 104 eV 

above the Fermi level. A typical calculation can be performed in only a few minutes on a 

modern single-processor desktop computer once the loss function at zero momentum 

transfer is known. In order to apply the self-energy [inset of Fig. 1(b)] to calculations of core 

level XAS, we use an a posteriori convolution of the spectrum with a Lorentzian spectral 

function built from our calculated quasiparticle self-energy. Multielectron excitations and 

interference effects leading to satellites can also be included in this convolution,29 but are 

currently ignored.

Currently the MPSE is calculated only for the unoccupied states, and no attempt is made to 

determine absolute edge energies. This self-energy is then added, assuming that all 
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transitions occur either from the highest occupied level in the case of the valence response, 

or from a single localized core level in the case of core response. For core excitations this is 

a good approximation, while for valence response the approximation is valid only for narrow 

valence bands and future refinements should take the width of the valence band into account. 

An example of the resulting XAS is shown for LiF in Fig. 2. Clear improvement can be seen 

due to the MPSE, which corrects both the peak positions and amplitudes in the spectrum.

III. CALCULATIONS AND RESULTS

In this section we illustrate our approach with a number of examples. The results are 

sensitive to the choice of pseudopotentials and PAW projectors, and care must be taken to 

ensure an adequate treatment. Briefly, our implementation of OCEAN uses ABINIT wave-

functions with norm-conserving pseudopotentials generated using the FHI32 or OPIUM33 

codes utilizing the designed nonlocal approach. Our choice of cutoffs is generally larger than 

in typical ground state calculations to avoid possible convergence issues. Our PAW transition 

elements from atomic core states utilize from 4 to 10 projectors depending on valence band 

width; the NIST NBSE solver for core excitations; and the GW MPSE outlined above. Our 

calculations use separate grids to calculate the wave functions for the final states and for the 

screening. For all of the materials, calculations of the final states on a 10 × 10 × 10 

Brillouin-zone grid with a symmetry breaking shift of (1/80, 2/80, 3/80) were found to be 

adequate for convergence. The number of final state bands included in the calculation only 

affects the range of validity of the spectrum above the edge. Depending on the example, 

between 40 and 70 conduction bands are included.

The screening in the direct interaction V̂
D was calculated using states from a 2 × 2 × 2 

Brillouin-zone grid with a similar symmetry breaking shift as the final state calculation. This 

grid was found to be adequate for convergence. For the screening calculation, a large 

number of unoccupied states must also be included for convergence. Including bands up to 

100 eV above the Fermi level was found to be sufficient for all of our cases. Dielectric 

screening was calculated in real space as described by Shirley.26

A. LiF

LiF is a wide-gap insulator leading to strongly bound excitonic peaks in the absorption 

spectra which are highly dependent on the screened direct interaction between the excited 

electron and hole for their strength and binding energy. LiF has a rock-salt structure with a 

lattice constant of 4.028 Å,37 and the electronic dielectric constant ε∞ (i.e., the value for low 

frequencies well above characteristic vibrational frequencies) is 1.92.38 The first 56 

conduction bands were included covering energies up to 100 eV above the Fermi level, and a 

100 Ry cutoff was used for the plane-wave basis. The plane-wave cutoffs necessary for our 

calculations reflect both the need for pseudopotentials to be accurate several Rydbergs above 

the fermi level and the inclusion of semicore states in heavier elements: Ti, Sr, and K. While 

LDA calculations often underestimate bandgaps in insulators, the MPSE almost completely 

corrects the conduction energy levels and bandgap in LiF. This is illustrated in the UV 

calculation of ε2 and the loss function −Im ε−1 (Fig. 1).
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Results for the Li K-edge XAS of LiF are presented in Fig. 2. Note that the inclusion of 

final-state broadening and self-energy shifts from our MPSE yields results that agree well 

with experiment. If these final-state effects are ignored, one obtains sharper, more 

compressed spectra, in poorer agreement with experiment. However, our calculation fails to 

account for the strength of the experimental peak near 70 eV, i.e., about 10 eV above the 

edge. The reasons for this discrepancy are not yet understood. While the use of the Tamm-

Dancoff approximation is known to give errors in the optical spectra at high energies,39 we 

expect such errors to be negligible for core spectra. A comparison is also included with the 

results from the BSE-based EXC!TING code.36 Although EXC!TING ignores energy 

dependent GW corrections, we find good agreement in peak positions and spacing between 

the two codes for this case.

Results for the F K edge of LiF including the final-state corrections from MPSE are shown 

in Fig. 2(b). As for the Li K edge, the broadening and self-energy shifts from the GW MPSE 

lead to good agreement with experiment. Overall the F K edge Fig. 2(b) exhibits much better 

agreement with the experiment than for the Li K edge. A comparison is also included with 

the FEFF9 code.40 While the results are generally in good agreement, our calculation yields 

better agreement with experiment in the edge region.

As an illustration of momentum transfer dependent calculations with OCEAN, results for the 

NRIXS of LiF are shown in Fig. 3 for q =3.55 Å−1, 7.25 Å−1 and 8.26 Å−1. For this 

predominantly s-p electron system the momentum transfer dependence is strong only in the 

edge region, and reflects the behavior of an s-type exciton. Our results are found to be in 

good agreement both with experiment and with previous calculations.

B. KCl

As an example of deep core K-edge spectra we present the XAS for both the K and Cl K 

edges in KCl. KCl has a rock-salt structure with lattice constant 6.29 Å and ε∞ =2.19.38 A 

plane-wave cutoff of 160 Ry and 172 conduction bands were used for the screening 

calculations. Both K edges exhibit very good agreement with experiment both for peak 

positions and intensities (Fig. 4).

C. MgO

To illustrate a shallow L-edge calculation we show the XAS for the Mg L2,3 edge in MgO 

(Fig. 5). MgO also has a rock-salt structure with a lattice constant of 4.212 Å and ε∞ = 

2.95.38 The screening calculation used 196 conduction bands and a plane-wave cutoff of 200 

Ry. The splitting between the L2 and L3 edges in Mg is only 0.25 eV and is therefore hidden 

by conduction band widths and experimental broadening. Our XAS calculation of the Mg 

L2,3 edge in MgO is particularly sensitive to computational details such as the treatment of 

core-hole screening. The calculation is in good agreement for peak positions, though not the 

relative strengths. The calculated spectrum is too weak in the range 60 eV to 70 eV while the 

peak near 75 eV is too strong and more narrow than that in the experiment. The excitonic 

peak is also too strong compared to the main edge (Fig. 5). It seems likely that 

underscreening of the core hole leads to the overestimation of the strength of the excitonic 

peak.
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D. SrTiO3

The Ti L2,3 edge of SrTiO3 is included here as an example of our treatment of multiplet 

effects. Cubic perovskite SrTiO3 has a lattice constant of 3.91 Å 45 and ε∞ =5.82.46 A 

plane-wave cutoff of 220 Ry and 450 conduction bands were used for the screening. Each Ti 

atom is surrounded by oxygen octahedra leading to a 2.5 eV splitting in the 3d-like Ti final 

states according to their symmetry.

Transition metal L2,3 edges exhibit strong multiplet effects due to the competition between 

intra-atomic Coulomb interactions, spin-orbit coupling, and the scattering potential of the 

surrounding atoms. This results in a shift in the L3/L2 intensity ratio away from the 

noninteracting ratio of 2: 1. By including the core-level spin-orbit energy splitting and 

simultaneously treating 2p1/2 and 2p3/2 initial states in the BSE Hamiltonian, our approach 

yields ab initio estimates of shifts in the spectral weight which are comparable to that in the 

experimental spectra. The Ti L2,3 edge of SrTiO3 has also been the subject of recent work 

using the BSE,47 ab initio charge-transfer multiplets in finite clusters,48 and multichannel 

multiple-scattering calculations in finite clusters.49 All of these approaches including that of 

our work account for the observed multiplet splittings in SrTiO3 reasonably well, but tend to 

underestimate the broadening observed in experiment. This is due in part to the neglect of 

energy-dependent phonon-broadening effects.24,25 Additionally the calculated spin-orbit 

splitting between the L2 and L3 edges is found to be 5.7 eV, though the observed splitting in 

the final calculated spectra is smaller due to other contributions to the BSE Hamiltonian. 

Also an additional contribution was added to the imaginary part of the self-energy to match 

the experimentally observed core-hole lifetime difference between the L2 and L3 edges. Our 

calculation gives good agreement for peak positions and produces a ratio between the two 

edges in reasonable agreement with experiment (Fig. 6). The two pre-edge features below 

457 eV in the experiment are also reproduced in the calculation, though they are too close to 

the leading edge. This error is likely due to our screening approximation.

IV. SUMMARY AND FUTURE PROSPECTS

We have developed a hybrid approach for GW/BSE calculations of core-excitation spectra in 

periodic materials based on plane-wave pseudopotential wave functions (from ABINIT in 

this case), PAW constructed matrix elements, the NIST BSE solver, and a many-pole GW 

self-energy from AI2NBSE. The method takes into account the many-body effects of 

inelastic losses and core-hole interactions, and can also include multiplet effects. This 

approach is implemented in the OCEAN package, which is applicable to core level XAS, 

EELS and related spectra including finite momentum transfer. Moreover, the approach can 

be applied to many other spectra, and some future extensions include resonant inelastic x-ray 

scattering (RIXS),19 relativistic EELS,50 and the mixed dynamic form factor (MDFF). The 

pseudopotential base allows for computationally efficient calculations of fairly large systems 

(currently up to about 50 atoms) for near-edge spectra within about 102 eV of threshold for 

arbitrary core levels. Moreover, by combining OCEAN with AI2NBSE and the 

complementary RSGF code FEFF9, full-spectrum calculations from the UV-VIS to hard x-

rays are feasible. Overall the results are found to be in good to excellent agreement with 

experiment, and can improve on other theoretical approaches. Nevertheless further 
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improvements such as the inclusion of multielectron excitations and vibrational effects are 

desirable. Additional applications, e.g., to the XAS and NRIXS of water and ice, are 

described elsewhere.51
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FIG. 1. 
(a) Imaginary part of the dielectric function (top) ε2(ω) calculated with AI2NBSE (red, solid 

line) and experiment30 (blue, dotted line) (data taken from Puschnig and Ambrosch-

Draxl31); and (b) loss function −Im ε−1(ω) (bottom) with (inset) real and imaginary parts of 

the self-energy calculated from AI2NBSE. The self-energy is calculated from the loss 

function using the many-pole self-energy method (see text) and is shown relative to the 

valence band maximum. This self-energy is applied to the LiF K edges providing energy 

dependent broadening and energy shifts to correct the single-particle energies from DFT.

Vinson et al. Page 12

Phys Rev B Condens Matter Mater Phys. Author manuscript; available in PMC 2019 May 09.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



FIG. 2. 
(a) The x-ray absorption near-edge structure (XANES) spectra for the Li K edge of LiF (top) 

and (b) the F K edge (bottom). The BSE spectra (solid, red line) are compared to the same 

spectra convoluted with the MPSE correction (green, dashed line) and experiment34,35 (Li 

data from Olovsson et al.36) (blue, dotted line). In (a) the result of another BSE code,36 

(light blue, dashed-dotted line) and in (b) a calculation with the FEFF9 code (light blue, 

dashed-dotted line) are shown for comparison.
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FIG. 3. 
The theoretical (above) and experimental41 (below) NRIXS spectra for LiF for momentum 

transfer q = 3.55 Å−1, 7.25 Å−1, and 8.26 Å−1 normalized to the height of the main peak. 

Note that momentum transfer only affects the edge-spectra due to the behavior of the s-type 

exciton in this system.
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FIG. 4. 
(a) The K-edge XAS of potassium (top) and (b) the Cl K edge in KCl calculated with 

OCEAN (red, solid line) and compared to experimental results42 (blue, dotted line).
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FIG. 5. 
Calculated XANES spectra for the Mg L2,3 edge of MgO compared with experimental 

reflection (R1/2) data.43 The calculated spectra has been broadened and by a Gaussian of 0.9 

eV FWHM in addition to the MPSE.
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FIG. 6. 
Calculated XANES spectra for the Ti L2,3 edge of SrTiO3 (red, solid line) compared to 

experimental data (blue, dotted line) and a multiplet calculation44 (green, dashed line). Due 

to the close spacing of the edges the full MPSE was not included. Instead, the imaginary part 

of the self-energy was applied by aligning the onset with respect to each edge and including 

a core-hole lifetime (0.10 eV and 0.24 eV), shifting between the two at 461.5 eV. This 

lifetime broadening also neglects solid-state Coster-Kronig and phonon effects.
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