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Abstract

The ability to calculate rigid-body transformations between arbitrary coordinate systems (i.e., 

registration) is an invaluable tool in robotics. This effort builds upon previous work by 

investigating strategies for improving the registration accuracy between a robotic arm and an 

extrinsic coordinate system with relatively inexpensive parts and minimal labor. The framework 

previously presented is expanded with a new test methodology to characterize the effects of 

strategies that improve registration performance. In addition, statistical analyses of physical trials 

reveal that leveraging more data and applying machine learning are two major components for 

significantly reducing registration error. One-shot peg-in-hole tests are conducted to show the 

application-level performance gains obtained by improving registration accuracy. Trends suggest 

that the maximum translation positioning error (postregistration) is a good, albeit not perfect, 

indicator for peg insertion performance.

Note to Practitioners—In a dynamic robotic workcell environment where robots may be 

frequently relocated or may need to collaborate with other robots, it is simpler and more robust to 

program robots in an external or unifying reference frame. The process of robot registration 

involves finding the location of a robot with respect to another reference frame. For instance, if 

parts are in known locations on a table and a robot can locate itself with respect to the table (an 

external reference frame), then the robot will also know the location of the parts. Furthermore, if 

two or more robots can locate themselves with respect to the table, then each robot will not only 

know the location of the parts, but also the location of every other robot. This knowledge 

facilitates the coordination of robot motions and robot collaboration and eases the integration of 

additional robots into the workcell. Since robot registration is critically necessary and occurs 

frequently, its process needs to be inexpensive, fast, and accurate. This paper details the 

requirements for a relatively inexpensive and fast robot registration experience, along with 

detailing strategies that incur significant improvements to registered robot positioning accuracy 

with minimal overhead. A quantitative verification process is presented to evaluate the 

performance impacts of these strategies. Peg-in-hole experiments are conducted to validate the 

notion that more accurate robot registration translates to more reliable task-level performance.
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I. Introduction

In [1], a framework was presented for performing, verifying, and validating the robot 

coordinate frame registration in manufacturing applications. Targeting multirobot 

configurations in flexible factory environments, this framework provided mechanisms for 1) 

capturing coordinate registration data used in a basic 3-point registration; 2) evaluating and 

reporting the registration error; and 3) validating the performance assessment metrology. 

Characterizing registration error provides end users with a powerful tool with which they 

can quickly assess the expected performance of a given robot configuration. However, the 

framework provided no mechanisms or guidance by which the performance might be 

improved. Moreover, the 3-point registration process, while simple and effective, yielded 

relatively large registration errors that also scaled across the workspace.

Many commercial industrial robots include a 3–5 orthogonal point registration process (see 

[2] and [3]) that is used to explicitly define the positive x-, y-, and z-axes of world, tool, or 

“work” frames. Such accommodations are both simple and effective for single-application 

robot workcells and are best targeted for gross registrations of marginally dynamic 

configurations. However, they offer limited support for multiple reference frames and do not 

provide convenient metrics by which their registration uncertainties may be reported. The 

processes of verification and validation thus become ex post facto in situ performance 

evaluations followed by iterative reregistration.

Robotic applications that need highly precise and accurate placement of tools (e.g., robot 

surgery) rely on two principal approaches [4]: 1) leveraging fixtures to rigidly immobilize 

and fix objects relative to the robot’s coordinate system and 2) affixing fiducials to an object, 

which are then manually probed for explicit coordinate mapping. The fiducial-based 

approach is believed to be the more accurate of the two [5], [6].

Other approaches use robot feedback at predetermined calibration poses to automatically 

register the robot to a sensor’s coordinate system. For example, in [7], a robot is used to 

calibrate and evaluate a mixed reality headset. The robot is registered to a motion capture 

system using a constrained bundle adjustment method [8] to correct for marker location 

uncertainty and map directly to known robot poses. Similarly, in [9], pose feedback from a 

multirobot system touching optical fiducials is used to generate an interpolated pseudo three-

dimensional (3-D) mapping from image space coordinates to robot base frame coordinates 

for the acquisition and assembly of cell phone case components.

Many contemporary approaches derive from the classical hand-eye (AX = XB) calibration 

problem first solved in [10] and [11]. In these problems, A and B are the homogeneous 

transformation matrices of the end-of-arm tooling and the sensor relating two separate robot 

motions and X is the unknown relationship between the robot’s tool flange and the sensor. 

Extensions of the hand-eye calibration problem approach the multisystem problem in which 
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an unknown transformation from the robot’s base to the world (or another robot) Y. 

Approaches to addressing the hand-eye, robot-world (AX = YB) calibration problem range 

from closed-form approaches (see [12]) to probabilistic approximations [13] of the 

unknowns X and Y. Extending the problem even further, some researchers are working to 

provide solutions to the issues that arise when there is uncertainty in the mounting of tools 

[denoted by the measurable relative motion transformations from the robot’s base frame to 

its tool flange C and the unknown transformation from the tool flange to the tool center 

point (TCP) Z]. Current approaches to the handeye, robot-world, and tool-flange (AXB = 

YCZ) calibration problem include both multistep and simultaneous closed-form approaches 

using robot-mounted sensors [14], [15]. Many solutions to the AX = YB and AXB = YCZ 
calibration problems may be used to provide registrations of excellent quality for flexible 

manufacturing environments at the cost of computational complexity and extensive sampling 

with expensive sensors. The goal, and ultimate contribution of this effort, is to provide 

algorithmic tools with which multiple robots may be registered together quickly, cheaply, 

and with sufficient accuracy for the manufacturing application.

In this paper, the registration framework presented in [1] is expanded by presenting a test 

methodology for the statistical evaluation of efforts to improve registration performance. In 

addition, a number of strategies and tools are presented to reduce registration error without 

dramatically increasing computational effort, design complexity, or manual labor. To instill 

the utmost clarity, this paper is systematically organized as follows. Section II discusses the 

experimental setup for measuring registration performance and statistical tests for data 

analysis. Section III details various strategies for performing and improving robot 

registration. Section IV verifies the test methodology and discusses the statistical 

comparisons of registration performance data. Section V provides a validation step that 

analyzes functional level impact of registration performance using one-shot peg-in-

insertions. This paper concludes with a discussion on the expected performance gains by 

employing different registration strategies.

II. Registration Test Method and Performance Analysis

In line with the established registration framework, a metrology basis for evaluating the 

performance gains is presented. This section describes the test configuration and 

methodology, performance measures, and statistical assessments that constitute the 

verification and validation of the methodology.

A. Experimental Setup

The experimental setup includes a robot, an optical bread-board (Fig. 1), an end-effector 

“stylus” tool, and a 3-D printed “collimator” (Fig. 2). The robot has six degrees of freedom 

with a nominal reach of 850 mm. The aluminum, conical end-effector stylus tool serves to 

facilitate both robot registration and the performance measurement thereof. The modular test 

bed consists of an optical breadboard mounted to a rigid aluminum frame that supports both 

the test configuration and the robot. The optical breadboard surface is composed of six 600 

mm × 900 mm plates, each with flatness ratings of ±0.15 mm over 0.09 m2 and M6 threaded 

holes spaced 25 mm apart. The breadboard serves to accurately place the collimator over the 
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area of the plate. In this paper, all tests were conducted on a single plate to eliminate 

uncertainty associated with possible misalignment with adjacent plates.

The collimator (Fig. 2) was built using an extruded polymer (acrylonitrile butadiene styrene) 

3-D printer, and is used in conjunction with the stylus-tooled end-effector to force the robot 

(under gravity compensation) to place its TCP in a location that is known in both a 

coordinate system fixed to the optical breadboard, and the base of the robot. This 

information constitutes the basis for robot registration (Section III). Overall, the registration 

construction is relatively inexpensive since the collimator is 3-D printed, the stylus is off-

the-shelf tight-tolerance metal rod, and accurate reference positioning was obtained via an 

optical breadboard.

B. Performance Measures

The systemic metric selected for quantifying postregistration robot positioning performance 

is the Euclidean distance from the robot’s TCP translational position in ℝ3 expressed in the 

extrinsic coordinate system N to the ground truth position as measured by the optical 

breadboard expressed in N (see Fig. 1 for coordinate system placement). This distance is 

called translation error e.

C. Comparative Statistics

To rigorously characterize the performance of various registration strategies, four statistical 

tests were chosen. The first test quantifies the spatial correlation between the translation 

error and the distance from the extrinsic coordinate system’s origin. The significance of this 

test is twofold. First, correlated data violate an underlying assumption of statistical tests, 

namely, the independence of sampled data (randomness). Testing on correlated data has been 

shown to deviate the hypothetical error rates (false positives or false negatives) [16]. 

Furthermore, attenuating the dependence of translation error on the robot’s current 

configuration in space is preferential. The second test involves the Kolmogorov–Smirnov 

(KS) test to determine if there exists a statistically significant difference in the distribution of 

translation error between any two registration methods. Third, the Levene test with the 

Brown–Forsythe statistic is used to conduct an analysis of sample variance (ANOVA). 

Depending on the outcome of the Levene test, a fourth test, an appropriate Student’s T-test, 

is applied to determine if there is a detectable difference in the means of translation error 

between samples of any two registration methods. All statistical tests1 were conducted at a 

95% confidence level (CL). Statistical tests can also be conducted from a number of 

available packages including R and MATLAB.

III. Registration Strategies

In this section, benchmarks and strategies for the robot registration process are described. 

The 3-point registration method (Section III-A) is used as a baseline performance indicator. 

Improvement strategies include: 1) increasing the area over which registration measurements 

are taken; 2) taking redundant measurements over a defined area (Section III-B); 3) applying 

1Software for statistical tests is freely available at https://www.nist.gov/el/intelligent-systems-division-73500/performance-data-
analytics.
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optimization to the registration (Section III-C); and 4) utilizing multiple registration kernels 

to optimize localized performance (Section III-D). Regardless of the approach, data 

collection for registration was obtained within 1 min, while registration algorithms 

completed within a few seconds (variable with implementation, settings, and amount of 

data).

A. Minimum 3-Point

Described in detail in [1], the 3-point registration process uses two colocated sets of three 

points measured in ℝ3: one set of points in the robot’s base coordinate frame R, and one set 

of points measured in the target coordinate system N. Specifically, for each point pi = [pi,x, 

pi,y, pi,z]T, Rpi in the R coordinate space corresponds with N pi in the N coordinate space. 

These points are used to generate a third coordinate system O that provides a common 

reference to which the robot and the target coordinate system can be transformed (Fig. 3). 

The 4 × 4 homogeneous transformation matrix from R to HR
N  is generated by the H(·) 

operator as

HR
N = H

{ pN
1, pN

2, pN
3},

{ pR
1, pR

2, pR
3}

= HO
N HO

R −1 . (1)

The value of HO
N  is defined as

HO
N = xN yN zN pN

1
0 0 0 1

(2)

where N x̂, N ŷ, and N ẑ ∈ ℝ3 are calculated as

xN =
pN

2 − pN
1

‖ pN
2 − pN

1‖
(3)

yN =
xN × ( pN

3 − pN
1)

‖ xN × ( pN
3 − pN

1)‖
(4)

and

Van Wyk and Marvel Page 5

IEEE Trans Autom Sci Eng. Author manuscript; available in PMC 2019 May 09.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



zN = xN × yN . (5)

The value of HO
R  is computed similarly using the points gathered in R. The generation of 

each matrix is bounded to O(υ) time, where υ is the dimensionality of each data point vector 

(here, υ = 3). However, depending on which algorithms are used for matrix multiplication 

and inversion, the calculation of H(·) is theoretically bounded to O(n3) time for an n × n 
matrix.

The 3-point registration method provides a benchmark of performance, as it is the simplest 

approach to generalized multisystem registration. It is, however, also the most error-prone. 

From [1], it was hypothesized that maximizing the distance between sampled poses such 

that the work volume is subsumed would result in reduced translational and rotational errors. 

However, as was seen in that paper, such impacts on performance were robot-dependent. A 

more formalized evaluation of the registration strategy is repeated in this paper to quantify 

the statistical impact on performance.

B. Redundant Combinatorial Averaging

The next logical strategy leverages more data points to add redundancy to the registration. In 

particular, an arbitrary number of additional points that are measurable in both R and N can 

be used by calculating the transformation matrix for all unique 3-point noncollinear 

combinations (i.e., a full-factorial set of registrations). Subsequently, an element-wise 

average across all the calculated transformation matrices yields a single averaged 

homogeneous transformation matrix

HR
N

avg = 1
∣ Q ∣ ∑

q = 1

∣ Q ∣
HR

N
q

(6)

where the set Q consists of all matrices created using

H
{ pN

j, pN
k, pN

l},

{ pR
j, pR

k, pR
l}

, ∀ j, k, l ≤ M, j ≠ k ≠ l (7)

and | · | indicates cardinality and M is the total number of available points. The worst case 

time to complete of (6) is O(|Q|n), but the process for calculating the redundant 

combinatorial average is dominated by the computation of (7), which is completed in O(|Q|

n3). Also, note that (6) assumes orthogonality of the rotational component of the resultant 

homogeneous transformation matrix HR
N

avg, which is feasible only for extremely small 

rotational deviations. Otherwise, the average rotation must be computed separately from the 
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translational component (see [17]). It is also assumed in (7) that pj, pk, and pl are not 

collinear.

This approach is hypothesized to improve registration since any one 3-point registration is 

subject to measurement error, and averaging multiple registrations would help attenuate 

inaccuracies induced by the error associated with any one registration.

C. Simulated Annealing Optimization

Simulated annealing (SA) is a well-known global optimization routine that requires an 

acceptance probability density function p(·), a cost function E(·), and a cooling schedule T 
(·). Applying SA to the problem of coordinate system registration will be achieved as 

follows.

Given an initial registration from R to N HR
N , the following error matrix is defined as the 

error between all points measured in N by 1) a reference system (Npi,ref ∈ ℝ3×1) and 2) a 

robot (Npi,robot ∈ ℝ3×1):

E = PN
ref − PN

robot (8)

and cost function

E = ∑
i = 1

n
EiEi

T (9)

where Ei is the i th row of E, NPref = [N p1,ref, …, N pn,ref]T ∈ ℝn×3, and NProbot = [N 

p1,robot, …, N pn,robot]T ∈ ℝn×3. All points N pi,ref are assumed directly measurable, while N 

pi,robot is calculated from

pN
i, robot = HR

N HR
R (Θ)Rpi, robot (10)

where HR
N  is assumed given and Rpi,robot is measurable by a robot. Furthermore, HR

R (Θ) is a 

modifier 4×4 transformation matrix defined by the parameters for optimization Θ = {x, y, z, 

α, β, γ }, where α is the rotation about the x-axis, β is the rotation about the y-axis, and γ is 

the rotation about the z-axis (Euler ZYX convention is used). Essentially, HR
R (Θ) will be used 

to make small adjustments to HR
N  to improve registration accuracy. Inherent Gaussian error is 

assumed to exist for both N pi,ref and N pi,robot, therefore
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εi = pN
i, ref − pN

i, robot, εi N(0, σ2) . (11)

Given the collection of ground truth data points NPref, the posterior distribution in the 

unknown parameters is

p(Θ, σ2 ∣ PN
ref) ∝ L( PN

ref ∣ Θ, σ2) p(Θ, σ2) (12)

and given a Gaussian error model, the likelihood function can be defined as

L( PN
ref ∣ Θ, σ2) ∝ ∏

i = 1

n
L( pN

i, ref ∣ Θ, σ2) ∝ ∏
i = 1

n 1
2σ2π

exp
−EiEi

T

2σ2 ∝ σ−nexp

−∑i = 1
n Ei Ei

T

2σ2

(13)

where Ei is the i th row of E. Substituting a noninformative prior p(Θ, σ2) ∝ σ−2 and (13) 

into (12) yields

p(Θ, σ2 ∣ PN
ref) ∝ σ−n − 2exp −

∑i = 1
n Ei Ei

T

2σ2 . (14)

Coupling the acceptance probability density function in (14) with a cooling schedule

Tτ = 1
Cln(τ) ∀τ = 1, …, n (15)

completes the requirements for performing SA, where τ is the current iteration in the SA 

sampling process and n is the total number of iterations. In this case, C = 2. It is worth 

noting that, because SA is a hill-climbing heuristic, it is theoretically unbounded. Therefore, 

the methodology converges in, at worst, O(∞) time. The computational complexity results 

are thus implementation specific (programming environment, user-defined settings, etc.). 

Here, the convergence to an optimal registration was completed within a few seconds.

An attractive quality of this approach is that optimization progresses under the assumption 

that measurements (from both reference and robot) are not error-free, which is an accurate 

reflection of reality.
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D. Clustering

A positive correlation exists between the registration error and the distance from the origin 

of the registration pattern. It is hypothesized that selecting the closest from a number of 

localized registration regions may reduce these spatially correlated errors. Generating and 

maintaining a transformation matrix for all M registration points may be excessively 

redundant if the robot’s work volume is subsumed by the registration set. Subsampling the 

training set, therefore, presents a more reasonable and generalized solution. One simple 

approach to automating the subsampling process is to use centroid-based clustering 

algorithms (e.g., k-means [18]) to seed the work volume with registration kernels. This 

would associate geographically similar registration points in the robot’s ℝ6 coordinate 

space. This allows spatially disparate dense groups of registration points (see Fig. 4) to be 

represented by a single reference coordinate system transformation.

Each cluster consists of feature patterns composed of the coordinate space’s input points {N 

p1, …, N pM} ∈ ℝ3 and associated attributes consisting of the robot’s input points {Rp1, …, 
RpM} ∈ ℝ6. Clustering is performed on the feature space values for k clusters, where each 

cluster kernel N pc ∈ C = {N p1, …, N pk} ∈ ℝ3 is the centroid of all spatially correlated 

coordinate space points. Similarly, the cluster’s average attributes Rpc ∈ {Rp1, …, Rpk} ∈ 
ℝ6 are the mean of the associated robot base points. The clustering algorithm takes O(υkMt) 
time, where υ is the dimension of the pattern and attribute vectors (here, υ = 6), and t is the 

number of reclustering iterations that must be completed prior to convergence (which is 

bounded to t = 2Ω( M) [19]).

Each cluster c is then associated with matrix HR
N

c
 rooted at N pc. This matrix is calculated as

HR
N

c
= 1

mc
∑
i = 1

mc
HR

N
i

(16)

where mc is the number of member input patterns associated with the cluster and

HR
N

i
= H

{ pN
c, pN

g, pN
h},

{ pR
c, pR

g, pR
h}

, ∀g, h ∈ Cg ≠ h (17)

using the H(·) function from (1). The number of registrations averaged is based on the 

population of each cluster, so the time to complete (16) given (17) is O(qn3), where 

q = ∑i = 1
k mi

3
 is the total number of registrations performed over all k clusters. As with (6), 

(16) assumes orthogonality of HR
N

c
 given expectations of extremely small rotational 
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deviations. Otherwise, the rotational component may need to be averaged separately from 

the translational component.

If M is small compared with the number of clusters (e.g., if M ≤ 3k), or if too many cluster 

members are collinear, the entire registration set may be used in (16) [i.e., q = M
3 ]. 

Otherwise, a pattern N pj is said to belong to cluster c based on the assertion that, ∀d ∈ C, d 
≠ c, the distance from N pj to N pc is less than the distance from N pj to N pd. For a queried 

target coordinate space position t associated with kernel N pc, the robot would use the 

transformation matrix HR
N

c
 to determine its base coordinate system pose Rpt to place the 

TCP at Npt.

IV. Verification: Registration Improvement

In this section, the evaluation methodology is verified by assessing the performance gains 

expected from employing the strategies outlined in Section III. The test configuration was 

set up as described in Section II-A. Registration data were collected by hand-guiding the 

robot to predefined registration seats located on a single optical breadboard plate (Fig. 1). 

Seven registrations were generated using the following procedures:

1. Small 3-Point: The 3-point registration method trained using data collected over 

a (250 × 175) mm2 area.

2. Large 3-Point: The 3-point registration method trained using data collected over 

a (750 × 525) mm2 area.

3. Large 5-Point: The combinatorial registration method described in Section III-B 

trained using five registration points2 collected over a (750 × 525) mm2 area.

4. SA Small 3-Point: Small 3-point, above, optimized using SA as described in 

Section III-C.

5. SA Large 3-Point: Large 3-point, above, optimized using SA.

6. SA Large 5-Point: Large 5-point, above, optimized using SA.

7. Clustering: The clustering method described in Section III-D, with two clusters 

based on four registration data points taken over a (750 × 525) mm2 area.

A. Spatial Correlation r

To quantify spatial correlation, the correlation coefficient r, the corresponding p-value p was 

calculated between the translation distance from the origin of N, O(N), and the translation 

error. The p-value indicates the probability of obtaining r by chance when the true value of r 
is zero. Referring to Table I, significant spatial correlation (at the 95% CL) between the 

translation error and the distance from the world origin is detected for Small 3-point, Large 
3-point, SA Small 3-point, SA Large 3-point, and Clustering registration methods. 

2The fifth registration point was chosen off-center and inside the rectangular area in order to prevent collinearity with the corner 
registration points (see Fig. 1).
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Insignificant spatial correlation is detected for Large 5-point and SA Large 5-point 
registration methods.

Referring to Fig. 5 and observing the r values across registration methods, two important 

trends are noticeable: 1) registering on more data reduces spatial correlation and 2) applying 

machine learning reduces spatial correlation. As a general note, since correlation is detected 

within some of the performance data, the actual error rates of the subsequent statistical tests 

involving spatially correlated data sets may deviate from their theoretical values (i.e., 

alterations to Types I and II error rates). Nevertheless, the tests will be conducted as their 

accuracy is still likely higher than conclusions made by visual inspection.

B. Distribution KS

The KS test was used to determine whether the distributions of performance samples of two 

different registration methods are sufficiently similar (i.e., samples come from the same 

population). The result of this test is also a first-line indicator as to whether differences will 

be seen between sample means and variances in subsequent testing. To reduce the reporting 

complexity associated with conducted comparative tests across all pairs of registration 

methods, statistical tests were only conducted between two adjacent methods as listed in 

Table II (order is approximately established by decreasing error variance.) Therefore, results 

should be interpreted in sequential context.

For example, significant distributional differences were detected between Small 3-point and 

Large 3-point, but not between Large 3-point and SA Small 3-point. Inference suggests then 

that there is likely a significant distributional difference between Small 3-point and SA 
Small 3-point. Following, a significant distributional difference is seen between SA Large 3-
point and SA Small 3-point. Differences should also then exist between SA Large 3-point 
and Small 3-point. Finally, distributional difference is significant between SA Large 5-point 
and Large 5-point, and differences should be detected between SA Large 5-point and all 

previously listed registration methods. The main trends here are that increasing the distance 

between registration points, increasing the quantity of registration points, and applying 

machine learning to the registration process, which are all relevant and impactful factors for 

inciting changes in registration performance. The following analyses will reveal more detail 

regarding these differences in performance.

C. Sample Variance se
2

Similar to the results of the KS test, the onset of statistically significant differences in 

translation error variance were detected between Small 3-point and Large 3-point, SA Small 
3-point and SA Large 3-point, and Large 5-point and SA Large 5-point. In this category, the 

best performing registration method outperforms the worst performing registration method 

by a factor of ten. This further corroborates the notion that substantial changes can be 

obtained by increasing the distance between points for registration, obtaining more points 

for registration, and applying machine learning to registration. In this particular case, those 

changes consist of rather large reductions in sample variances. This trend is visualized in 

Fig. 6 where the raw translation error, mean translation error ē, median translation error ẽ, 

and maximum and minimum translation errors are plotted.
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D. Sample Mean ē

Similar trends are again seen when comparing sample means. In this category, the best 

performing registration method outperforms the worst performing registration method by at 

least a factor of two. However, significant reduction in mean translation error is not seen 

after the SA Large 3-point registration method. This is likely due to the fact that the process 

for registration and subsequent performance measurements is inherently prone to some level 

of measurement error, which positively lower bounds the best mean performance possible. 

Regardless, the results still point to the same three factors for improving registration as 

before.

V. Validation: Functional Performance

As a validation step, one-shot peg-in-hole insertion trials were performed to evaluate the 

effectiveness of registered translation error as a primary indicator for application-level 

performance. The assembly process involved inserting the peg into the hole given a single 

attempt without any corrective maneuvers (hence, one-shot). Although outside the scope of 

these insertion trials, there exist several additional methods for improving insertion 

performance without the addition of extrinsic sensors including remote center of compliance 

devices [20], intrinsic force or impedance control [21], pose misalignment correction [22], 

and inclusion of chamfers in the design of assembly parts [23].

A. Setup

The assembly parts consisted of a 3-D printed hole and an aluminum cylindrical peg of 

diameter 15 mm with a peg-hole clearance of 0.08 mm (Fig. 7). Again, these pegs are 

inexpensively manufactured from low-cost tight-tolerance metal rods. The pegs were held 

with a pneumatic parallel gripper attached to the robot and inserted into the hole under 

position control. The forces at the TCP were monitored and the assembly was aborted if a 

force spike in excess of 30 N was measured in the z-axis, which indicated sufficient peg-hole 

misalignment.

The evaluation consisted of running the peg-in-hole insertion at the aforementioned 16 sites 

shown in Fig. 1. The insertions were attempted at each location using the different 

registration methods described in Section IV. It was observed that the parallel gripper was 

more rigid in its direction of actuation (x-axis) than in the direction orthogonal to both the 

direction of insertion (z-axis) and x-axis. As such, two sets of five repetitions were 

performed at each assembly site—five repetitions at a 0° rotation about the z-axis, and five 

repetitions at a 90° rotation about the z-axis—to incorporate the effects of an anisotropically 

compliant gripper on the insertions.

B. Results and Analysis

The probability of successfully inserting a peg is shown in Table III with its associated 

registration method. Given a CL ∈ ℝ : [0, 1], number of successes m, and number of 

independent trials n, one can calculate the theoretical upper probability of success (PS) ∈ 
ℝ : [0, 1] from the following inequality involving the binomial cumulative distribution 

function:
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F(m − 1; n, PS) = ∑
i = 0

m − 1 n
i

PSi (1 − PS)n − i

≥ CL

(18)

where PS is its minimum value to some precision while still satisfying (18) [24]. Meanwhile, 

indication of statistical significance at the 95% CL between the PS values of different 

registrations was achieved through the use of the Kolmogorov–Conover algorithm [25]. 

These tabulated PS values reveal that, for this particular insertion task, registrations that 

leverage machine learning or more data points yield the most significant performance gains. 

In fact, the Clustering and SA Large 5-point methods (which leverage both machine learning 

and slightly more data) yield the highest PS values of 0.982 (all pegs were successfully 

inserted).

Interestingly, Table III also reveals some counter-intuitive results. First, the listing order of 

registration methods in this table is by increasing PS values. When compared to Table II, all 

of the registration methods experienced a shift in their listing by one row except for SA 
Large 5-point. This implies that quantifying translation error is not a perfect indicator for 

task-level robot performance. In Fig. 8, PS is plotted against the mean and maximum 

translation error per registration method.

As shown, PS is negatively correlated with translation error, but the PS-error signal becomes 

extremely noisy with larger translation errors. This discrepancy likely indicates that task-

level performance does not solely depend on translation error. Other factors may include the 

direction of translation error, orientation error, mechanical properties and alignment of the 

gripper, and properties of the robot arm. Regardless, there does exist a correlation between 

translation error and PS. In fact, the maximum translation error and PS produce a 

statistically significant correlation coefficient r of −0.805 with a p of 0.029. Meanwhile, the 

mean translation error and PS produce an r of −0.740 and p of 0.057 (barely insignificant at 

a 95% CL). This slight discrepancy indicates that the maximum translation error is perhaps a 

more robust indicator of PS than the mean translation error.

This conclusion is logical since if the maximum translation error is within the tolerance 

required for peg insertion, then all insertions should succeed. On the other hand, the mean 

translation error may be within the tolerance required for peg insertion, but the variance in 

translation error may be sufficiently large to prevent successful insertion for some scenarios.

VI. Conclusion

In this paper, an extension to a registration framework was presented that provides test 

methodologies and metrics for the statistical evaluation of performance gains associated with 

simple strategies targeted at minimizing or correcting registration error. A number of 

generalized strategies for reducing registration errors were also presented, and the 

metrological impacts of applying these strategies were investigated. Verification and 
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validation steps were provided to assess the correctness of the methodology. Key, 

generalized takeaways include the following.

1. Adding Registration Data Points Reduces Registration Error: However, as M → 
∞, the registration effectively becomes a one-to-one mapping with diminishing 

returns (specifically, the registration error will eventually be dominated by the 

repeatability and rigidity uncertainty of robots, tools, and parts).

2. Applying Machine Learning or Optimization Methods (e.g., Clustering, SA) to 
the Acquired Registration Data Can Provide Significant Performance Gains: 
Even simple methods to compensate for errors from the base registration reduce 

uncertainty and improve robot performance.

3. Larger Registration Patterns Result in Lower Registration Error: However, as was 

observed in Section V, the lower registration error of larger patterns does not 

necessarily guarantee superior application-level performance over smaller 

patterns.

4. Maximum Registration Error Is a Better Performance Indicator Than Mean/
Median Error: It was observed in Section V that maximum registration error is 

significantly correlated with expected performance.
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Fig. 1. 
Location of 16 sites in the metrology test bed. Colored dots indicate the input points for the 

respective registration methods, with concentric circles indicating shared training points. 

White dots indicate ancillary site locations for measuring registration performance. N is the 

target coordinate system.
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Fig. 2. 
Stylus end-effector (a) inside and (b) outside of aligning collimator.
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Fig. 3. 
Transformation from one arbitrary coordinate system, R, to another, N, relies on defining an 

intermediate coordinate system, O, with a known transformation to and from R and N.
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Fig. 4. 
Nominal two-cluster data set in ℝ3 in which the data points (blue dots) are naturally grouped 

into two cluster kernels (red star and green square).
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Fig. 5. 
Registration error as a function of distance from world origin.
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Fig. 6. 
Range of registration errors per registration method. The mean and median errors are 

marked on the bar plot, while the raw measurement errors are shown to the right of the 

respective plots.
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Fig. 7. 
Position-based robotic peg-in-hole insertions in (a) failed and (b) successful states. Small 

translational or rotational offsets result in peg-hole misalignments that prevent successful 

insertions.
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Fig. 8. 
Probability of a successful insertion as a function of mean and maximum translation error.
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TABLE I

Correlation Coefficient (r) and p-Value Between the Registered Translational Error and the Distance From the 

Extrinsic Coordinate System Origin.

Registration Method r p

Small 3-point 0.855 0.000*

Large 3-point 0.687 0.000*

Large 5-point 0.141 0.214

SA Small 3-point 0.546 0.000*

SA Large 3-pomt 0.513 0.000*

SA Large S-point −0.109 0.337

Clustering 0.316 0.004*

*
Indicates Statistical Significance
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TABLE II

Values and Significance of Performance Distribution, Mean, and Variance.

Registration Method KS ē (mm)
se
2 (mm2)

Small 3-point - 1.006 0201

Large 3-point 0.000* 0.699* 0.113*

SA Small 3-point 0.155 0.594 0.087

SA Large 3-point 0.000* 0.435* 0.046*

Clustering 0.907 0.410 0.035

Large 5-point 0.106 0.383 0.031

SA Large 5-point 0.000* 0.422 0.019*

*
Indicates Statistical Significance With Entry of Previous Row
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TABLE III

Mean Translational Error, Maximum Translational Error, and Significance of Probability of Successful 

Insertion.

Registration Method ē (mm) max(e) (mm) PS

Large 3-point 0.699 1.493 0.427

Small 3-point 1.006 1.911 0.590*

SA Large 3-point 0.435 0.987 0.817*

SA Small 3-point 0.594 1.271 0.889*

Large 5-point 0.383 0.851 0.897

Clustering 0.410 0.813 0.982*

SA Large 5-point 0.422 0.758 0.982

*
Indicates Statistical Significance With Entry of Previous Row
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