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Abstract

Despite ongoing large-scale population-based whole-genome sequencing (WGS) projects

such as the NIH NHLBI TOPMed program and the NHGRI Genome Sequencing Program,

WGS-based association analysis of complex traits remains a tremendous challenge due to

the large number of rare variants, many of which are non-trait-associated neutral variants.

External biological knowledge, such as functional annotations based on the ENCODE, Epi-

genomics Roadmap and GTEx projects, may be helpful in distinguishing causal rare vari-

ants from neutral ones; however, each functional annotation can only provide certain

aspects of the biological functions. Our knowledge for selecting informative annotations a

priori is limited, and incorporating non-informative annotations will introduce noise and lose

power. We propose FunSPU, a versatile and adaptive test that incorporates multiple biologi-

cal annotations and is adaptive at both the annotation and variant levels and thus maintains

high power even in the presence of noninformative annotations. In addition to extensive sim-

ulations, we illustrate our proposed test using the TWINSUK cohort (n = 1,752) of UK10K

WGS data based on six functional annotations: CADD, RegulomeDB, FunSeq, Funseq2,

GERP++, and GenoSkyline. We identified genome-wide significant genetic loci on chromo-

some 19 near gene TOMM40 and APOC4-APOC2 associated with low-density lipoprotein

(LDL), which are replicated in the UK10K ALSPAC cohort (n = 1,497). These replicated

LDL-associated loci were missed by existing rare variant association tests that either ignore

external biological information or rely on a single source of biological knowledge. We have

implemented the proposed test in an R package “FunSPU”.

Author summary

In recent years, large-scale whole-genome sequencing (WGS) data have been generated,

such as those in the UK10K project and the ongoing NIH Trans-Omics for Precision

Medicine (TOPMed) WGS program, providing unprecedented opportunities to investi-

gate low-frequency variants and rare variants in association with complex diseases and

traits. However, WGS-based association analysis of complex traits remains a tremendous
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challenge due to the large number of rare variants, many of which are non-trait-associated

neutral variants. External biological knowledge, such as functional annotations based on

the ENCODE, Epigenomics Roadmap and GTEx projects, can be helpful in distinguishing

causal rare variants from neutral ones; however, each functional annotation can only pro-

vide certain aspects of the biological functions. To this end, we have proposed a versatile

and adaptive association test, FunSPU, to exploit multiple sources of biological knowledge

in the analysis of WGS data. We illustrate our proposed test using the TWINSUK cohort

of UK10K WGS data based on six functional annotations. We identified genome-wide sig-

nificant genetic loci associated with low-density lipoprotein, which are replicated in the

UK10K ALSPAC cohort. These replicated loci were missed by existing rare variant associ-

ation tests that either ignore external biological information or rely on a single source of

biological knowledge.

Introduction

In recent years, large-scale whole-exome sequencing and whole-genome sequencing (WGS)

data have been generated, such as those in the Exome Sequencing Project [1], the UK10K proj-

ect [2] and the ongoing NIH NHLBI Trans-Omics for Precision Medicine (TOPMed) WGS

program [3], providing unprecedented opportunities to investigate low-frequency variants

(minor allele frequency [MAF] between 1% and 5%) and rare variants (RVs; MAF < 1%) in

association with complex diseases and traits. However, WGS-based association analysis of

complex traits remains a tremendous challenge due to the large number of RVs, many of

which are non-trait-associated neutral variants. External biological knowledge, such as func-

tional annotations, might be informative to distinguish causal RVs from neutral ones. Some

recent large-scale functional genomic studies, such as ENCODE [4], NIH Roadmap Epige-

nomics [5] and GTEx [6] projects, provide rich resources to use in characterizing the func-

tional consequences of single nucleotide variants (SNVs), especially those in non-coding

regions. Many approaches have been developed for functional annotations by integrating

these data, e.g., CADD [7], GenoSkyline [8] and Eigen [9]; see Liu et al for a recent compara-

tive review [10]. In WGS analysis, investigators may filter a subset of SNVs by annotations [2,

11], or use a single source of functional scores as weights in association tests to boost the statis-

tical power [12–14]; however, each functional annotation can only provide a certain aspect of

the biological functions, e.g., sequence conservation across species or biochemical activity of

non-coding regions in a tissue. Our a priori knowledge to select the informative annotation(s)

regarding a phenotype and genomic regions of interest is limited, and incorporating noninfor-

mative annotations will introduce noise and lose power.

To address this analytical challenge, we propose a family of versatile and powerful tests

called “FunSPU” that allow for incorporating multiple functional annotations simultaneously

in the adaptive sum of powered score (aSPU) test framework [15]. The fundamental idea of

aSPU is to construct a general class of association tests, each of which is the most powerful

under varying, yet unknown, local genetic architecture, then data-adaptively select the most

significant test. Since each functional annotation system contains limited biological knowl-

edge, multiple sources of functional annotations may provide complementary information.

Therefore, a test that integrates multiple functional annotations simultaneously is potentially

powerful. The proposed test is adaptive at both the annotation and variant levels and thus

maintains high power even in the presence of noninformative annotations and a large number

of neutral RVs. We also propose minimum p-value (minP) and Fisher’s meta-analysis-like

approaches to combine the p-values with respect to multiple annotations. Moreover, to further
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increase the statistical power, we propose to incorporate a trait-specific global weight for each

annotation based on partitioning the heritability.

Using extensive simulations and application to the UK10K WGS data [2], we compared our

proposed FunSPU tests with the corresponding annotation-ignorant aSPU test as well as some

existing RV association tests, such as the T5 burden test and SKAT [16]. We also compared

our method with a recently published multiple functional annotation-based association test

called functional score test (FST) [17]. Using the UK10K TWINSUK WGS cohort as the dis-

covery sample (n = 1,752), we considered six functional annotations, CADD [7], RegulomeDB

[18], FunSeq [19], Funseq2 [20], GERP++ [21] and GenoSkyline [8], and four quantitative

traits, low-density lipoprotein (LDL), high-density lipoprotein (HDL), body mass index (BMI)

and systolic blood pressure (SBP). We identified genome-wide significant genetic loci on chro-

mosome 19 near gene TOMM40 and APOC4-APOC2 that are associated with LDL, which are

replicated in the UK10K ALSPAC WGS cohort (n = 1,497). These replicated LDL-associated

loci were missed by existing RV association tests that either ignore external biological informa-

tion or rely on a single source of biological knowledge. We have implemented the proposed

test in an R package “FunSPU”.

Materials and methods

Notations

Suppose that for subject i = 1, . . ., n, Y = (Y1, . . ., Yn) is the vector of a trait, and Xi = (Xi1, . . .,

Xik)’ is the vector of the genotype scores of k RVs, for example, from a gene or some genomic

region. Here, we use additive coding for each RV; that is, Xij is the count of the minor allele at

RV j for subject i. For simplicity, we ignore other covariates in our model. We consider a gen-

eralized linear model (GLM):

gðEðYiÞÞ ¼ b0 þ
Pk

j¼1
Xijbj;

where g is a link function; for continuous Yi, g is the identity link g(μ) = μ and the GLM is

reduced to a linear model, whereas g is the logit link g mð Þ ¼ log m

1� m

� �
for binary Yi. For the

purpose of exposition, we introduce our proposed tests in the linear model framework with a

quantitative trait and no covariates, though the methods can be similarly extended to binary

traits, and adjusted for covariates in the GLM and score function framework [15, 22, 23].

We test the null hypothesis H0: β = (β1, . . ., βk)’ = 0, that is, there is no association between

any of the RVs and the trait under H0. Our proposed tests are based on the score vector U =

(U1, . . ., Uk)’ for β and its covariance matrix V,

U ¼
Xn

i¼1

ðYi � Y ÞXi; V ¼ CovðUjH0Þ ¼ Y ð1 � Y Þ
Xn

i¼1

ðXi � XÞðXi � XÞ0;

where Y and X are the sample means of the Yi’s and Xi’s, respectively.

Review of the data-adaptive aSPU test

Pan et al. [15] proposed a new adaptive test that retains high power across a wide range of vary-

ing, yet unknown, genetic architecture for the analysis of RVs. This test is based on a class of

the SPU test:

TSPUðgÞðUÞ ¼
Xk

j¼1

Ug

j ;

Multiple annotation-based test of WGS data
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where γ�1 is a positive integer. Suppose that we have a set of candidate values of γ in Γ, e.g.,

Γ = {1, 2, . . ., 8,1}, as used in our later experiments. It is known that SPU(1) is equivalent to

the burden test, while SPU(2) is a variance-component score test equivalent to SKAT with a lin-

ear kernel. Importantly, as γ increases (as an even integer), the SPU(γ) test puts more weights

on the larger component of U while gradually ignoring the remaining component. In particular,

we have TSPUðgÞ / kUkg ¼ ð
Pk

j¼1
jUjj

g
Þ

1
g ! kUk1 ¼ max1�j�kjUjj, as γ!1. The SPU(1) is

closely related to the minP test (but ignores possibly varying variances of Uj’s); the two tests

often perform similarly [24]. Since the power of an SPU(γ) test depends on the choice of γ while

the optimal choice of γ depends on the unknown true association pattern of the RVs to be

tested, it would be desirable to data-adaptively choose the value of γ. To this end, the aSPU test

takes the minimum p-value of the SPU(γ) tests as its test statistic: TaSPU = minγ2ΓpSPU(γ. In this

case, TaSPU is no longer a genuine p-value; we use resampling approaches such as residual per-

mutation or parametric bootstrap to obtain its p-value.

New test: FunSPU—A data-adaptive test incorporating multiple

annotations

Our proposed test is in the data-adaptive aSPU test framework. Importantly, the proposed test

is adaptive at both the annotation and SNV levels. Suppose that we have the score vector U =

(U1, . . ., Uk)’ for k RVs from a gene region or sliding window based on a linear regression

model. Let 0�wlj�1 denote the functional score from the lth of m properly scaled annotations

for the jth of k RVs. The proposed functional annotation-based SPU test is

TSPU� Funðga ;gÞ
¼
Xm

l¼1

Xk

j¼1

ðwlj UjÞ
g

 !1
g

2

4

3

5

ga

;

where two positive integers γ�1 and γa�1 respectively control the individual variants’ and

annotations’ relative contributions to the overall test statistic; e.g., γa = 1 treats all annotations

equally, while γa =1 only considers the most significant annotation. The inner sum of

weighted Uj with power γ is the weighted SPU, and they are normalized to the power of 1/γ
before being subjected to the outer sum with power γa. Since the number of the RVs in this

test statistic is identical across all m annotations, it is not necessary to further normalize the

weighted SPU test by the number of RVs.

The intuition to use γa as the powers of the weighted SPU is similar to that for γ. In general,

a smaller γa, e.g., γa = 1, is more effective when there are more informative annotations, each

of which is roughly equally discriminative regarding the deleteriousness of the RVs for the

trait of interest. In contrast, a larger γa is preferred if there is only one or fewer informative

annotations that can well distinguish causal variants from neutral ones for the trait. As γa!1,

only the most significant weighted SPU is considered.

We aim to perform powerful tests when there are unknown association patterns of RVs and

unknown informativeness of functional annotations. In practice, since we have no a priori
knowledge about choosing γ and γa, we need to conduct a grid search over a set of possible val-

ues of both γ and γa. However, searching too many values will introduce extra variability and

lead to reduced power. This effect was later confirmed when we used γa2{1,2,3,. . .,8,1} and

γ2{1,2,3,. . .,8,1} in some preliminary simulations. Based on the results of aSPU tests [15] and

the feature of annotations, we decided to use γa2Γa = {1,2,4,8,1} and γ2Γ = {1,2,3,. . .,6} for

the rest of the study. We retained γa =1 as an approximation to the minP test and ignored

some higher values of γ since the results tend to be similar to γ = 6.

Multiple annotation-based test of WGS data
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Given a set of γ and γa, e.g., γ2Γ = {1,2,3,. . .,6} and γa2Γa = {1,2,4,8,1}, the proposed data-

adaptive FunSPU test statistic is defined as

TFunSPU ¼ min
g2G;ga2Ga

pSPU� Funðga ;gÞ;

where pSPU� Funðga ;gÞ is calculated by the resampling methods detailed below. Although the score

vector U has an asymptotic normal distribution N(0, V), it is not easy to derive the asymptotic dis-

tribution of TFunSPU. Therefore, we propose using a single layer of permutations (without covari-

ates) or residual permutations (with covariates) to obtain p-values as done in aSPU [15, 22].

Specifically, we first permute the original set of trait Y to obtain a new set of Y(b) for b = 1, . . ., B.

Then, we calculate the null score vector U(b) and the corresponding test statistic TðbÞSPU� Funðga ;gÞ
¼

TSPU� Funðga ;gÞ
ðUðbÞÞ as well as their p-values pðbÞSPU� Funðga ;gÞ ¼ ½

P
b1 6¼b

IðjTðb1Þ

SPU� Funðga ;gÞ
j �

jTðbÞSPU� Funðga ;gÞ
jÞ þ 1�=B. Therefore, we have TðbÞFunSPU ¼ming2G;ga2Gap

ðbÞ
SPU� Funðga ;gÞ

, and the final

p-value of the FunSPU test pFunSPU ¼ ½
PB

b¼1
IðTðbÞFunSPU � TFunSPUÞ þ 1�=ðBþ 1Þ.

In the FunSPU test above, we ignored the possibly different variances of the score function

component Uj, for example, due to varying MAF of the RVs. On the other hand, previous

research has shown that it may be beneficial to account for the heterogeneity of variances in

the SPU framework [24]. Therefore, we further propose an inverse-variance weighted version

of FunSPU:

TSPUw� Funðga ;gÞ
¼
Xm

l¼1

Xk

j¼1

ðwlj Uj=
ffiffiffiffiffiffi
Vjj

q
Þ
g

 !1
g

2

4

3

5

ga

;

TFunSPUw ¼ min
g2G;ga2Ga

pSPUw� Funðga ;gÞ;

where Vjj is the jth diagonal element of V = Cov(U|H0) as given before.

Alternative approaches to incorporating multiple functional annotations:

aSPU_minP and aSPU_Fisher

We considered alternative approaches to incorporate multiple functional annotations into

the aSPU test. In contrast to the two-level FunSPU approach, we can obtain modified aSPU

tests via the score vector U weighted by each functional annotation, i.e., TðlÞSPUðgÞðUÞ ¼
Pk

j¼1
ðwlj UjÞ

g and TðlÞaSPU ¼ ming2Gp
ðlÞ
SPUðgÞ, for l = 1, . . ., m. We can obtain the genuine p-value

pðlÞaSPU by resampling methods. To combine multiple functional annotations, we can further employ

some general approaches to combine multiple p-values, pðlÞaSPU . For example, we can simply use

TaSPU minP ¼ min1�l�mp
ðlÞ
aSPU as the test statistic of m modified aSPU tests. This aSPU_minP test is

similar, but not exactly equivalent to the case of FunSPU with γa =1: the latter chooses the maxi-

mum jTðlÞSPUðgÞj and then uses resampling methods to obtain a genuine p-value directly, while the

aSPU_minP test calculates the empirical p-value pðlÞaSPU first, and then uses the minimum p-value

TaSPU_minP as the new test statistic and resampling to calculate the final p-value.

Another common method for combining p-values is Fisher’s meta-analysis approach,

i.e., TaSPU Fisher ¼ � 2
Pm

l¼1
lnðpðlÞaSPUÞ. If the m p-values were independent, TaSPU_Fisher would

follow a chi-squared distribution with 2m degrees of freedom. However, our TðlÞaSPU tests are

correlated via the score vector U. Hence, we also use resampling approaches to calculate the

final p-value. We can similarly apply the inverse-variance weighted method to aSPU_minP

and aSPU_Fisher tests, respectively denoted as aSPUw_minP and aSPUw_Fisher.

Multiple annotation-based test of WGS data
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Of note, aSPU_minP is closely related to the FST test [17]. Specifically when we restrict

γ = 1,2, aSPU_minP is equivalent to FST_minP except for the up-weight of rarer variants

and weighted sum approach to combine burden and dispersion test statistics in the latter, as

compared to the minP approach in the former. Similarly, aSPU_Fisher is closely related to

FST_Fisher.

wtFunSPU: Extension of FunSPU to allow for global weighting of multiple

annotations

In our proposed FunSPU test, we treated all m functional annotations equally a priori and

completely relied on the data to adaptively combine multiple annotations in each test unit, for

example, a sliding window. This may be less efficient in the presence of overall inferior or

superior annotations for a trait of interest, in which case it would be desirable to globally

down-weight inferior annotations (and up-weight superior annotations). To this end, we pro-

pose to modify the FunSPU test by introducing an annotation-level weight ρ = (ρ1,. . .,ρm)0 and

denote the modified test as wtFunSPU:

T�wtSPU� Funðga ;gÞ ¼
Xm

l¼1

rl

Xk

j¼1

ðwlj UjÞ
g

 !1
g

2

4

3

5

ga

;

TwtFunSPU ¼ min
g2G;ga2Ga

pwtSPU� Funðga ;gÞ:

Since we assume no a priori knowledge regarding the informativeness of a functional anno-

tation for a given trait, we propose to estimate ρl based on some global correlation measure

between the annotation weights, genotypes and phenotype. A promising approach is based on

partitioning the heritability h2 by functional annotations [25]: a functional annotation is more

informative for the trait of interest if SNVs with higher functional scores contribute to more

heritability on average. Specifically, given an annotation, we first partition the genome-wide

RVs based on Q discrete functional categories or percentiles of continuous functional scores;

we then estimate the heritability h2
q for all SNVs in functional category q = 1,. . ., Q, using the

GCTA tool [26]. We next compute the average per-SNV heritability h2
q=#SNVðqÞ for each anno-

tation category q and regress h2
q=#SNVq on q to estimate the slope: Eðh2

q=#SNVðqÞÞ ¼ b0 þ bq,

where β is used as the global weight ρ for the corresponding functional annotation in the wtFun-

SPU test. Prior to this calculation, we transform the functional annotation to positive integers

q = 1,. . ., Q such that larger q corresponds to a more likely functional category. If a functional

category has a very small number of SNVs or h2
q close to zero, this category is combined with a

nearby category; see S1 to S4 Figs and S2 Table for details.

Results

Simulation setups

We conducted extensive simulations to evaluate and compare the performance of our pro-

posed functional annotation-based tests with existing association tests for RVs. To make the

simulation study representative of real RV data, we randomly selected 200 RVs from

chr16:56.8M~57.1M of the UK10K TWINSUK genotype data of 1,718 unrelated individuals.

MAFs of the selected RVs were no larger than 1%.

To evaluate power, we generated the simulated phenotypes as follows. First, we simulated 3

sets of informative annotations (w1j,w2j,w3j) and 3 sets of random annotations (w4j,w5j,w6j)

Multiple annotation-based test of WGS data
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independently (j = 1, 2, . . ., 200 ordered by genomic positions). We designated the first 100

RVs as causal variants (j = 1, 2, . . ., 100) and the remaining 100 RVs as neutral variants

(j = 101, 102, . . ., 200). The informative annotations were generated from a uniform distribu-

tion U(0.4, 1) corresponding to causal variants and from U(0, 0.6) corresponding to neutral

variants. All of the random annotations were generated from U(0, 1). Second, we randomly

selected k = k1+ k2 RVs: k1 causal RVs from j = 1, 2, . . ., 100 and k2 neutral RVs from j = 101,

102, . . ., 200. Third, we used only informative annotations to calculate the effect size βj =

cβ(w1j,w2j,w3j) for each causal RV. Fourth, the simulated phenotype was obtained from

Yi ¼
Pk1

j¼1
Xijbj þ εi, where εi followed N(0,3) and i = 1,2,. . .,1718. Furthermore, to evaluate

the globally weighted wtFunSPU test, we calculated the correlations between the sum of the

genotypes weighted by each annotation and simulated phenotypes for each of the 1,000 simu-

lation replications, and used the mean of the 1,000 correlations as the global weight of each

annotation, i.e., rl ¼ corð~Y ;
Pk

j¼1
wlj

~XjÞ (l = 1, 2, . . .,6), where ~Y and ~Xj are the vectors of Yi
and Xij in each replication correspondingly.

We considered two simulation scenarios. In scenario A, we used all three informative anno-

tations, three random annotations and one dummy annotation (1’s for all RVs) in functional

annotation-based tests (FunSPU, aSPU_minP, and others). To test the effect of more “noisy”

annotations, we implemented scenario B, which used only one informative annotation, all

three random annotations and one dummy annotation in the tests. In both scenarios A and B,

we used identical procedure as above to generate simulated phenotypes Yi, and fixed k1 = 8

and k2 = {8, 16, 32, 64, 128}, respectively. We set cβ = 0.5 for tests that incorporated global

weights and cβ = 1 for other tests.

To evaluate the type I error rate, we simulated Yi~N(0,3) (i = 1,2,. . .,1718), independent of

k neutral RVs and 6 random annotations all from U(0,0.6) in each replication. We set increas-

ing numbers of neutral RVs with k = {8, 16, 32, 64, 128}.

The empirical type I error rate was calculated based on 50,000 replications with the signifi-

cance level α = 0.005, while the empirical power was calculated based on 1,000 replications for

each scenario with α = 0.05. For permutation-based tests, 10,000 and 1,000 resamplings were

conducted for each replication to evaluate type I error and power, respectively.

Simulation results

As shown in Table 1, all the tests under comparison could control the type I error rate satisfac-

torily around 0.005, except for aSPU(w)_minP and aSPU(w)_Fisher tests, which were slightly

inflated (between 0.006 and 0.007) with fewer number (e.g., 8) of neural variants. Besides

Monte Carlo error, one possible reason for the slight inflation was that combining multiple

annotations at the level of p-values might be sometimes numerically unstable in the presence

of extreme p-values.

Regarding power, we first considered scenario A (Fig 1), which was an advantageous sce-

nario for our proposed tests since all three informative annotations together with three ran-

dom annotations and one dummy annotation were used in the tests. The dummy annotation

(constant 1) was supposed to retain the unweighted SPU in the adaptive tests, as in aSPU.

Although the simulated annotations for causal and neutral RVs had modest differences, i.e.,

from U(0.4, 1) and U(0,0.6), respectively, the tests incorporating functional annotations, such

as FunSPU, wtFunSPU, aSPU_minP and FST, always had higher power than tests that ignored

functional annotations, such as aSPU, SKAT and T1. The FunSPU test appeared to be less

powerful than aSPU_minP, suggesting a lack of efficiency in the former’s complete data-adap-

tive strategy to combine multiple annotations. On the other hand, wtFunSPU and wtFunSPUw

outperformed aSPU_minP and FST, supporting the effectiveness of the global weighting

Multiple annotation-based test of WGS data
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Table 1. Empirical type I error rates of various tests at significance level α = 0.005 for increasing number of neutral RVs with 50,000 simulation replications

(B = 10,000 for resampling-based tests). Annotation-based tests were based on six random annotations. aSPU: adaptive sum of powered score test; aSPU_minP: combin-

ing multiple p-values of aSPU tests by minimum p approach; aSPU_Fisher: to combining multiple p-values of aSPU tests by Fisher’s meta-analysis approach; FunSPU: mul-

tiple functional annotation-based SPU test; wtFunSPU: global weighted FunSPU; T1: burden test of variants with MAF smaller than 1%; SKAT: the sequence kernel

association test; (w): inverse-variance weighted score function in the SPU framework.

Test No. of neutral RVs

8 16 32 64 128

aSPU 0.0059 0.0057 0.0050 0.0046 0.0043

aSPU_minP 0.0067 0.0058 0.0054 0.0062 0.0043

aSPUw_minP 0.0060 0.0053 0.0044 0.0056 0.0056

aSPU_Fisher 0.0061 0.0054 0.0059 0.0054 0.0047

aSPUw_Fisher 0.0062 0.0062 0.0051 0.0050 0.0047

FunSPU 0.0053 0.0047 0.0043 0.0045 0.0037

FunSPUw 0.0057 0.0062 0.0041 0.0050 0.0037

wtFunSPU 0.0045 0.0046 0.0046 0.0037 0.0042

wtFunSPUw 0.0047 0.0056 0.0039 0.0034 0.0050

T1 0.0052 0.0053 0.0049 0.0053 0.0055

SKAT 0.0051 0.0050 0.0053 0.0045 0.0038

https://doi.org/10.1371/journal.pgen.1008081.t001

Fig 1. Empirical power of various tests for eight causal RVs and increasing number of nonassociated RVs at significance

level α = 0.05. The incorporated annotations for association tests include all three informative annotations and three

noninformative annotations (Scenario A). All the results were based on 1000 simulation replications.

https://doi.org/10.1371/journal.pgen.1008081.g001
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scheme. Between the latter two, aSPU_minP had an increasing edge over FST in the presence

of larger number of neural variants, due to its going beyond burden (SPU(γ = 1)) and vari-

ance-component (SPU(γ = 2)) tests with additional γ parameters. We also observed that the

inverse-variance weighted tests always outperformed the original tests, e.g., wtFunSPUw ver-

sus wtFunSPU, and this advantage became more obvious with a higher proportion of neutral

RVs. Lastly, the power of the aSPU_Fisher test was similar to that of the aSPU_minP test until

the number of neural variants increased to 64 and 128, when the former became less powerful

than the latter.

Next, we considered a weaker scenario for our proposed tests. In scenario B (Fig 2), we

used only one informative annotation, but all three random annotations and one dummy

annotation in the tests. In this case, we had a higher proportion of “noisy” annotations in our

tests. We observed that the FunSPU test was marginally more powerful than aSPU, SKAT and

T1, but was less powerful than the aSPU_minP test by a large margin. In fact, scenario B was

an advantageous scenario for the latter test, which only considered the most informative

Fig 2. Empirical power of various tests for eight causal RVs and increasing number of nonassociated RVs at significance

level α = 0.05. The incorporated annotations for association tests include one out of three informative annotations and three

noninformative annotations (Scenario B). All the results were based on 1000 simulation replications.

https://doi.org/10.1371/journal.pgen.1008081.g002
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annotation. Similarly, aSPU_minP was more powerful than aSPU_Fisher when the number of

neutral variants exceeded 16, due to the latter treating the one informative and three non-

informative annotations equally. Finally, the globally weighted wtFunSPU and wtFunSPUw,

especially the latter, were more powerful than the aSPU_minP and FST tests, again suggesting

the benefit of globally down-weighting noninformative annotations.

We also compared the computational time needed for different methods. As shown in S1

Table, FunSPU and aSPU_minP were on par with aSPU, but were more computationally

intensive than the asymptotic-based burden and SKAT tests. As shown in the real data analysis

later on, by employing a step-up permutation strategy, we were able to perform genome-wide

scan of WGS data with FunSPU and related tests.

Application to the UK10K WGS data

To further evaluate the performance of our proposed tests on real data, we applied FunSPU

and other state-of-the-art tests, including SKAT, T5 burden test and FST (combined test)[17],

to association analysis of the UK10K WGS data with four complex quantitative traits: LDL,

HDL, BMI and SBP. We used the TWINSUK samples as the discovery cohort and the ALSPAC

samples as the replication cohort with n = 1706/1497 (TWINSUK/ ALSPAC), 1718/1497,

1752/1792 and 1740/1796, respectively, for LDL, HDL, BMI and SBP, after merging WGS

genotype and phenotype data. After removing SNVs that did not pass quality control (QC) as

done in the original UK10K analysis[2], as well as singletons and INDELs, we had a total of

10,979,027 RVs and low-frequency variants with MAF< 5% in the discovery cohort. Briefly,

the UK10K WGS data QC included various low-level variant calling and filtering QC mea-

sures, variant-level QC to exclude variants with Hardy-Weinberg equilibrium (HWE) test p-

value < 10−6, and sample-level QC to exclude samples in poor concordance with their corre-

sponding GWAS data[2]. Since the discovery cohort TWINSUK only included women, we

adjusted for age at baseline, but not gender, as a covariate in association testing in both discov-

ery and replication cohorts.

We considered six types of functional annotations for RVs. CADD[7], FunSeq[19], Fun-

Seq2[20], RegulomeDB[18] and GERP++[21] were extracted from the precomputed WGSA

[27] library, and GenoSkyline (blood) annotation was generated from the region-based Gen-

oSkyline library [8]. We re-scaled all annotations to numerical weights within the interval (0,

1), with larger weights corresponding to a greater likelihood of being functional (S5 Fig).

Among the above annotations, rank scores for CADD, Funseq2, GenoSkyline and GERP+

+ were provided in the WGSA library [27], and the re-scaled score was defined as w = (raw

rank score–min)/(max-min), where min and max were, respectively, the minimum and

maximum raw rank scores for a given functional annotation. The RegulomeDB categories

s = (1,2, . . ., 6) were transformed into (0, 1) by f(s) = (7-s)/6, whereas the Funseq categories

s = (0,1,2, . . ., 6) were transformed by f(s) = (1+s)/7. We substituted the missing values or

zero values with 0.01 (FunSeq, FunSeq2, RegulomeDB) or 0.0001 (GERP++). There was no

missing value in CADD and GenoSkyline for the RVs considered here. S6 Fig shows the pair-

wise correlation coefficients among the 6 annotations: while some annotations were moder-

ately correlated (r> 0.3), for example, GERP++ with CADD, and Funseq2 with RegulomeDB/

Genoskyline, others were much less correlated. This suggests that multiple annotations may

provide complementary information regarding the functional consequence of genetic variants,

and it may be beneficial to incorporate them simultaneously in association analysis as pro-

posed in the FunSPU framework here. Following the procedure proposed in Section 2.5, we

calculated the phenotype-specific weight for each of the six annotations and used them as

global weights in the wtFunSPU test. As shown in S1 to S4 Figs and S2 Table, RegulomeDB,

Multiple annotation-based test of WGS data
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Funseq and GenoSkyline tended to have consistently higher weights than GERP++, Funseq2

and CADD, while the numerical values and the relative magnitudes of the weights could vary

across phenotypes.

We employed a sliding window approach to group RVs with a window length of 10k base

pairs (bp) and a step size of 8.75k bp, resulting in 319,306 windows in total. Using the conser-

vative Bonferroni procedure, we set the family-wise error rate at 0.05 with a significance

level = 0.05/319306 = 1.56e-07, which equals 6.81 on the -log10 scale. To achieve this genome-

wide significance level, we used a step-up permutation strategy [22, 28]. We first performed

B = 10,000 permutations for all sliding windows and gradually increased B; if those sliding

windows with estimated p-values <10/B, we increased B to 10 times the current value and re-

estimated the p-values for these sliding windows. The number of permutations in the final

stage was B = 108. Of note, the variant-specific score functions in aSPU, aSPU_minP, FunSPU

and wtFunSPU were not weighted by MAF, while those in aSPUw, aSPUw_minP, FunSPUw,

and wtFunSPUw were inverse-variance weighted, where variants with lower MAF were up-

weighted. By default, SKAT and FST used Beta(1,25) weights to up-weight variants with lower

MAF [16, 17].

As shown in S7 to S10 Figs, the quantile-quantile plots for the proposed FunSPU tests were

well behaved, with no discernible indication of global p-value inflation, suggesting that the

FunSPU tests could control the type I error rate well in genome-wide scans. Table 2 shows all

sliding windows with at least one genome-wide significant p-value in the TWINSUK discovery

cohort by any of the association tests under consideration. To confirm our findings in the

TWINSUK cohort, we performed replication analysis of the genome-wide significant sliding

windows in the ALSPAC cohort. As shown in Table 2, four sliding windows were replicated

for the corresponding phenotypes and association tests with a replication p-value < 0.05/

24 = 2.1e-3 based on the Bonferroni correction for 24 sliding windows: 3 by at least one of the

functional annotation-based tests (1 by wtFunSPU, 1 by FunSPU and aSPU_minP and 1 by

aSPUw_minP) and one by the aSPU test. In contrast, none of the 6 sliding windows identified

by the FST test in the discovery cohort was replicated; neither did SKAT nor T5 replicate any

sliding window.

Three of the four replicated sliding windows were close to each other on chromosome 19

around TOMM40, APOE and APOC4-APOC2 genes. These loci have been previously identi-

fied and replicated to be associated with LDL by large-scale meta-analysis of GWAS common

variants [29–31]. Numerous functional and genetic association studies have shown that APOE
plays a central role in lipoprotein metabolism and neurodegeneration [32–34]. Specifically,

APOE has three isoforms, 2, 3, and 4: APOE2 is associated with elevated plasma LDL level and

increased cardiovascular disease risk, whereas APOE4 is associated with increased risk of Alz-

heimer’s disease[34]. While previous large-scale whole-exome sequencing and ExomeChip-

based association studies did not identify exonic RVs in APOE associated with LDL[35, 36], a

recent association analysis of 16,324 deep-coverage WGS samples from the TOPMed project

identified LDL-associated rare non-coding variants upstream of APOE[37]. Here we were able

to identify the TOMM40/APOE locus and additionally APOC4-APOC2 locus that harbor LDL-

associated RVs with fewer than a couple of thousand samples, suggesting that the power of the

FunSPU test was boosted by incorporating external biological knowledge.

We also looked into the effects of multiple annotations on the FunSPU tests. Although

some high scores were observed around the TOMM40 and APOC4-APOC2 gene regions for

Funseq2, Funseq, RegulomeDB and GenoSkyline (Fig 3), they did not appear to be obviously

different from those scores outside these two loci. Fig 4 shows the association signals of selected

tests in this genomic region, whereas S11 Fig shows all individual annotation-based aSPU tests.

As for APOC4-APOC2, three of the six annotations, namely, Funseq2, RegulomeDB and

Multiple annotation-based test of WGS data
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Fig 3. Rescaled scores of functional annotations: (A) GERP++, (B) Funseq2, (C) CADD, (D) Funseq, (E) RegulomeDB, and (F) GenoSkyline (blood) at the locus

around gene APOC4-APOC2. The scores were rescaled to the interval [0, 1].

https://doi.org/10.1371/journal.pgen.1008081.g003
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GenoSkyline (S11E, S11H and S11I Fig), positively contributed to the highly significant p-values

of wtFunSPU and FunSPU (S11A and S11B Fig), although none of these individual annotation-

based aSPU tests would reach the genome-wide significance threshold, demonstrating the bene-

fit of integrating multiple functional annotations in the FunSPU framework. RegulomeDB and

GenoSkyline also had higher global weights for LDL (S2B Table), which further boosted the p-

value of the wtFunSPU test to the genome-wide significance level. As for TOMM40, Funseq2,

CADD and GERP++ (S11E, S11F and S11D Fig) positively contributed to the genome-wide sig-

nificance of FunSPU and aSPU_minP (S11A Fig and Table 2); whereas wtFunSPU missed this

locus due to its low global weighting of these three annotations (S2B Table). This suggests that

wtFunSPU, FunSPU and aSPU_minP may complement each other and may be used together

in association analysis of WGS data.

To further investigate whether the TOMM40 and APOC4-APOC2 loci identified for LDL

cholesterol were driven by coding RVs, we only retained nonsynonymous RVs in the original

sliding windows in this region (13 nonsynonymous RVs out of total 784 RVs) and applied the

aSPU test to each sliding window which had at least two RVs. For a sliding window with a sin-

gle RV, we merged it with its neighboring sliding window. As shown in S12 Fig, none of the

sliding windows had a p-value < 0.01, far less significant than the original association testing

results (Fig 4). We therefore conclude that it is very unlikely the identified associations were

driven by coding RVs.

Discussion

We have proposed a versatile and adaptive association test, FunSPU, to exploit multiple

sources of biological knowledge in the analysis of WGS data. It is adaptive at both the annota-

tion and variant levels, and thus maintains high statistical power, even in the presence of non-

informative annotations and a larger number of neutral variants. We have further proposed a

globally weighted wtFunSPU test to more effectively down-weight less informative functional

annotations in a trait-specific manner. Using the UK10K WGS data, we demonstrated that our

proposed FunSPU test and its extensions, including the wtFunSPU and aSPU_minP tests, are

more powerful tools to identify genome-wide significant loci than existing RV association tests

Fig 4. Association test results for LDL at the locus around gene APOC4-APOC2. The round points and the trace

show the results from the globally weighted wtFunSPU test. Other points correspond to the results of FunSPU and

single annotation-based aSPU (GERP++, Funseq2, RegulomeDB, GenoSkyline), respectively. Dashed line indicates the

threshold of genome-wide significance level (p< 1.56e-7).

https://doi.org/10.1371/journal.pgen.1008081.g004
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that either ignore external biological information or rely on a single source of biological

knowledge. The FunSPU family of tests would thus serve as a powerful and complementary

tool for ongoing and future large-scale WGS studies, such as the NHLBI TOPMed project [3]

of over 100,000 individuals and the UK Biobank [38] WGS project of 50,000 individuals. We

have also summarized and compared the FunSPU family of tests in S3 Table.

The six functional annotations we considered here are diverse in terms of resources and fea-

tures. For example, GERP++[21] is a sequence conservation score, whereas other annotations

are ensemble scores based on integrating multiple sources of features, such as various func-

tional genomic assays in the ENCODE project[4] and eQTL evidence. As demonstrated in

S6 Fig, a majority of the annotations were only moderately correlated with each other, support-

ing our proposal to incorporate multiple annotations’ approximately orthogonal yet comple-

mentary information regarding the functional consequence of RVs in the framework of the

FunSPU association test. The FunSPU test can easily incorporate additional functional annota-

tions, including some newly developed ones [10], such as fathmm-MKL[39], Eigen/Eigen-PC

[9] and DeepSEA[40].

To further de-noise noninformative annotations, we proposed a novel trait-specific mea-

sure based on partitioning the heritability and used it as a global weight for each annotation in

the wtFunSPU test. Interestingly, our proposal is along the line of estimating group-specific

weights in the context of weighted hypothesis testing [41, 42], though the latter is based on the

mixture model, in contrast to the mixed model-based heritability partition here. Although it

may look counterintuitive at first glance, our proposed data-dependent global weights actually

did not inflate the type I error rates in both simulations (Table 1) and the real data analysis, as

evidenced by the QQ plots of wtFunSPU (S7 to S10 Figs). The reason is that we used a much

larger number of observations, i.e., RVs across the whole genome, to estimate a few annotation

category-specific heritability parameters h2, based on which we derived a single global weight.

This is in line with the “sieve principle”, which justifies using aggregated data to estimate a

much smaller number of weights and then using them in subsequent hypothesis testing of

small units of data (e.g., genes or sliding windows) with controlled family-wise error rate [42,

43]. Our proposed measure also has the potential to be used to compare the discriminative

performance of whole-genome annotations for a complex trait of interest, for which known

deleterious and neutral variants are rarely available (see S2 Table). This warrants further inves-

tigation. We have also applied the LD score regression method [44] to calculate the weights for

common variants (MAF>5%) using the UK10K TWINSUK WGS data. As shown in S4 Table,

the weights were largely qualitatively similar to those derived from RVs, suggesting that our

proposed strategy to infer the global weighting of annotations is quite robust.

We have some practical considerations for our proposed tests. First, some functional anno-

tations are not well-defined across the whole genome, resulting in relatively high missing data

rates, for example, 68% for Funseq; the missing scores may reduce the reliability of annota-

tion-based association tests. On the other hand, considering multiple complementary func-

tional annotations simultaneously may at least partially remedy the problem of missing

information. Second, by employing parallel computing and a step-up residual permutation

strategy for the FunSPU family of tests, we are able to perform computationally feasible

genome-wide scans for WGS data. For example, in the UK10K TWINSUK WGS data applica-

tion, it took 24 hours for 500 computing cores to complete the sliding window-based FunSPU

scan in R, including 108 residual permutations for the top sliding windows to reach the

genome-wide significance threshold. We expect that further implementation of the core func-

tions in the C language should reduce the computational burden to a more affordable level.

In addition, it would be desirable to develop some asymptotic theory and test to save the

computational time. Of note, some asymptotic theory has been developed for the aSPU test in
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the context of testing two high-dimensional means for common variants [45]; however, exten-

sion to rare variants and the FunSPU test proposed here is not trivial and warrants future

research.

We have implemented the proposed FunSPU test and its extensions in an R package “Fun-

SPU”, available at https://github.com/sputnik1985/FunSPU, and to be posted to R/CRAN.
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