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Abstract. We apply the methodology detailed in “Task-driven source–detector trajectories in cone-beam com-
puted tomography: I. Theory and methods” by Stayman et al. for task-driven optimization of source–detector
orbits in cone-beam computed tomography (CBCT) to scenarios emulating imaging tasks in interventional neu-
roradiology. The task-driven imaging framework is used to optimize the CBCT source–detector trajectory by
maximizing the detectability index, d 0. The approach was applied to simulated cases of endovascular embo-
lization of an aneurysm and arteriovenous malformation and was translated to real data first using a CBCT test
bench followed by implementation on an interventional robotic C-arm. Task-driven trajectories were found to
generally favor higher fidelity (i.e., less noisy) views, with an average increase in d 0 ranging from 7% to 28%.
Visually, this resulted in improved conspicuity of particular stimuli by reducing the noise and altering the noise
correlation to a form distinct from the spatial frequencies associated with the imaging task. The improvements
in detectability and the demonstration of the task-driven workflow using a real interventional imaging system
show the potential of the task-driven imaging framework to improve imaging performance onmotorized, multiaxis
C-arms in neuroradiology. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.2.025004]
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1 Introduction
Cone-beam computed tomography (CBCT) is used in a growing
number of scenarios in interventional imaging, including veri-
fication of patient positioning, three-dimensional (3-D) image
guidance, and visualization of instrumentation or embolic
agents delivered to the patient.1,2 Robotic CBCT C-arms greatly
expand the scanning geometries possible beyond the conven-
tional circular source–detector orbits. In clinical practice,
such motion capabilities have been used to provide fast, repro-
ducible positioning of the C-arm gantry and to increase the field
of view (FOV) of the reconstructed 3-D image. As demonstrated
in the work reported below, the additional degrees of freedom
(DoFs) enabled by such robotic C-arm gantries can be leveraged
to improve image quality and/or reduce the radiation dose using
noncircular orbits computed to maximize the imaging perfor-
mance with respect to a particular imaging task (or tasks).

As discussed in the corresponding paper3 titled, “Task-driven
source–detector trajectories in cone-beam computed tomogra-
phy: I. Theory and methods,” CBCT-guided interventional pro-
cedures often include a considerable amount of information
regarding patient-specific anatomy and the imaging task (or
tasks). As shown in Refs. 4–7, the definition of the imaging
task and a patient-specific prior image can be used to optimize
both the acquisition and the reconstruction of CBCT image data.
Such prospective design of the CBCT scan technique and/or

reconstruction method based on a task-based objective function
is referred to as task-driven imaging. In this paper, we focus on
the task-driven design of the CBCT source–detector trajectory,
taking the mathematical theory and methods detailed in Ref. 3
and applying them to scenarios emulating neurosurgical/neuro-
radiological interventions.

One example clinical scenario in which task-driven imaging
could be applied is neurovascular embolization, which may be
performed in response to a cerebral aneurysm, arteriovenous
malformation (AVM), carotid-cavernous fistula, or dural arterio-
venous fistula.8 The embolization agent occludes feeder vessels
and vascular abnormalities, and during the procedure it is impor-
tant to avoid embolization of normal/nontarget vessels, identify
incomplete embolization, and locate possible hemorrhage
resulting from perforated vessels.9 CBCT is frequently used
as a tool to localize the target and instrumentation as well as
to check against possible complications arising from the inter-
vention. However, image quality is often degraded by the pres-
ence of materials that are highly attenuating to x-rays including
coils, plugs, balloons, particulate agents such as polyvinyl alco-
hol and microspheres, and liquids such as tissue adhesives and
Onyx systems.10 As a result, CBCT images often exhibit strong
artifacts that challenge reliable visualization of the target and
surrounding vessels.

In this work, we apply task-driven imaging to two clinical
scenarios: the assessment of embolization in the case of aneu-
rysm, where perforation of the aneurysm would necessitate
detection of intracranial hemorrhage adjacent to the region of
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embolization; and AVM ablation, where detection of untreated
regions of the nidus requires visualization of incomplete embo-
lization. We investigate these two scenarios both in simulation
and in real data using a CBCT test bench and a clinical robotic
C-arm, and extend the framework to situations for which multi-
ple tasks with unknown location underlie the clinical objective.

A potential clinical workflow is depicted in Fig. 1 for prac-
tical application of task-driven imaging to image-guided neuro-
vascular interventions. The process begins with some form of
prior 3-D image as a model of the patient (μprior). This could
be a multidetector CT acquired for diagnostic or planning pur-
poses or an initial CBCT acquired at the beginning of the case
for navigation or target localization. Based on the expected sur-
gical outcome of the procedure, high-contrast features are added
to the anatomical model (e.g., embolization coils and contrast
agent). The imaging tasks are defined mathematically inHTaskðjÞ
with their locations (jROI) specified within a region of interest in
μprior. Note that the coordinate system of μprior must be registered
to the world coordinate system of the intraoperative scene – i.e.,
to the C-arm gantry. To accomplish this, two or more projections
are acquired, and the registration of the prior 3-D image and
intraoperative scene is solved via 3-D to 2-D registration, as
shown in Ref. 11. The resulting six DoF transformation
TC−arm
μprior (containing three rotations and three translations in x,

y, and z) can be applied to the image coordinates of μprior to
yield transformed coordinates registered to the C-arm gantry.
Maximization of task-based detectability index (d 0) is solved
with respect to the source–detector orbit (parametrized by Ω)
to yield the optimal source–detector trajectory Ω̂. An important
consideration is the need for a geometric calibration to precisely
characterize the source and detector pose for each vertex on the
resulting orbit. Even conventional circular orbits require such
calibration to obtain accurate 3-D reconstruction, usually solved
by prior (offline) calibration techniques using a phantom
of fiducial markers.12–14 Offline calibration of the full range

of possible vertices may or may not be practical; however,
a solution can also be obtained using the “self-calibration”
method described in Ref. 15. Model-based image reconstruction
can then be utilized to reconstruct the acquired task-driven
image μ̂. The mathematical details of task-driven imaging for
source–detector trajectory optimization are discussed in Sec. 2.

2 Task-Driven Imaging for Design of
Source–Detector Trajectories

The companion paper3 provides an in-depth description of the
theoretical methods of trajectory design in task-driven imaging
which is briefly reviewed here. Task-driven imaging is an im-
aging framework well suited for image-guided interventions
(IGIs), in which a preoperative 3-D image is acquired for diag-
nostic or planning purposes—or alternatively, in which multiple
3-D images are acquired during the course of the intervention.
We leverage the prior 3-D image to define the imaging task in
terms of both the patient-specific anatomy and the clinical
objective of an intraoperative CBCT scan. For example, after
an interventional embolization of a neurovascular target, the im-
aging task may be to detect a subtle, low-contrast hemorrhage
adjacent to the high-contrast embolization coil.

The imaging task can be defined mathematically according
to the location, contrast, and spatial frequencies associated with
the feature of interest. Imaging performance is optimized with
respect to the task (HTaskðjÞ, with subscript j marking the loca-
tion of interest) by maximizing the detectability index d 0

j, which
in turn is determined by the noise-power spectrum NPSj and
modulation transfer function MTFj. The nonprewhitening
observer model for detectability is given as

EQ-TARGET;temp:intralink-;e001;326;416d 02
j ðΩÞ ¼

�RRR ½MTFjðΩÞ · HTaskðjÞ�2dfx dfy dfz
�

2

RRR
NPSjðΩÞ · ½MTFjðΩÞ · HTaskðjÞ�2dfx dfy dfz

;

(1)

Fig. 1 Workflow for task-driven imaging. A prior 3-D image provides a patient model within which the
imaging tasks are defined. The coordinates of the prior image and task locations (x and j , respectively)
are mapped to the coordinate system of the imaging system using the six DoF transform TC−arm

μprior , which is
solved by 3-D–2-D registration of μprior to two or more projection views, yielding the transformed coor-
dinates in x 0 and j 0. Optimization of Ω with respect to detectability (d 0) yields a task- and patient-specific
trajectory Sðθ;ϕÞ, which is carried out on the robotic C-arm and reconstructed using model-based image
reconstruction.
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where Ω is a vector containing parameters that generally
characterize the CBCT scan—e.g., beam energy, fluence (as
in Ref. 16), or reconstruction filters or regularization (as in
Ref. 17), and fi indicates the spatial frequencies in the
three cardinal directions of the image coordinate system
(i ∈ ½x; y; z�). The nonprewhitening observer model is advanta-
geous in that it combines HTaskðjÞ with the relevant (and predict-
able) properties of the image, allowing the detection of objects
ranging from low frequency (i.e., diffuse lesion) to high fre-
quency (i.e., stents, small vessels, etc.). Other metrics can be
envisioned (e.g., contrast-to-noise ratio, which considers only
low-frequency transfer characteristics), and other forms of the
observer model could be formulated to incorporate an imaging
task with predictions of image properties. In addition, incorpo-
rating other technical, logistic factors such as scan time, dose, or
total number of views could be beneficial for workflow in the
clinical setting.

In this work Ω comprises parameters that define the source–
detector trajectory. This parameterization can take a variety of
forms, including periodic basis functions using constant, sine,
and cosine functions, and B-spline basis functions using equally
spaced knot locations, as described in Ref. 3. Calculation
of NPSj and MTFj uses approximations based on penalized-
likelihood (PL) reconstruction with a quadratic regularization
penalty,18 which is also detailed in Ref. 3.

Through NPSj and MTFj, the optimization of Ω yields an
orbit that maximizes d 0

j with respect to HTaskðjÞ. As discussed
in Ref. 3, it may be useful to optimize with respect to multiple
task locations (e.g., when a single location is unknown). For the
experiments presented below in which all locations are treated
with equal importance, we have chosen to maximize the mini-
mum d 0

j according to

EQ-TARGET;temp:intralink-;e002;63;399

Ω̂ ¼ argmaxΩ minimumfd 02
1 ½Ω;HTaskð1Þ�;

d 02
2 ½Ω;HTaskð2Þ�; : : : ; d 02

L ½Ω;HTaskðLÞ�g: (2)

Using the maxi-min objective better ensures that imaging
performance is not sacrificed in some locations in favor of
others, recognizing that other objectives may be used. These
can include maxi-mean or maxi-median (also explored in
Ref. 3), a weighted sum when additional knowledge of the

importance of each defined task is available, or another relevant
statistical representation of a population.

We solve the optimization using the covariance matrix
adaptation-evolution strategy (CMA-ES19)—a stochastic opti-
mization that has been previously shown to perform well in
the presence of local minima.20 Once the optimal parameters
are found (Ω̂), the low-dimensional parametrization of the
source–detector trajectory can be converted into a series of
source locations [Snðθ;ϕÞ; n ¼ 1; : : : ; N] using a rotation
angle (θ) and a tilt angle (ϕ) to indicate the 3-D location of
the x-ray source for all N projections in the scan. In the current
work, we assume that the position of the detector is fixed with
respect to the x-ray source (fixed source–detector distance,
SDD) and that there is a single, fixed origin, allowing the
source–detector trajectory to move on a sphere of diameter
SDD.

For image reconstruction, we use the PL reconstruction
algorithm as such iterative methods naturally accommodate
the noncircular trajectories generated by task-driven imaging.
The PL algorithm maximizes an objective function based
on the log-likelihood L of the current image estimate μ
(given the projection data y) combined with a regularization
term to enforce smoothness in the image with regularization
strength β

EQ-TARGET;temp:intralink-;e003;326;486μ̂ ¼ argmaxμ Lðμ; yÞ − βRðμÞ: (3)

We use a quadratic penalty for the regularization term RðμÞ,
matching the theoretical estimators for NPSj and MTFj, as
discussed in Ref. 3.

3 Experimental Methods

3.1 Experimental Imaging Systems and Digital
Simulation

Studies included a combination of simulation and physical
experiments. The first experimental system was a CBCT test
bench, as shown in Fig. 2(a), allowing a broad range of trajec-
tories by combining a motorized rotation stage with a manual
tilt platform. The second system was a robotic C-arm (Artis
Zeego, Siemens Healthineers, Forcheim Germany), as shown in
Fig. 2(b). Each system permitted task-driven scans in which

Fig. 2 Experimental platforms for task-driven imaging. (a) CBCT test bench with rotational platform and
manual tilt stage. (b) The robotic C-arm system. In each system, the source–detector trajectory is defined
by a series of N source locations containing two DoFs: rotation angle θ and tilt angle ϕ. The patient’s right
(R), left (L), superior (S), and inferior (I) directions are indicated in the rotating coordinate frame of
the patient on the test bench and in the world reference frame for the C-arm.
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the x-ray source moved (either in a true world-frame orbit for
the robotic C-arm or relative to the patient for the test bench)
to each Snðθ;ϕÞ in Sðθ;ϕÞ in a step-and-shoot fashion to accu-
mulate the N projections constituting the task-driven sinogram.
To accomplish this, each source location generated by the task-
driven orbit was defined using two DoF; a rotational angle (θ)
and a tilt angle (ϕ) for all N source locations.

For the test bench system, scans were performed at
100 kV (with 2.0 mm Al + 0.2 mm Cu added filtration) and
0.63 mAs per projection. System geometry was set to 120 cm
source-to-detector distance and 60 cm source-to-axis distance,
and the detector was read at 768 × 768 pixel format with
0.556 mm2 pixels. A fairly complete sampling of vertices was
obtained by a combination of rotations (1 deg to 360 deg in
1 deg increments of the rotation stage, equivalent to source–
detector rotation) and tilts (−30 deg to þ30 deg in 2.5 deg
increments of a tilt platform, equivalent to source–detector tilt).
As the tilt platform was placed on top of the rotary stage [as in
Fig. 2(a)], this yields an incomplete sampling pattern, particu-
larly in the direction orthogonal to the tilt platform; therefore,
the tilt platform was also physically rotated by 90 deg on the
rotation axis for additional coverage of the sphere. From
each circular scan, 182 samples were used, giving 10,556 ver-
tices in total (182 views × 2 tilt platform orientations × 29 tilt
angles). Geometric calibration of each 360-deg orbit was per-
formed using a BB phantom and the method described in
Ref. 13. Task-driven orbits were formed by selecting 364 ver-
tices from this set of projection data as nearest match to the sol-
ution of Eq. (2). The scan dose was evaluated by measuring the
air kerma using a 0.6-cc air ionization chamber placed within a
16-cm diameter CTDI phantom at isocenter21,22 and computing
the weighted sum (denoted by Dw, given by the 1∕3 and 2∕3
weighted sum of the central and average peripheral doses,
respectively).

For the robotic C-arm platform, system geometry was set to
120 cm source-to-detector distance and 80-cm source-to-axis
distance, and the detector was read at 960 × 1240 pixel format
with 0.308- × 0.308-mm2 pixels. Rotation and tilt parameters
for the C-arm gantry were uploaded to the Artis control system
as an XML file, and individual projections were acquired at
102 kV and 0.18 mAs per projection to avoid saturation of
the detector with automatic exposure control disabled and no
added filtration, resulting in 63 mAs total for the scan. Raw pro-
jection data were collected using an engineering workstation,
and the self-calibration method was used for geometric calibra-
tion,15 as only vertices belonging to noncircular orbits were
collected (cf., full sampling of vertices on the test bench).

The following sections outline the experiments demonstrat-
ing the method as applied to neurointerventional radiology.
First, we simulated embolization of an intracranial aneurysm
in a digital anthropomorphic head phantom to demonstrate
the use of a multitask objective function, progressing from
non-anthropomorphic phantoms in Ref. 3. We then used the
above-described CBCT test bench to test the embolization sce-
nario in real data. Next, we digitally simulated AVM emboliza-
tion to show the effect of surrounding anatomy on optimal orbits
by moving the location of stimuli within the (digital) cranium
and repeating the task-driven optimization. Finally, we imple-
mented the above-described task-driven imaging framework
on the robotic C-arm system to demonstrate the task-driven
source–detector trajectories computed and exercised on a real
clinical system.

3.2 Multitask Optimization

The first experiment emulated the assessment of an intracranial
aneurysm coil embolization. Postoperative CT or CBCT is com-
monly used to check for complications in the coil, including per-
foration of the aneurysm and associated hemorrhage. A digital
anthropomorphic head phantom was created with a centrally
located, coiled aneurysm [Fig. 3(a)]. The embolization coil
was modeled as a rough ellipsoid with principal axes of
20 × 12 × 13 mm3 and attenuation coefficient (μ) of 0.8 mm−1

(corresponding to ∼8% filling by volume of platinum wire using
an x-ray beam with 90 kVp peak energy). Six 11-mm diameter
spheres were placed around the coil, representing the intracra-
nial hemorrhage with a contrast of 0.002 mm−1 relative to back-
ground (similar to fresh blood in brain). Simulations used a
monoenergetic forward model with added Poisson noise and
the test bench geometry, which were described in Sec. 3.1,
with uniform sampling in θ from 1 deg to 360 deg and uniform
sampling in ϕ from −50 deg toþ50 deg (in 1 deg increments).
Bare-beam fluence was modeled with 105 photons per detector
element approximating an exposure of 85 mAs with a beam
energy of 90 kV.

The task function corresponding to the 11-mm spherical
hemorrhage is shown in Fig. 3(e). A low-frequency task func-
tion was chosen for detecting the low-contrast, diffuse hemor-
rhage and a maxi-min, multilocation objective was solved with
30 locations surrounding the embolization coil using the on-the-
fly computation approach, as described in Ref. 3. The locations
were uniformly distributed over an ellipsoid around the coil
with principal axes of 36 × 24 × 24 mm3. The source–detector
orbit was parameterized using nine periodic basis functions
with ϕ constrained to �50 deg. The CMA-ES algorithm
was applied using a population size of 40 and five initializations
corresponding to circular orbits with ϕ ¼ f−50 deg;
−25 deg; 0 deg; 25 deg; 50 degg. The solution with the high-
est maxi-min detectability was chosen and compared with a
standard circular orbit using the same number of projections
and bare-beam fluence (exposure). Image reconstruction for
both the task-driven orbit and reference circular orbit solved
the PL objective using dynamically relaxed ordered subsets
with the number of subsets decreasing every five iterations in
the sequence f54; 24; 12; 6; 4; 2; 1g for a total of 50 iterations
to accelerate convergence. Quadratic regularization strength
with β ¼ 105 was manually selected to balance the trade-off
between noise and resolution, and the 3-D image was recon-
structed with 480 × 480 × 500 voxels with 0.5-mm3 voxels.

3.3 Task-Driven Imaging in Real Data (CBCT Test
Bench)

An initial physical experiment used the CBCT test bench to fur-
ther investigate the embolization scenario described in Sec. 3.2.
In this case, a custom anthropomorphic phantom (The Phantom
Laboratory, Greenwich, New York) was used with a human
skull surrounded by tissue-equivalent plastic with the cranial
vault filled with brain-equivalent gelatin (μ ¼ 0.0188 mm−1).
A silicone vessel (Vascular Simulations, Stony Brook, New
York) representing an intracranial aneurysm in the internal
carotid artery was placed in the interior of the cranium. Four
12.7-mm diameter acrylic spheres (μ ¼ 0.0195 mm−1) were
attached to the external surface of the aneurysm to simulate
intracranial hemorrhage, as illustrated in Fig. 3(b). An initial
CBCT scan was acquired to provide a preoperative image
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volume. The intracranial aneurysm was then instrumented with
a stent and platinum embolization coils by an interventional
radiologist under fluoroscopic guidance until the vessel was suf-
ficiently full. The phantom was then scanned according to the
protocols described in Sec. 3.1 to compare the task-driven orbit
with a standard circular trajectory.

The optimal trajectory was solved using a multilocation,
maxi-min objective for three locations posterior to the emboli-
zation coil with the task function shown in Fig. 3(f) describing
detection of the low-frequency, low-contrast hemorrhage [iden-
tical to the task function described in Sec. 3.2 and as shown in
Fig. 3(e)]. The optimal trajectory was computed using a para-
meterized orbit of 29 periodic basis functions to allow a higher
degree of flexibility in the orbit and constrained within �30° tilt
to account for physical constraints of the test bench experimen-
tal setup. The on-the-fly computation approach and the same
CMA-ES optimization parameters as in Sec. 3.2 were used.
As described in Sec. 3.1, the 364 nearest vertices from the pro-
jection data acquired over the full range in θ and ϕ were selected
for the task-driven orbit. Image reconstruction for both the task-
driven orbit and the reference circular orbit used the quadratic
PL algorithm with the same parameters as in Sec. 3.2, except the
regularization parameter β was increased slightly to 7 × 105 to
account for the differences in the fluence levels.

3.4 Effect of Surrounding Anatomy

A similar simulation was performed to examine the effect of the
location of the stimulus within the cranium on the optimal task-
driven trajectory—in this case, embolization of an AVM using a
highly attenuating polymeric glue.10 Postoperative assessment
of AVM embolization includes localizing untreated regions of
the AVM nidus. This experiment used a digital anthropomorphic
head phantom, as illustrated in Fig. 3(c), locating a simulated
AVM in the skull base, the lateral cranium, or the crown of
the skull. The central core of the AVM after embolization was
represented by a sphere of diameter 10 mm with μ ¼ 1.0 mm−1

to represent a nidus of vessels filled with high-contrast glue. Six
5-mm diameter low-contrast spheres were placed around the
central core with a contrast of 0.005 mm−1 compared to the
soft-tissue background to represent potential untreated sites.
The simulation mimicked the robotic C-arm system geometry
with bare-beam fluence set to 104 photons per detector element
to match the exposure of the robotic C-arm system. A monoe-
nergetic forward model with added Poisson noise was used to
generate 360 projection images over 360 deg.

Six midfrequency imaging tasks were defined at the location
of each simulated untreated site for the multitask optimization
using the maxi-min objective [Fig. 3(g)]. In this experiment
midfrequencies were emphasized to capture the task of

Fig. 3 Summary of experiments testing task-driven imaging in neuroradiology. (a) Simulation of the post-
operative assessment of an embolization coil using the multilocation optimization to detect the surround-
ing hemorrhage. (b) Visualization of hemorrhage near an embolization coil using a CBCT test bench.
(c) Simulation of an AVM at various locations in the cranium to observe the effect of surrounding anatomy
on the optimal orbit. (d) An AVM model created in an anthropomorphic head phantom to demonstrate
the full workflow of task-driven imaging on a robotic C-arm. (e)–(h) The task functions, HTaskðjÞ, used in
experiments (a)–(d), respectively.

Journal of Medical Imaging 025004-5 Apr–Jun 2019 • Vol. 6(2)

Capostagno et al.: Task-driven source–detector trajectories in cone-beam. . .



distinguishing a small vessel adjacent to the AVM nidus. This
experiment used the precomputation approach described in
Ref. 3 to utilize the second proposed method. Although more
accurate in calculating the MTF and NPS, the precomputation
approach is memory-intensive, thereby limiting the total number
of imaging tasks. To make use of the second proposed param-
eterization of the source trajectory described in Ref. 3, B-spline
basis functions were used with eight equally spaced knots, and
the trajectories were constrained to tilt angles in the range of
ϕ ¼ −30 deg to þ30 deg and rotation angles of θ ¼ 1 deg
to 360 deg to match the extent of the robotic C-arm system.
As trajectories from B-spline basis functions have increased
flexibility over periodic basis functions, the CMA-ES optimiza-
tion algorithm was used to estimate Ω̂ using a population size of
200 with six restarts and random uniform initialization.

Quadratic PL reconstructions for the optimal trajectory and a
circular trajectory (generated with the same bare-beam fluence
and number of projections) were performed using 200 iterations
with 10 subsets to stabilize convergence during reconstruction
and regularization strength β ¼ 105, again to balance the noise
with resolution at the task location. Images were reconstructed
with 512 × 512 × 512 voxels and 0.5-mm isotropic voxel size.

3.5 Task-Driven Imaging on a Robotic C-Arm

The full task-driven imaging framework was tested on the
robotic C-arm using an AVMmodel within an anthropomorphic
head phantom (The Phantom Laboratory, Greenwich, New
York), similar to that described in Sec. 3.3 and illustrated in
Fig. 3(d). The brain-like background was the same as in
Sec. 3.3 (μ ¼ 0.0188 mm−1) and the AVM model was created
by clustering ten Teflon spheres (μ ¼ 0.03 mm−1) and six
acrylic spheres (μ ¼ 0.0195 mm−1) ranging in diameter from
5 to 15 mm at the crown of the skull. A prior image was obtained
on a CBCT test bench and registered to the robotic C-arm geom-
etry. Six imaging tasks were defined at the edges between the
Teflon and acrylic spheres, presenting a midfrequency task

function with a contrast of 0.0007 mm−1, as shown in
Fig. 3(h) (similar to the task described in Sec. 3.4). Orbit opti-
mization was performed in the same manner as in Sec. 3.4 using
the precomputation approach.

The phantom was subsequently imaged on the robotic C-arm
operated in the step-and-shoot mode to move through the opti-
mal task-driven orbit (360 projections at a fixed technique of
102 kVand 0.18 mAs∕projection). Quadratic PL reconstruction
was again performed using 200 iterations with 10 subsets and
0.5-mm isotropic voxels on a 700 × 700 × 700 voxel grid, with
β lowered to 103.5 to increase the resolution at the task location.
For comparison with a standard circular orbit, a low-dose
research scan protocol was used (496 projections over a 200-
deg circular orbit with the same technique as above). A total
of 360 approximately equally spaced projections were used
for reconstruction. The same PL parameters were applied for
image reconstruction for both the task-driven and the circular
orbits.

4 Results

4.1 Multitask Optimization

Results of the embolization coil imaging experiment are sum-
marized in Fig. 4. The optimization sought the maxi-min
solution for detectability of hemorrhage over an ensemble
of locations [Fig. 4(a)] surrounding an embolization coil.
Compared to a conventional circular orbit, the resulting task-
driven orbit exhibits a tilt and low-frequency excursions from
a plane, as shown in Fig. 4(b). The orbit is clipped at two posi-
tions due to the�50- deg collision constraint. Figure 4(c) shows
the maps of fluence through 6 of the 30 stimulus locations for all
possible source rotations/tilts. These maps illustrate the impor-
tance of data fidelity in selecting a particular orbit. Both the
task-driven orbit (pink) and conventional circular orbit (green
horizontal line) are shown superimposed on the fluence maps,
showing that the fluence through each stimulus depends on

Fig. 4 Task-driven orbit design for imaging around an embolization coil. (a) A total of 30 locations
(orange markers) in proximity to the embolization coil mark the locations at which detectability of hem-
orrhage is computed in iterative optimization. (b) The task-driven (pink) and standard circular (green)
orbits. (c) Orbits ðθ;ϕÞ superimposed on maps showing the fluence passing through 6 of the 30 stimulus
locations.
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location with respect to the surrounding anatomy and the embo-
lization coil. The task-driven orbit tends to vertices that avoid
the strong attenuation of the embolization coil (evident as a
“black hole” in the fluence maps through which few x-rays
are transmitted) and appears to exercise an orbit involving
fewer redundant view angles over the 360-deg orbit, i.e., if
rays pass through the coil on one side of the trajectory, a tilt
is sought for the opposing view to avoid the coil. While it is
not possible to completely avoid rays passing through the
coil for all stimulus locations, redundancy in the orbit allows
collection of asymmetric views to compensate low-fidelity
data in the opposing view.

CBCT images reconstructed from the circular and task-
driven orbits are shown in Fig. 5. Images for the circular
orbit are degraded severely in proximity to the embolization
coil due to decreased data fidelity (high attenuation) for mea-
surements passing through the coil. Note that this degradation
is entirely due to the measurement statistics (noise), as the sim-
ulation in this study did not include polyenergetic effects.
Strongly correlated noise (streaks) around the coil obscures
many of the stimuli. By contrast, the task-driven orbit improves
the visualization of the simulated hemorrhages, and while high-
frequency noise is elevated at other locations in the head (attrib-
uted to view sampling effects), the streaks and shading at the
specified locations of interest are markedly reduced. The multi-
task design objective facilitates improved image quality at all
locations around the embolization coil, effectively pushing
the image quality degradations away from the task locations.

4.2 Task-Driven Imaging in Real Data (CBCT Test
Bench)

Figure 6 summarizes the test bench experiment involving an
embolization coil in an anthropomorphic phantom. The top
row of images (acquired before delivery of the coil) shows
the locations of the simulated spherical hemorrhage. For this
experiment, the task-driven orbit design focuses on maximizing
the detectability at three locations posterior to the aneurysm. The
shape of the designed orbit exhibits interesting features includ-
ing an overall tilt to the orbit—selecting projections that avoid
alignment of the highly attenuating skull base with the target

region of interest. In addition, the task-driven orbit appears to
seek nonredundant views with a slight wobble in the orbit.

For a scan comprising 364 projection views over 360 deg, the
air kerma is Dw ∼ 21.1 mGy, recognizing that the dose for a
task-driven orbit (with oblique views up to 30 deg off the central
axial plane) likely departs somewhat from the dose for a circular
scan. To the extent that the projection views are equally distrib-
uted above and below the central axial plane, the difference in
dose is believed to be small.

Images from a standard circular orbit exhibit poor visualiza-
tion in the region of interest, and both the posterior hemorrhage
and the legs of the stent used to hold the embolization coil in
place are obscured by streaking and blooming effects due to the
low-fidelity measurements through the coil. By contrast, the
task-driven trajectory shows good visualization of the posterior
bleed as well as the legs of the stent. Residual contrast agent in
the simulated vasculature is also evident (whereas the preopera-
tive scan shows only the lumen of the simulated vessel). As the
task-driven optimization specified the posterior hemorrhage as
the imaging task, it did not improve the image quality anterior to
the coil. In addition, although the performance prediction and
system model ignored polyenergetic effects, the models were
sufficiently accurate to identify an orbit yielding measurable
improvement in image quality.

4.3 Effect of Surrounding Anatomy

Figure 7 shows the fluence maps, task-driven trajectories, and
reconstructed images of a simulated AVM—with the goal of
optimizing detectability for six locations around the high-
contrast embolization of an AVM nidus—in the skull base, the
lateral cranial vault, or the interior crown of the skull. The task-
driven approach solved the maxi-min objective for each region,
as shown in Figs. 7(a)–7(c). Fluence maps are shown for stimuli
that exhibited the greatest increase in detectability. Analogous to
the embolization coil in Sec. 4.1, the embolized AVM strongly
influences the fluence maps in each region, but the fluence maps
differ for each location due to the differences in surrounding
anatomy—influencing the overall attenuation so as to drive
the solution to a distinct optimal orbit for different locations
in the head. This demonstrates that knowledge of both the

Fig. 5 Task-driven imaging of simulated hemorrhage around an embolization coil. The circular orbit
results in strong photon starvation artifacts/noise in proximity to the coil. The task-driven orbit mitigates
such effects and improves the conspicuity of simulated lesions near the coil.
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surrounding anatomy and the location of interest for the imaging
task(s) are necessary for trajectory optimization.

CBCT reconstructions at the stimulus exhibiting the greatest
increase in d 0 are shown in Figs. 7(d)–7(f), comparing the

results of a circular orbit with the results of the task-driven
orbits. The spherical stimulus is more conspicuous in the
task-driven images due to a reduction and/or reorientation of
streaking and blooming effects arising from the high-contrast

Fig. 6 Task-driven orbit applied on the CBCT test bench for visualization of hemorrhage posterior to a
coiled aneurysm. The preoperative scan shows details of the vessel and simulated spherical bleeds
adjacent to an aneurysm. Three stimulus locations were selected posterior to the aneurysm.
Following placement of the coil, a standard circular orbit exhibits severe shading and streaks that con-
found visualization about the embolization coil. The task-driven orbit yields improved visualization of
both the posterior bleed and stent and the residual contrast agent in the vasculature.

Fig. 7 Task-driven imaging of a simulated AVM at the skull base, lateral cranium, and crown using six
imaging tasks surrounding the AVM. Fluence maps in (a)–(c) show that the task-driven orbit seeks a path
yielding highest fluence through the location of interest. Reconstructed images in (d)–(f) show slices
through the spherical stimulus exhibiting the greatest increase in d 0.
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AVM embolization. Detectability for tasks at the skull base
improved on average by 20.2%, at the lateral cranium on
average by 28.6%, and at the crown on average by 7.0%.
The smaller increase in d 0 at the crown is due to the fact that
there is little room for improvement in a region for which rays
traversing the stimulus is already low.

4.4 Task-Driven Imaging on a Robotic C-Arm

The AVM model imaged on the robotic C-arm is shown in
Fig. 8. The task-driven trajectory used a maxi-min objective
over the six task locations, as shown in Fig. 8(a), giving an
increase in d 0 at all locations compared to a circular orbit.
The lowest increase in d 0 is 7.0%, and the greatest increase
is 13.0%, with an average increase of 10.3%. As illustrated
in Fig. 8(a), the task-driven orbit favors large, positive tilt
angles, with an excursion at θ ¼ 170 deg that provides higher
fidelity (lower attenuation) lateral views. Continuity of the scan
orbit is ensured by the underlying B-spline model, but there is
no constraint that the C-arm pose should match at the start
(θ ¼ 0 deg) and stop (θ ¼ 360 deg) locations, which explains
the observed discontinuity at the endpoints of the orbit.
As shown in Ref. 3, this increased flexibility can, in certain
cases, be advantageous in orbit design.

The air kerma was measured, as described in Sec. 3.1, for a
low-dose research protocol with a circular orbit and 360 projec-
tions over 200 deg, giving a value of Dw ∼ 9.0 mGy, recogniz-
ing that the dose for a task-driven scan may differ from that of
a circular scan due to the oblique views and differences in
attenuation by the table.

The images in Fig. 8(b) show a slight improvement in vis-
ibility of the acrylic spheres for the task-driven images in the
axial, sagittal, and coronal images.

5 Discussion
This work builds on the theoretical framework detailed in the
companion paper3 to investigate particular imaging scenarios
in interventional neuroradiology, e.g., detection of hemorrhage
in proximity to a coiled aneurysm and detection of untreated
regions within an AVM nidus. The results demonstrate improve-
ments in detectability index for task-driven orbits, with visible
improvements in both simulated and real CBCT images. The
optimized orbits generally sought the highest fidelity (lowest
attenuation) views and tended toward asymmetric vertices to
reduce data redundancy in a 360-deg orbit. In the task-driven
orbit, vertices separated by 180 deg are oblique relative to one
another so that a lower fidelity view in the first half of the orbit
may be compensated in the second half of the orbit. The task-
driven orbits result in an improved visualization of intracranial
hemorrhage due to reduced noise and improved sampling in the
region of interest and by the distribution of streak artifacts to
interfere less with detection of the stimuli. We have also inves-
tigated the effect of stimulus location and surrounding anatomy
on trajectory design for different sites within the cranium.
Our experimental studies suggest that the surrounding cranial
anatomy can affect the optimal orbit, showing the sensitivity
of the optimization to both the anatomy and the instrumentation
or implants.

In addition, this work demonstrated the operation of a clini-
cal robotic C-arm for task-driven imaging by moving it through
an optimal, noncircular orbit designed to improve the perfor-
mance of the imaging tasks. A complex, task-driven orbit
was demonstrated in a realistic clinical scenario, encompassing
calculation of the task-driven orbit from a prior CBCT image,
transferal of the trajectory to the robotic C-arm, acquisition of
a noncircular orbit, geometric calibration of the noncircular
orbit using a self-calibration technique, and reconstruction of
the 3-D image using model-based iterative reconstruction.

Fig. 8 An AVM imaged on the robotic C-arm using circular and task-driven trajectories. (a) Illustration of
the circular and task-driven orbits (green and pink, respectively). (b) CBCT reconstructions for each orbit,
showing improved visualization of low-contrast spheres (highlighted by black dashed circles). The task-
driven orbit exhibits reduced blurring of sphere edges, most noticeably in the axial and coronal planes.
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For this scenario, the effect of regularization in model-based
image reconstruction was apparent in the final images; because
the circular orbit involved lower fidelity projection data, the
regularization was increased accordingly, causing increased
blur of the sphere edges. The task-driven orbit, on the other
hand, gathered higher-fidelity projection data and was less
reliant on the regularization to mitigate noise, yielding clearer
delineation of the sphere edges. These results demonstrated
the first successful implementation of task-driven imaging on
a real clinical system for a semirealistic anatomical context and
imaging task.

The experiments demonstrated here perform optimization
over a small number of task functions limited to a small region
of the cranium using the maxi-min objective function, which
ensures that imaging performance is not sacrificed in some loca-
tions in favor of others, recognizing that there may very well be
situations for which a different multilocation objective is a better
choice. It may also be of interest to perform the optimization
over larger regions by including task locations farther from
the attenuating object to give more uniform image quality
over a larger volume of interest. In theory, one could define loca-
tions throughout the entire cranial vault as locations of interest to
generate an orbit that provides globally increased detectability.
In addition, imaging tasks of various frequency content and
contrast could be included in the optimization to allow further
uncertainty in the stimulus.

An important point of future work is the expansion of
parameters contained within the optimization to further
improve the orbit and overall imaging chain—for example,
scan technique factors (kV and mAs) and reconstruction
parameters (regularization constant β). Such a task-driven
CBCT scanning process presents an ambitious new paradigm
for prospective optimization of image quality and/or reduction
in the patient dose. For flexible imaging platforms such as
a robotic C-arm, additional DoFs could be incorporated in
defining the source–detector trajectory beyond the two ðθ;ϕÞ
investigated in the results reported above—for example, trans-
lation of the source and/or detector for nonisocentric orbits
with large FOV.

In this work, we imposed constraints on the tilt angle to con-
serve collision limits and required a 360 deg total orbit in all
cases. Changing or removing these constraints may be of inter-
est to optimal short-scan trajectories and extension of task-
driven imaging to tomosynthesis in which the optimal set of
limited projection data is solved for difficult imaging scenarios.
We also constrained B-spline knot locations to be equally
spaced along the trajectory, recognizing that this sampling inter-
val may not necessarily be optimal. This represents another
parameter that could be optimized, for example, by having
a higher sampling density of knots for views carrying spatial
frequency content consistent with the imaging task.

In the experiments presented, the anatomical model was an
exact representation of the object and did not consider potential
uncertainty. In realistic clinical scenarios, there may be extrane-
ous regions of high attenuation within the patient stemming
from surgical tools, contrast agent, unplanned embolization
sites, etc. that were not accounted for in the anatomical
model of the patient. This presents a limitation that could be
explored further, for example, by using probability distributions
for the patient model and parameters defining the imaging tasks.
This would result in a distribution of orbits from which a robust
estimate of the ensemble optimum could be chosen.

Another limitation of relying on an anatomical model is the
image quality of μprior. We envision that—depending on clinical
workflow—the source of μprior could be a diagnostic-quality
MDCT acquired prior to a procedure or a CBCT acquired at
the beginning of the procedure. The latter raises potential lim-
itations in instances of strong truncation, which introduces error
in the forward model in the optimization. T1- or T2-weighted
MRI is typically not a useful input model, but numerous meth-
ods for synthesizing a CT-like image (i.e., an image with inten-
sities proportional to electron density) from MRI have emerged
in the past decade.

The current work compares the image quality in task-driven
and conventional circular orbits under conditions of matched
bare-beam exposure. Dosimetry (e.g., Dw measurements) for
task-driven orbits introduces some complexity associated with
oblique projections and is difficult to prescribe for cases in
which the orbit is not known a priori. Such considerations
raise interesting future work in dosimetry for noncircular orbits,
including measurement and Monte Carlo methods.

Further testing of task-driven imaging methods would ben-
efit from a more streamlined interface for executing noncircular
orbits on the robotic C-arm. In the current work, noncircular
orbits were realized using a step-and-shoot method by directing
the robot to each vertex via an external workstation. Images
were acquired using a 2-D radiographic imaging protocol at
each vertex, collected individually, and processed offline. This
fairly time-consuming workflow is not suitable for clinical stud-
ies and would be greatly improved by an interface allowing 3-D
imaging protocols with orbit and vertex definition consistent
with smooth, continuous motion of the robot.

Overall, task-driven orbits appear to be of most benefit in
difficult imaging scenarios in which highly attenuating objects
in the FOV would cause strong streaks and other metal artifacts
that would confound visualization of nearby, low-contrast
objects. This is a common scenario in IGIs where CBCT images
taken during the procedure often include metal instrumentation,
and the regions of interest tend to be in proximity to such instru-
mentation. Application of task-driven imaging in scenarios
beyond neuroradiology may be of similar benefit—for example,
orthopedic imaging, dental imaging, and musculoskeletal imag-
ing, where metal implants are a common source of image arti-
facts and reduced image quality. Task-driven orbits offer the
potential to improve image quality in the interventional theater,
a new approach to dose reduction, and a potentially more
reliable check against complications in the operating room.
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