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Abstract

purpose of review—Review recent developments pertaining to the epidemiology, molecular 

pathogenesis, and sequelae of enterotoxigenic Escherichia coli (ETEC) infections in addition to 

discussion of challenges for vaccinology.

recent findings—ETEC are a major cause of diarrheal illness in resource poor areas of the 

world where they contribute to unacceptable morbidity and continued mortality particularly among 

young children; yet, precise epidemiologic estimates of their contribution to death and chronic 

disease have been difficult to obtain. Although most pathogenesis studies, and consequently 

vaccine development have focused intensively on canonical antigens, more recently identified 

molecules unique to the ETEC pathovar may inform our understanding of ETEC virulence, and 

the approach to broadly protective vaccines.

Summary

ETEC undeniably continue to have a substantial impact on global health, however further studies 

are needed to clarify the true impact of these infections, particularly in regions where access to 

care may be limited. Likewise, our present understanding of the relationship of ETEC infection to 

non-diarrheal sequelae is presently limited, and additional effort will be required to achieve a 

mechanistic understanding of these diseases and to fulfill Koch’s postulates on a molecular level. 

Precise elucidation of the role played by novel virulence factors, the global burden of acute illness, 

and the contribution of these pathogens and/or their toxins to non-diarrheal morbidity remain 

important imperatives.

Introduction

Enterotoxigenic E. coli (ETEC) are a pathogenic variant or pathovar of E. coli defined by 

production of diarrheagenic heat-labile (LT) and heat-stable (ST) enterotoxins. These 

bacteria, originally identified as a cause of cholera-like watery diarrhea nearly five decades 

ago(1, 2), have persisted as a major global health threat, particularly among young children 

in resource limited areas of the world. Here, it is estimated that children under the age of five 

suffer over a billion cases of diarrheal illness annually (3), with ETEC alone linked to 

hundreds of millions of episodes of diarrhea(4). While the overall mortality from diarrheal 

Corresponding author James M. Fleckenstein, Department of Medicine, Division of Infectious Diseases, Washington University 
School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri USA 63110, jflecken@wustl.edu, p 314-362-9218. 

HHS Public Access
Author manuscript
Curr Infect Dis Rep. Author manuscript; available in PMC 2020 March 04.

Published in final edited form as:
Curr Infect Dis Rep. ; 21(3): 9. doi:10.1007/s11908-019-0665-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diseases appears to have decreased considerably over the past several decades, ETEC 

remains a leading cause of death among young children(5, 6). The attack rate for ETEC 

illness appears to be highest during the first two years of life in endemic areas(7), with 

substantial declines thereafter suggesting that protective immunity develops following 

infection. Notably, these pathogens are thought to cause substantial disease as well as tens of 

thousands of deaths in older children, adolescents and adults in areas of high endemicity for 

diarrheal illness including Africa and Asia(8).

Challenges in defining the global burden of ETEC

Enterotoxigenic E. coli are ubiquitously distributed throughout all resource poor areas of the 

world. While ETEC are clearly recognized as a globally important cause of diarrheal illness, 

regional estimates of death and morbidity associated with ETEC and other enteric pathogens 

vary widely in recent large epidemiologic assessments in LMIC (4, 9, 10). An accurate 

global accounting of the diarrheal disease burden has generally been confounded by the fact 

that assessment of the attributable mortality and morbidity, particularly at the level of 

individual enteric pathogens, may be most difficult in regions with limited infrastructure and 

high endemicity(4, 11–13). Multiple factors contribute to the considerable variability in 

disease estimates reported in these studies including the definition of diarrhea, local disease 

prevalence, access to care, and methods used for detecting enteric pathogens(13–15). Indeed, 

use of molecular techniques such as quantitative PCR to attribute causation to individual 

pathovars lead to ~1.5-fold increase in ETEC pathogen-specific disease burden relative to 

asymptomatic control subjects (6). Neither the burden of diarrheal illness, or access to life-

saving treatment are equitably distributed, and progress in implementing preventative 

measures have lagged in some high prevalence areas(16). Despite apparent overall declines 

in diarrheal mortality, the incidence of diarrheal infections, and their associated 

morbidity(15, 17) has continued unabated.

ETEC is without question one of the most common causes of diarrheal illness in travelers 

and in military deployed to endemic areas(18–21). In 11 separate studies performed between 

2010–2016 ETEC was the most common pathogen identified in traveler’s diarrhea (TD) 

accounting for an average of 42 % and 28 % of cases in travelers to Latin America, and 

Asia, respectively(22).

Although ETEC infections in travelers are typically self-limited, antibiotics can hasten the 

resolution of symptoms. Unfortunately, these and other pathogens associated with TD have 

become increasingly resistant to antibiotics(23–25), and a number of recent studies have 

expressed concerns about the potential for acquisition and subsequent carriage(26) of 

multidrug-resistant Enterobacteriaceae including E. coli(27) during travel and through the 

selective pressure of antibiotics for treatment or prophylaxis.

Interestingly, with the advent of molecular testing, ETEC have increasingly been identified 

in both sporadic cases, and in diarrheal outbreaks in the United States. Nevertheless, as 

ETEC cannot be distinguished from commensal E. coli or other pathovars without molecular 

testing, they often go unrecognized unless there is a recognized cluster of cases that leads to 

testing in specialized public health laboratories(28–34). Notably, application of molecular 

Fleckenstein and Kuhlmann Page 2

Curr Infect Dis Rep. Author manuscript; available in PMC 2020 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



techniques to pathogen identification in diarrheal stool demonstrated that ETEC were as 

common as most other enteric bacterial pathogens(35), suggesting that these pathogens may 

be commonly missed by culture-dependent methodologies in common use in clinical 

microbiology laboratories.

ETEC molecular pathogenesis

Cellular action of enterotoxins

Genes encoding heat-labile and heat-stable toxins(36–40) are encoded on virulence 

plasmids, and were among the first bacterial virulence factors to be cloned, sequenced and 

characterized on a molecular level. Indeed, these early findings form the basis of the 

molecular detection assays presently in use (6). LT shares substantial homology with cholera 

toxin (CT) and like CT, LT is a heteroheximer comprised of a single A subunit and a 

pentameric B subunit. LT binds via the pentamer to GM-1 ganglioside on the surface of 

intestinal epithelial cells, followed by uptake of the toxin, and liberation of the biologically 

active A subunit. LT and CT belong to a large family of bacterial ADP-ribosylating toxins 

which act by transferring ADP-ribose to target substrate molecules(41). LT-A catalyzes the 

ADP-ribosylation of GSα leading to formation of an ADP-ribose-GSα-GTP complex that 

activates adenylate cyclase leading to formation of cAMP.

ST is found in two different forms: STh and STp. Both ST molecules are small cysteine-rich 

peptides of 18–19 amino acids that share homology with native endogenous peptides, 

guanylin and uroguanylin, and all four of these molecules bind to guanylate cyclase C (GC-

C ) on the surface of intestinal epithelia(42), leading to the production of cGMP.

Both cyclic nucleotides cAMP, and cGMP activate intracellular protein kinases that lead to 

phosphorylation and alteration of ion channels including the cystic fibrosis transmembrane 

regulator (CFTR) chloride channel, and inhibition of the Na+/H+ exchanger NHE3(43), the 

net effect of which is the accumulation of salt and water in the intestinal lumen leading to 

watery diarrhea.

ETEC secreting any one of the known toxins rely on chromosomally-encoded secretion 

systems for export. LT is secreted by a type 2 secretion system(44) similar to that 

responsible for export of CT by V. cholerae, while both STh and STp are secreted via the 

TolC outer membrane efflux protein(45, 46).

Colonization factors

ETEC express a broad array of plasmid encoded molecules or structures collectively known 

as colonization factors (CFs) that facilitate intestinal colonization. The first of these, CFA/I, 

was discovered shortly after the discovery of ETEC as a cause of diarrheal illness(47, 48). 

Since that time, more than 20 antigenically distinct CFs have been characterized, and novel 

CFs continue to emerge as whole genome sequencing (WGS) is applied to strains lacking 

previously characterized antigens(49). Although anywhere from 30–50% of isolates in prior 

studies lacked an identifiable CF(50, 51) using CF-specific monoclonal antibodies for 

antigen detection, WGS analysis of strains previously characterized as lacking a known CF 
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suggest that most of the corresponding genomes encode novel or previously uncharacterized 

CFs (52).

non-canonical virulence factors

Although most studies of ETEC pathogenesis to date have centered around the classical 

plasmid-encoded antigens that were discovered nearly five decades ago, more recent studies 

suggest that the molecular pathogenesis of these organisms is significantly more complex 

than had been previously appreciated. Interestingly, enthusiasm for targeting CFs in vaccines 

was engendered by examination of a plasmid cured strain of ETEC which had lost the CFA/I 

virulence plasmid, as this isolate, H10407-P, did not cause diarrhea in human volunteer 

challenge studies while the parent strain isolated from a case of cholera-like illness 

predictably caused voluminous diarrhea(53).

More recent studies have demonstrated however, that in addition to CFA/I, this large plasmid 

carries at least two additional virulence loci, initially discovered by transposon mutagenesis 

in a search for novel secreted antigens. The eatA gene encodes EatA(54), a member of the 

serine protease autotransporter of the Enterobacteriaceae (SPATE) family, while the etpBAC 
locus encodes the EtpA extracellular adhesin, the EtpB PORTA domain outer membrane 

transport protein, and the EtpC glycosyltransferase(55).

The secreted EatA passenger domain (~110 kD) contains a canonical serine protease motif 

and is highly immunogenic. Recent data suggests that EatA may enhance ETEC access to 

intestinal epithelial cells by degrading MUC2(56), the major mucin secreted by intestinal 

goblet cells. In addition to degradation of MUC2, EatA also degrades EtpA, potentially 

preventing the accumulation of the adhesin(57).

EtpA is a large (~170 kD) glycoprotein that is secreted by ETEC. Once secreted, EtpA 

appears to function as a molecular bridge connecting the ends of ETEC flagella(58) with N-

acetylgalactosamine (GalNAc) containing glycans expressed on intestinal mucosal 

surfaces(59). Although GalNAc is abundant in intestinal mucin(60), the EtpA lectin has the 

highest affinity for GalNAc presented as the terminal sugar on A blood group glycans. 

Because these glycans are expressed on intestinal epithelial cells, EtpA mediated 

interactions preferentially promote bacterial adhesion to brush border glycans and 

consequently toxin delivery to small intestinal enterocytes from A blood group individuals. 

These blood group dependent interactions may translate to the more severe disease among A 

blood group experimental human challenge subjects(61) and naturally infected children in 

endemic regions(7).

While all of the pathovar-specific virulence molecules for ETEC described to date are 

encoded on plasmids, it is apparent that these act in concert(62) with highly conserved 

chromosomally encoded features that are part of E. coli core genomes. These include type 1 

fimbriae(63), the EaeH adhesin(64), surface expressed autotransporter proteins(65) and the 

YghJ metalloprotease(66). The coordinate interaction of these core and pathovar-specific 

features ultimately drive efficient pathogen-host interactions required for optimal delivery of 

ETEC toxins(67). ETEC are typically identified by molecular testing for their toxins. 

Nevertheless, it is clear that the pathogen virulence traits and host features associated with 
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more severe cholera like disease(68) are still being defined(61). Presently available 

molecular tools, including whole genome sequencing of pathogens have also served to 

illustrate that ETEC is not a static pathovar and that these pathogens are likely part of a 

dynamic and ongoing admixture of potential virulence genes(69, 70).

Association of ETEC with post diarrheal sequelae

A number of chronic sequelae have been associated with diarrheal illness caused by a 

variety of enteropathogens including pathogenic E. coli. While studies are ongoing which 

attempt to link specific pathogens to these sequelae(71, 72), in general the pathogenesis of 

these post infectious phenomena remains very poorly understood.

Post-Infectious Irritable bowel syndrome

It is estimated that up to 3 % of individuals with traveler’s diarrhea have protracted 

symptoms that last more than one month (73), and that post-infectious IBS occurs in an 

estimated 10–30 % of patients following acute gastroenteritis(74–78). One study of more 

than 500 travelers in Israel documented a 5 fold increase in risk for IBS in those who 

developed diarrhea relative to those who remained asymptomatic(79). Given the 

predominance of enterotoxigenic E. coli as a cause of traveler’s diarrhea (TD) it is not 

altogether surprising that at least one study has linked ETEC to the development of IBS. 

Intriguingly, however the association was only with LT-producing ETEC, but not with other 

ETEC(80).

Although it has been suggested that post infectious IBS generally caries a better prognosis 

than idiopathic IBS(81, 82), this has not been validated in subsequent studies(83). Although 

IBS associated with diarrheal disease was associated with a higher frequency of diarrheal 

illness, long term prognosis did not differ significantly from idiopathic IBS in that less than 

half of patients in either group had resolution of symptoms.

Post-infectious malabsorption syndromes, growth stunting, and cognitive 

impairment;

Tropical Sprue and environmental enteric dysfunction

The first descriptions of individuals with malabsorption syndromes in the tropics date back 

more than 250 years (84), and Manson, working in China later referred to similar ailments as 

“tropical sprue”(85). Tropical sprue has since been synonymous with post-infectious 

malabsorption syndromes, potentially caused by a variety of pathogens(86), and is 

characterized by blunting of the small intestinal villi, persistent diarrhea, steatorrhea, and 

folate and B12 deficiency (87–89). Tropical sprue is clearly described as a sequela of 

diarrheal illness in travelers and expatriates(88, 89). Interestingly, studies of Peace Corps 

volunteers traveling to India or Pakistan in the 1970s, all of whom developed diarrhea during 

an 18–24 month tour (with 90% having had diarrhea ≥ monthly), demonstrated high 

incidence of weight loss, as well as abnormal jejunal architecture and malabsorption that 

reversed on return to the U.S. (90). Yet, despite the predominance of ETEC as a major cause 

of traveler’s diarrhea, and the repeated isolation of toxin-producing E. coli from small 
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intestinal aspirates of patients with tropical sprue (91–93), most of these studies were done 

prior the advent of molecular techniques in use today. Although a clinical response to 

antibiotics in patients with tropical sprue also supports a possible bacterial etiology(86, 94), 

molecular Koch’s postulates(95) clearly establishing a direct link between ETEC and the 

development of tropical sprue are presently lacking.

Some have speculated that tropical sprue may essentially represent part of a spectrum of 

illness similar to tropical enteropathy(96, 97) or environmental enteric dysfunction(98, 99) 

that is frequently associated with diarrheal pathogens among young children in developing 

countries that results in altered intestinal absorption, growth faltering, poor response to oral 

vaccines, and cognitive impairment (100–102). Observations of malnutrition or kwashiorkor 

following acute diarrheal illness in developing countries are longstanding(103). Cohort 

studies of children followed in highly endemic areas of Bangladesh demonstrated that they 

were more likely to be underweight(104) and/or growth stunted following diarrhea caused 

by ETEC(7). Conversely, malnourished children also appear to be at significantly higher risk 

for diarrheal illness(105), and for development of protracted diarrhea caused by ETEC(104). 

ETEC are frequently found in the stools of young children in the developing world without 

diarrhea, a phenomenon that has significantly confounded(11) recent estimates of morbidity 

and mortality attributable to these pathogens(4). Nevertheless some studies have suggested 

that carriage of ETEC and other pathogens may be sufficient to drive changes associated 

with enteropathy and malnutrition(106, 107). Likewise, recent studies suggest that cognitive 

impairment linked to diarrheal pathogens is associated with enteropathogen carriage even in 

the absence of diarrheal illness again suggesting perhaps that subclinical infections could 

contribute to enteropathy(108). Clearly, the relationship of malnutrition and stunting to 

infection with a number of enteropathogens is complex and the recent demonstration of 

small intestinal overgrowth with orpharyngeal microbiota may further complicate attempts 

to link these sequelae to specific pathogens(109). Notably, however these studies also 

demonstrated an increase in possible enteropathogenic genera defined as E. coli/Shigella by 

16S rRNA sequencing, suggesting that stunting represents the end result of a number of 

insults to small intestinal epithelia.

Challenges for ETEC vaccinology

ETEC vaccines in development have been reviewed extensively (110–112), therefore here 

we focus primarily on the challenges that need to be surmounted in vaccine development. 

Currently, there are no vaccines for ETEC that are licensed in the United States. Dukoral 

(Valvena, Sweden AB) is an oral, whole cell killed (WC) Vibrio cholera O1 vaccine 

containing recombinant cholera toxin B subunit (rBS), available in Canada and Sweden for 

prevention of traveler’s diarrhea, but not the U.S. In large scale field trials (involving nearly 

50,000 vaccinees) comparing WC to WC-rBS, recipients of the vaccine containing cholera 

toxin B subunit experienced substantial short-term protection with a protective efficacy, (PE) 

of 86% against severe, life-threatening diarrhea caused by LT ETEC(113). Although it was 

anticipated that this vaccine would afford some protection against LT-ETEC due to the 

considerable homology between cholera toxin and LT, the vaccine also offered short 

duration protection against ETEC that also produced ST (LT/ST, PE 73%). The short 

protection afforded by this vaccine led to several smaller studies in travelers that 
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subsequently demonstrated modest PE against ETEC diarrhea ranging from 28–50%(114–

116).

Clearly, additional effort will be needed to engender the broad-based, long-term protection 

needed for individuals in developing countries. One major hurdle that ETEC vaccines have 

had to overcome is the underlying plasticity of E. coli genomes(117). The promiscuous 

adaptation of colonization factors(50), with more than 20 antigenically distinct antigens 

described thus far(118), illustrates the need for a multivalent approach that can target the 

most highly conserved molecules. In an attempt to develop protective vaccines most 

formulations to reach clinical trials have embraced this approach by incorporating a 

combination of the most common CF/CS antigens with mutant versions of LT(119, 120).

Data emerging from genome analyses indicate that some of the more recently described 

virulence factors including EtpA and EatA are conserved across the ETEC pathovar(121, 

122), perhaps providing targets that could complement canonical approaches and broad-

based protection. Indeed, recent immunoproteome analysis of human volunteer samples 

using ETEC protein microarrays indicate that these highly immunogenic molecules are 

among a relatively small number of pathovar specific antigens recognized during infection 

(123), findings that can collectively direct antigen selection in rational vaccine design.

Given that toxoids afford substantial protection against other important toxigenic mucosal 

pathogens including pertussis(124, 125), combining highly conserved antigens with LT(126) 

and ST (42) toxoids in development could accelerate deployment of a broadly protective 

formulation(127–129). Mutant versions of LT such LT(R192G/L211A) or dmLT appear to 

be both safe and remarkably effective as mucosal adjuvants, and LT alone was shown 

previously to afford substantial protection against ETEC that produced only LT(130).

From a feasibility standpoint, a vaccine that targets other enteric pathogens in a combination 

vaccine, in particular Shigella, in addition to ETEC, may be required to secure the necessary 

development resources (13, 14, 131). ETEC and Shigella along with Campylobacter are 

responsible for the majority of serious bacterial diarrhea in LMIC regions. Therefore, 

polyvalent combination vaccines encompassing antigens from ETEC and other pathogens 

could yield a practical multi-pathogen diarrheal disease vaccine(131–134).

Summary

Enterotoxigenic E. coli are an important cause of diarrheal of diarrheal illness in LMIC areas 

of the world where they place a particular burden on the health of young children. 

Additional efforts to define the contribution of ETEC to non-diarrheal sequelae have 

increased in importance as deaths from acute diarrheal illness from all causes have declined 

over the past several decades while both the incidence of infectious diarrhea and morbidity 

associated with these pathogens continue unabated. Ongoing pathogenesis studies that 

elucidate the role of recently identified virulence molecules, and reexamine the cellular 

impact of the established toxins can inform and prioritize approaches to vaccine 

development for these pathogens of global importance.
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