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Summary

Little is known about the neural mechanisms that allow humans and animals to plan actions using 

knowledge of task contingencies. Emerging theories hypothesize that it involves the same 

hippocampal mechanisms that support self-localization and memory for locations. Yet, limited 

direct evidence supports the link between planning and the hippocampal place map. We addressed 

this by investigating model-based planning and place memory in healthy controls and epilepsy 

patients, treated using unilateral anterior temporal lobectomy with hippocampal resection. Both 

functions were impaired in the patient group. Specifically, the planning impairment was related to 

right hippocampal lesion size, controlling for overall lesion size. Furthermore, while planning and 

boundary-driven place memory co-varied in the control group, this relationship was attenuated in 

patients, consistent with both functions relying on the same structure in the healthy brain. These 

findings clarify both the neural mechanism of model-based planning and the scope of hippocampal 

contributions to behavior.

eTOC Blurb

Testing patients with hippocampal damage, Vikbladh et al. demonstrate that model-based planning 

and place memory rely on a common hippocampal substrate. The study bridges the reinforcement-

learning and spatial memory literatures to clarify the scope of hippocampal contributions to 

behavior.

Introduction

Using knowledge of task contingencies, humans and other animals can plan novel courses of 

action, such as trajectories through a maze. Although the neural substrates for such “model-

based” planning are poorly understood, this ability is often viewed as similar to other 

functions supported by the hippocampus, like representing and remembering locations in 

space. Both model-based planning (Tolman, 1948) and place memory (O’Keefe and Nadel, 

1978) are often described as requiring ‘cognitive maps’ of the environment or task structure, 

and are contrasted against habitual response-based behaviors that depend on the basal 

ganglia. Still, despite the commonalities, these functions are distinct in principle and it is 

unclear whether they actually share a common neural mechanism and, if so, what that 

mechanism is.

Research into hippocampal spatial cognition most clearly emphasizes localization: 

determining one’s position in allocentric space. This function is most famously exemplified 

by location-selective neural responses in the hippocampus (O’Keefe and Nadel, 1978) and 

behaviorally operationalized using spatial tasks such as the Morris Water Maze (MWM) 

(Morris et al., 1982), where rodents have to find and remember the location of a hidden 

platform in an open arena. This type of “place memory,” keyed to allocentric configurations 

of cues like boundaries, is distinguished from more landmark-based strategies, such as 

egocentric stimulus-response strategies (e.g., turn left or right) which rely more on the basal 

ganglia (McDonald and White, 1994, Packard and McGaugh, 1996, Pearce et al., 1998). An 
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analogous dissociation between hippocampal and basal ganglia-dependent memory has been 

demonstrated in humans using functional magnetic resonance imaging (fMRI) in virtual 

spatial tasks (Hartley et al., 2003, Iaria et al., 2003, Voermans et al., 2004, Doeller et al., 

2008).

By contrast, research into planning investigates how organisms use knowledge of task 

contingencies, like action outcomes and state transitions, to evaluate actions by mental 

simulation. Experiments probing such functions, including reward devaluation in operant 

lever pressing (Adams and Dickinson, 1981, Adams, 1982) and multi-step reinforcement 

learning (Gläscher et al., 2010, Daw et al., 2011), support a distinction between two classes 

of strategies – referred to as goal-directed or model-based planning vs. habitual or model-

free learning (Balleine and Dickinson, 1998, Daw et al., 2005). This distinction seems to 

parallel the place vs. response memory dichotomy from spatial cognition (Poldrack and 

Packard, 2003, Kosaki et al., 2018) and the related declarative vs. procedural memory 

distinction from the memory literature (Squire, 1992, Knowlton et al., 1996, Foerde and 

Shohamy, 2011, Shohamy and Daw, 2015). Indeed, model-free learning, like landmark-

based stimulus-response strategies in some spatial tasks, is well captured by theories of 

dopamine and the basal ganglia (Schultz et al., 1997, Bayer and Glimcher, 2005).

It is less clear what neural mechanisms are responsible for model-based planning. There are, 

however, a number of suggestive reasons to suspect it shares a common hippocampal 

substrate with place memory (Hirsch, 1974, Dickinson and Balleine, 1993, Eilan et al., 

1993, Johnson and Redish, 2007, Shohamy and Daw, 2015, Kumaran et al., 2016). 

Hippocampal function, of course, extends beyond spatial cognition to support declarative 

memory, and notably a role in encoding the relationships among environmental stimuli 

(Eichenbaum and Cohen, 2004, Davachi and Wagner, 2002, Kumaran et al., 2009, Schapiro 

et al., 2016, Boorman et al., 2016, Garvert et al., 2017). Knowing such relations is critical to 

building a model of task contingencies. Tests of relational encoding have even relied on 

tasks which are similar in logic to probes for model-based planning, like transitive inference 

or acquired equivalence (Dusek and Eichenbaum, 1997, Heckers et al., 2004, Shohamy and 

Wagner, 2008, Wimmer and Shohamy, 2012). Moreover, the hippocampus has been 

implicated in the ability to imagine or simulate future events, a function that may be critical 

to model-based planning (Hassabis et al., 2007, Addis et al., 2011). Spatial navigation 

studies have further demonstrated that the hippocampus and surrounding medial temporal 

areas, in addition to the current location, encode other variables that are relevant to planning, 

such as boundaries or the identity, direction, and distance to a goal (Spiers and Maguire, 

2007, Viard et al., 2011, Chadwick et al., 2015, Wikenheiser and Redish, 2015, Brown et al., 

2016, Kaplan et al., 2017).

Non-local place-cell firing, such as preplay of locations ahead of the animal, has also been 

proposed to support planning by mental simulation of candidate routes, drawing on a 

cognitive model or map of the world (Johnson and Redish, 2007, Pfeiffer and Foster, 2013, 

Shohamy and Daw, 2015, Mattar and Daw, 2017).

At the same time, there is a surprising lack of direct evidence for hippocampal involvement 

in model-based planning. For predominant rodent models of model-based behavior, 
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including outcome devaluation and contingency degradation in operant lever-pressing, 

hippocampal lesions have negligible effects (Corbit and Balleine, 2000, Corbit et al., 2002). 

One exception is a recent rodent study in which hippocampal lesions impaired model-based 

planning in a multistep decision task (Miller et al., 2017). However, the extensive training 

needed to teach animals such sequential decision tasks may elicit model-free strategies that 

only mimic the signatures of planning in more lightly trained humans (Akam et al., 2015, 

Economides et al., 2015). Even seemingly model-based rodent behavior (Miller et al., 2017) 

could thus rely on the hippocampus for different reasons. Finally, with few exceptions 

(Simon and Daw, 2011), little evidence links hippocampal activity in human neuroimaging, 

or rodent place cell preplay to planning in tasks specifically designed to identify choice 

strategies that require knowledge of task contingencies.

We therefore sought to directly test the hypotheses that model-based planning uses a 

hippocampal mechanism in humans, and whether this substrate is shared with boundary-

driven place memory. To this end, we studied the performance on a model-based planning 

task (Daw et al., 2011) and a spatial memory task (Doeller et al., 2008) in healthy controls 

and patients with medically intractable epilepsy, treated by unilateral anterior temporal 

lobectomy (ATL) with hippocampal resection. We investigated whether damage to the 

temporal lobe impaired model-based planning and boundary-driven place memory and how 

it affected the relationship between them. If the hippocampus is a common neural substrate 

for both functions, we expected hippocampal damage to impair performance on both tasks. 

Furthermore, a common substrate could lead to correlated performance across the tasks, but 

this correlation should itself be attenuated if that substrate is impaired by hippocampal 

damage. Finally, because the lesions also affected overlying cortex, we explored to what 

extent performance in either task was related specifically to the extent of damage to 

hippocampus on either side, controlling for the overall extent of the lesion.

Results

Participant Characteristics

We recruited 19 epilepsy patients, treated with unilateral anterior temporal lobectomy (ATL) 

i.e. surgical removal of the anterior temporal lobe on one side, and 19 healthy controls (see 

STAR Methods). Patients and controls displayed no significant group differences in IQ (t36= 

0.2200, p=0.8271), age (t36=−0.7760, p=0.4428) or number of males vs. females (z=

−0.3261, p=0.7444). For 10 out of 19 patients ATL was right lateralized. There were no 

significant differences between the right and left lateralized ATL groups in IQ (t= −0.5295, 

p= 0.6033), age (t17=1.0876, p=0.2919) or number of males vs. females (z=−0.6752, 

p=0.4995).

Individual lesion-masks, derived from post-surgical structural brain scans normalized to the 

1 mm MNI template (Figure 1 and STAR Methods) were used to estimate the standardized 

total lesion size of each patient. Total lesion size in the right lateralized ATL patient group 

(mean=65314 voxels, SE=2791 voxels) was found to be significantly larger (t17=−2.6103, 

p=0.0183) than in the left lateralized ATL patient group (mean=40536 voxel, SE=2296 

voxels).
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Each patient’s lesion mask was also compared to the Harvard-Oxford Brain Lexicon (p>.5) 

in order to estimate what percentage of the hippocampus had been resected (See STAR 

Methods). Mean hippocampal lesion size estimated in the right lateralized ATL patient 

group (mean=2791 voxels, SE=321 voxels) was not significantly larger (t17= −1.1124, p= 

0.2814) than in the left lateralized ATL patient group (mean=2296 voxels, SE=302 voxels). 

The mean hippocampal lesion sizes corresponded to 62.8% (SE=7.2) and 53.7% (SE=7.1) of 

the hippocampus resected, for the right and left ATL groups respectively,

Patients display shift from model-based to model-free strategy

Participants completed 200 trials of a two-step Markov decision task (Daw et al., 2011) 

designed to quantify the reliance on model-based and model-free strategies (see STAR 

Methods). The mean number of completed trials was 195.3 (SE=2.1) with no difference 

between control and patient groups (t38=1.2515, p= 0.2188). The mean number of rewards 

received was 107.9 (SE=2.6), also, with no significant difference between control or patient 

group (t36= −0.0399, p= 0.9684). In general, rewards in this task are by design highly 

stochastic and not sensitive to differences in strategy.

On each trial the participant first made a choice between two spaceships. One spaceship 

most commonly (p=.7) transitioned to the purple planet, and otherwise made a rare transition 

(p=.3) to the red planet. For the other spaceship, probabilities were reversed. The participant 

then made a choice between two planet-specific aliens, each associated with a unique, 

slowly drifting probability of reward (Figure 2).

Figure 3 shows markers of both as a function of group, estimated from a factorial logistic 

regression (Table S1), which predicts choosing the same spaceship as on the previous trial. 

Model-free learning is signaled by a main effect of reward, i.e. a tendency to repeat choosing 

the spaceship that led to reward, whereas in model-based learning, choice of spaceship is 

mediated by expectations about the planets to which it leads, indicated by an interaction 

between reward and whether a rare or common transition occurred on the last trial. If, for 

instance, a reward is received but following a rare transition, a model-based agent should be 

less likely to repeat the choice of spaceship on the next trial. The difference in these effects 

measures the relative strength of model-based vs model-free choice. The regression also 

controls for additional nuisance explanatory factors, age and IQ.

The expression of model-based vs model-free strategies differed significantly by group, with 

controls showing a relatively even mixture of strategies (similar to previous reports using 

this task) but patients skewed away from model-based planning toward model-free learning. 

The relative reliance on model-based over model-free strategies, calculated by taking the 

difference between these effects, differed significantly between groups, indicating a specific 

strategy change rather than a general impairment (z=2.028, p=0.043). This finding is 

consistent with our hypothesis that hippocampal damage in the ATL lesion group 

specifically affects the use of internal models or maps of task contingencies.

For simplicity, the above factorial analysis only considers the effect of the preceding trial’s 

events on each trial’s choice. To verify that our results were not dependent on this 

assumption, and in keeping with previous work (Daw et al., 2011) we repeated our analysis 
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(Table S2) by fitting participants’ choices with a full 6-parameter computational learning 

model (Daw et al., 2011, as modified by Gillan et al., 2016), which uses the full history of 

preceding rewards to predict each choice. The results recapitulate the findings from the 

regression: chiefly, a significant interaction of RL strategy and experimental group such that 

patients are biased away from model-based and towards model-free strategies (p=0.036). In 

addition, in this analysis (here going beyond the simpler regression analysis) the estimated 

strength of model-free learning is itself significantly higher in the patient group than the 

control group (p=0.043). The remaining parameters of the computational model did not 

differ significantly between groups.

Patients display impaired boundary-driven place memory

Participants completed a spatial task (Doeller et al., 2008) where on each of 64 trials they 

had navigate, in first person (Figure 4 Left), to indicate from memory the correct location of 

one of four objects in a virtual arena (see STAR Methods). The mean number of completed 

trials was 61.3 (SE=0.5) with no significant difference between control and patient group in 

number of completed trials (t36= −0.2882, p= 0.7749).

For two of the objects, correct locations were defined in relation to distal boundary cues 

around the arena, and for the other two objects correct locations were defined in relation to a 

landmark inside the arena (Figure 4 Middle). Trials were presented in four blocks consisting 

of 16 trials each. Within the blocks, the landmark location was fixed with respect to the 

boundary cues, but between the blocks, the landmark moved (Figure 4 Right). Participants 

were not instructed about the difference between landmark and boundary objects, or about 

the block-wise landmark movements.

The movements of the landmarks with respect to the boundary cues serve to dissociate 

spatial memory performance based on either type of cue. Given previous results (Pearce et 

al., 1998; Doeller et al., 2008), we hypothesized that hippocampal damage would 

preferentially impair reliance on boundary cues. Following Doeller et al. (2008), for each 

object, we therefore focused our analyses on the first trial following each of the three 

landmark movements (average total 11.4 trials per participant, due to missed trials). This is 

because these trials cleanly dissociate performance based on recalling the object’s location 

in the previous block relative to each type of cue (Figure 4 Middle). Note that since the 

boundary and landmark cues remain fixed with respect to each other within each block, 

performance on the remaining trials of each block are not as diagnostic of cue usage, since 

to the extent behavior is based on recalling the object’s most recent location with respect to 

either cue, this is equivalent for both cues (though see Figure S1 and S2 for analysis of 

remaining trials). Similarly, to avoid relying on the assumption that participants were able to 

learn to differentiate landmark from boundary objects (which is only possible following 

experience with at least one of the three landmark movements) we analyzed landmark and 

boundary error for all objects rather than differentiating by object type. We did, however, 

specify a regression model where we, for the critical trials following the landmark moves, 

additionally interacted group and distance error type by object type (Table S3) we did find a 

two-way interaction of object type by error type (F1, 782.4 = 10.527, p<0.001), indicating 

that participants were ultimately able to treat the two object types differently. However, we 
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found no significant three-way interaction of object type by error type by group (F1,782.1 = 0. 

2.6427, p= 0.1044), indicating that we did not detect a group difference in this respect.

On the critical trials, those following movement of the landmark, we quantified reliance on 

either cue type by computing distance errors dB and dL, respectively, between the chosen 

location and the correct locations as predicted by boundary cues and landmark cues, based 

on the previous block (Figure 4 Right). dB and dL thus inversely reflect performance with 

respect to boundary and landmark cues. To assess group differences we specified a 

regression model where the dependent variable, distance error (dB and dL for each trial) was 

regressed on the key explanatory variables lesion group (control vs. patient) and distance 

error type (dB or dL), while also controlling for additional nuisance explanatory factors, age 

and IQ.

We found a significant interaction of group by distance error type (F1,97.58=5.5080, 

p=0.021), indicating a difference between groups in their relative reliance on the two cue 

types. This effect mainly reflected the finding that patient’s dB was significantly higher, i.e. 

patients’ performance was less driven by boundary cues (F1,39.41=2.5102, p=0.016) (Figure 

5 and Table S4).

In a follow-up analysis, aimed at simplifying the design for later elaboration by assessing 

relative reliance on boundary vs. landmark cues using a single explanatory variable, we 

defined a relative measure of error: the ratio dB/(dL+dB), which measures whether 

participants were relatively biased toward using boundary cues over landmark cues. 

Regressing it on group (controlling for nuisance variables age and IQ), we again found that 

patients were significantly biased towards relying on boundary cues (F1,432=8.213, p=0.004) 

(Table S5). All these results are consistent with our prediction that anterior temporal lobe 

structures like the hippocampus preferentially support boundary- over landmark-driven 

memory.

Relationship between model-based planning and boundary-driven place memory

So far, we have shown impaired model-based planning and boundary-driven place memory 

in the patient group. Next, we examined the relationship between these two functions, first 

by investigating their baseline correlation in neurologically intact control participants. We 

did this by calculating the mean boundary distance error dB for each participant, and using it 

as a covariate in the logistic regression model of our decision task. This approach is 

analogous to estimating participant-by-participant scores for model-based planning from the 

logistic model, then correlating those with dB in a second step, but preferable because it 

takes account of statistical uncertainty about the participants’ planning scores in computing 

their relationship to dB, which the naive correlation neglects. IQ was also included as a 

nuisance covariate to account for task-general variation.

Figure 6 displays the results of this regression (Table S6), broken down by group. Boundary-

driven place memory significantly predicted a control participant’s use of a model-based 

strategy (z=6.6455, p= 0.001), consistent with the two measures sharing some underlying 

substrate.
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Next we engaged in a series of follow-up analyses to interrogate the specificity of this cross-

task relationship. First, we wished to examine whether the relationship was specific to 

model-based and boundary-driven task strategies, rather than general to both strategies tested 

in each task. We first verified that the increase in model-based planning associated with dB 

is significantly larger than any corresponding effect for model-free choice (z=2.137, 

p=0.033), or in other words that dB is associated with a relative increase in model-based 

relative to model-free choice. Next, we refined this analysis to also probe its specificity to 

boundary over landmark error. In a new regression model (Table S7), we replaced the 

boundary error dB with the relative error ratio dB/(dL+dB), which measures whether 

participants were relatively biased toward using boundary cues over landmark cues in the 

spatial task. In the control group, as with absolute boundary error, relative error was also 

significantly associated with relative increase in model-based, minus model-free, choice 

(z=2.069, p=0.039) (Table S7). Thus, in healthy controls there is a specific relationship 

between boundary-driven spatial memory and model-based choice, relative to their 

respective alternative strategies.

We next tested the specificity of the cross-task relationship to controls vs patients. We 

reasoned that if the relationship in the control group depends on the intact hippocampus 

(e.g., if it arose due to a common substrate located there), then over and above the effects on 

each task separately, their relationship would be affected by hippocampal/MTL damage. 

Therefore, we tested the null hypothesis that the relationship between the tasks is unaffected 

by ATL damage, the rejection of which would support the alternative hypothesis that the 

ATL does affect their relationship. The relationship between boundary-driven memory and 

model-based planning was indeed significantly attenuated in the patient group (z=2.137, 

p=0.032). Reflecting this attenuation, the patient group, considered alone, did not display a 

significantly detectable relationship between the two functions (z=0.156, p=0.875). 

Critically, this null result does not imply that these functions are unrelated in the patient 

group.

Finally, we repeated this analysis using the full computational learning model in place of the 

simpler regression-based index of learning (Table S8). Again, while controlling for IQ, we 

observed a strong positive correlation between model-based planning and place memory in 

the control group (p=0.030) but not the patient group (p= 0.803), although the group-wise 

interaction was merely trending in this version of the analysis (p=0.081).

Deficits are more robust for patients with right lateralized ATL

Based on previous literature, we next sought to examine to what extent the reported effects 

might be preferentially associated with lesions lateralized to one side or the other. Breaking 

down the data this way requires examining small subgroups (N=9 and 10), meaning that the 

key analyses comparing the two laterality groups against one another are underpowered 

relative to comparing either group to controls. Also, lesion laterality is correlated with 

overall lesion extent in our sample. Altogether, these analyses are fundamentally more 

exploratory and their results more tentative than those reported above.

With those caveats, we expected boundary-based memory, and spatial relations generally, to 

be more strongly associated with the right hippocampus (Burgess et al., 2002). For instance, 
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boundary-memory-related hippocampal activity in the previous fMRI study of the spatial 

memory task we used was right-lateralized (Doeller et al., 2008). It is less clear, a priori, 

how model-based planning might be lateralized.

Figure 7 shows decision task and spatial memory task performance with the patient data 

further subdivided by ATL laterality and the relationship between model-based planning and 

dB also broken down by laterality. In all three cases the differences between patients and 

controls (Figure 7) appeared to be driven by the right lesion patients, with the left lesion 

patients more similar to controls. This impression is only partly borne out by statistics, 

however (Tables S9, S10 and S11). In particular, in all three cases the right patients differ 

significantly from controls (model-based minus model-free: z=2.300, p= 0.022; dB minus 

dL: F1,92.22=4.464, p=0.034; across-task correlation between model-learning and boundary 

memory: z=2.550, p=0.011), whereas the left patient group did not differ from controls in 

any case (dB minus dL: F1,100.7=2.644, p=0.107; model-based minus model-free: z=1.001, 

p=0.317; across-task correlation between model-learning and boundary memory: z=0.470, 

p=0.639). However, in no case were the lesion groups significantly different from one 

another (dB minus dL: F1, 97.8.= 0.150, p= 0.699; model-based minus model-free: z=−1.149, 

p=0.251; across-task correlation between model-learning and boundary memory: z=1.552, 

p=0.121).

We also examined the breakdown, by lesion laterality, of the relationship between relative 

measures of planning and spatial memory, to account for alternative strategies. In the 

regression model specified earlier that included the relative error ratio dB/(dL+dB) as a 

covariate (Table S7), the association between relative preference for model-based (minus 

model-free) planning and the relative bias toward using boundary over landmark cues was 

larger in the left group than the right group (z=2.8082, p=0.005). An estimated effect in the 

same direction was also seen comparing the control with the right patient group, with the 

relationship being stronger in the control group, although it did not reach significance 

(z=1.567, p=0.117).

Thus, although noisy, there is a consistent suggestion across all three measures and different 

ways of examining the cross-task relationship that the results of this study were most robust 

in the right lesion group

Lesion-size in the right hippocampus predicts model-based planning deficits

One way to sharpen the foregoing analyses is to focus specifically on not just the side but the 

particular anatomical region hypothesized to underlie the effects: the hippocampus. 

Accordingly, we tested how performance on the tasks co-varied with estimated lesion size 

on the right and left hippocampus respectively. Hippocampal lesion size for each patient 

(Figure 1) was estimated by comparing the normalized anatomical masks to the Harvard-

Oxford Lexicon (p>.5) (see STAR Methods). Importantly, the ATL procedure involves a 

pattern of damage to numerous temporal lobe structures in addition to hippocampus, which 

means one should be highly cautious interpreting these results with respect to any particular 

structure. Although it is not practical to control for damage to many different MTL 

structures individually, we attempt to mitigate these concerns and focus on hippocampal 
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lesion size by controlling for the overall lesion size as a nuisance effect. The regression 

analyses also controlled for age and IQ.

We found, as can be seen in Figure 8 (Table S12), that model-based planning was 

significantly worse for larger right hippocampal lesions (z=2.831, p=0.005). Conversely, 

planning was not significantly related to the amount of hippocampal damage on the left 

hippocampus (z=1.062, p=0.288) and this difference between right and left effects was itself 

significant (z=2.508, p=0.012). These results indicate that the amount of damage to the right 

but not the left hippocampus is related to model-based deficits. However, in order to further 

test specificity, and ensure that the lesions in the right hippocampus are not simply causing 

general learning deficits, we also calculated the effect of each hemisphere’s hippocampal 

lesion size on the difference between model-based and model-free learning, as estimated by 

the logistic regression. As predicted, we found that right hippocampal lesion size was 

significantly related to a shift away from model-based towards a model-free strategy (z= 

2.984, p=0.003) and that this effect was significantly larger for right compared to left 

hippocampal lesions (z=−3.377, p<0.001).

For boundary memory, the effects of lesion size on performance were similar in magnitude 

and pattern, although not significant in either the right (F1,12.16=2.6082, p=0.1320) or the 

left patient group (F1,12.93=0.1204, p=0.7340) (Table S13). It should be noted that this 

analysis is based on many fewer trials than the sequential decision task analysis.

Discussion

Although extensive evidence indicates that the hippocampus supports localization in 

allocentric space, there is relatively little direct evidence for the hypothesis that the same 

mechanisms extend to model-based planning. We addressed this gap by testing model-based 

planning and place memory in patients with extensive hippocampal damage as a result of 

unilateral ATL lesions and matched, neurologically typical controls. Our results are 

consistent with the hypothesis that both and model-based planning and boundary-driven 

place memory share a common mechanism, which is affected in ATL patients and, more 

tentatively, associated with right hippocampus.

As predicted, ATL patients displayed significantly attenuated boundary-driven place 

memory in our MWM-like spatial memory task, alongside spared landmark-based memory. 

These results echo the dual-systems view of navigation supported both by rodent lesion 

(O'Keefe and Nadel, 1978, McDonald and White, 1994, Packard and McGaugh, 1996, 

Pearce et al., 1998) and human neuroimaging experiments (Hartley et al., 2003, Iaria et al., 

2003, Voermans et al., 2004, Doeller et al., 2008), whereby the hippocampus supports fast 

learning of allocentric spatial maps and the striatum facilitates slow, incremental 

associations between stimuli and responses. That said, one weakness of the current task in 

operationalizing the place vs. response distinction is that although use of boundary cues 

clearly exercises allocentric spatial localization, landmark usage imperfectly captures a 

striatal response system as classically envisioned (for instance, because some allocentric 

information is still needed to place objects correctly relative to the landmark). Nevertheless, 

the use of boundary cues to index hippocampal function (the measure most important to our 
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results) is unambiguous and well validated (Pearce et al., 1998, Doeller et al. 2008), even if 

the landmark foil imperfectly captures a hypothetical striatal contribution. Also, our distance 

error measures assess the tendency of participants to use either sort of cue. It cannot 

distinguish deficits in boundary-driven place memory per se from performance deficits such 

as reduced attention to these cues or a greater belief that landmarks predict object locations. 

All these mechanisms, though, are consistent with the broader perspective that anterior 

temporal lobe is ultimately involved in allocentric spatial localization based on 

configurations of cues.

The patients were also significantly biased away from using model-based planning and 

toward model-free habitual strategies in the two-step Markov decision task. This result 

provides causal evidence for the inference that temporal lobe structures support model-based 

planning, over and above their role in place memory. The appearance of a compensatory 

shift toward improved model-free learning, which is rarely reported with this task (Frank et 

al., 2004), indicates that behavior in the ATL patients is not simply noisier, and instead is 

consistent with models invoking multiple, potentially competing, reinforcement-learning 

systems in the human brain (Daw et al., 2005). Still, our results do not speak clearly to the 

perennial question whether the hippocampus plays a special role in such models for spatial 

vs. more abstract relational tasks. This is because although our planning task is structured 

like an abstract Markov decision process, its cover story, in terms of rocket trips to planets, 

might have elicited a spatial interpretation.

Our results also complement and extend previous research with rodents. Unit recording 

studies have shown results suggestive of hippocampal involvement in model-based planning, 

notably replay of forward trajectories in hippocampal place cells (Johnson and Redish, 2007, 

Pfeiffer and Foster, 2013). However, in contrast to our results, previous studies with place 

cell recordings have not yet shown behavioral evidence for a link between the hippocampus 

and the use of this knowledge in planning, nor do they provide evidence for a causal role of 

hippocampus in such a function. In these respects, our results more closely parallel a recent 

report of a related deficit in model-based learning in rodents during inactivation of the dorsal 

hippocampus, using an analogous two-stage Markov decision task (Miller et al., 2017). The 

targeting of the inactivation to hippocampus in the rodent study sharpens the anatomical 

specificity of the effect. Conversely, our human result clarifies the contribution of the 

damaged structure, because we know more about the computations underlying model-based 

behavior on this task in humans. In particular, in humans, but not yet rodents, model-based 

choices have been explicitly linked to prospective neural activity at decision time (Doll et 

al., 2015). This helps to rule out other potentially confounding strategies, such as that the 

apparently model-based choices in rodents are instead produced by some learned response 

switching rule contingent on events spanning multiple trials. It has been suggested that such 

model-free strategies might arise following overtraining of the sort used to teach animals this 

task (Akam et al., 2015, Economides et al., 2015); this might also implicate hippocampus for 

other, confounding reasons, such as its involvement in trace conditioning and latent states 

(Solomon et al., 1986, Büchel et al., 1999, Gershman et al., 2010). Our findings of a similar 

result in humans, without extensive training, thus help corroborate the interpretation of the 

rodent study as well.
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Comparing performance between our two tasks we also found that in healthy controls, 

boundary-driven place memory performance correlated with the extent of reliance on model-

based planning strategies. Importantly, this relationship was also significantly attenuated in 

the patient group, a result that suggests the lesion affects some common substrate for the 

tasks that is otherwise provided by the temporal lobes in the healthy brain. Following 

damage to this structure, however, the two tasks may be at least partly supported by 

differential compensatory mechanisms, leading to their de-correlation. These findings are 

consistent with the hypothesis that both model-based planning and place memory share a 

common mechanism, which is impaired in ATL patients.

It is surprising and interesting that the effects we report emerge following damage to only 

one lobe, as unilateral temporal lobe damage is generally known to produce rather subtle 

effects on cognition in humans (Spiers et al., 2001) and animals (van Praag et al., 1998), 

relative to the famously dramatic effects of bilateral lesion (e.g. Scoville and Milner, 1957). 

This may relate to our use of two behavioral tasks that are well attuned to temporal lobe 

function. However, there exist inherent and important caveats in drawing conclusions about 

the neural bases of effects from a study of this sort. It is possible that the observed effects are 

caused, at least in part, by damage to the brain, including the hemisphere not surgically 

altered, as a result of the chronic epilepsy that prompted the surgery. Indeed, as with all 

studies of temporal lobe function in patients with epilepsy, the possibility that impaired 

behavior and cognition in patients is due to a history of epilepsy rather than the surgical 

intervention per se must be taken into account.

For this reason and others, we must also be cautious about associating the damage with 

individual structures. Our analyses indicate that the size of lesion to the right hippocampus is 

significantly related to model-based planning deficits. Still, ATL lesions additionally affect a 

number of other regions including parahippocampal cortex, perirhinal cortex, and amygdala, 

which might also subserve these effects. Moreover, since the pattern of the lesions mainly 

varies in the extent that the temporal lobe has been removed in the dorsal direction, the 

patterns of damage to these structures tends to covary across individuals. Such collinearity 

makes it difficult to use variation across patients in damage to individual structures to fully 

disentangle their differential roles. We attempted to mitigate these issues by controlling for 

overall lesion size. Nevertheless, due to the very substantial analytic and interpretational 

issues, this anatomical specificity remains emphatically tentative.

These caveats aside, a final question posed by our results concerns how model-based 

planning and boundary-driven place memory actually relate to one another. In the spatial 

literature, the notion of a cognitive map primarily refers to place-selective hippocampal 

activity, which allows organisms to recognize and remember discrete locations in allocentric 

space. From the perspective of planning, a cognitive map goes beyond such a representation, 

but is built upon it: the map captures the relationships between locations, which can be used 

to evaluate candidate actions. This function fits well with the broader view of hippocampus 

supporting relational memory (Eichenbaum and Cohen, 2001, Davachi and Wagner, 2002, 

Kumaran et al., 2009, Schapiro et al., 2016, Boorman et al., 2016, Garvert et al., 2017) 

which indicate that the planning deficit in patients stems from hippocampal damage being 

accompanied by attenuation of the knowledge of relationships between actions and states. 

Vikbladh et al. Page 12

Neuron. Author manuscript; available in PMC 2020 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This view is also consistent with recent computational models describing how the 

hippocampus might serve model-based planning. In spatial tasks, sequential activations of 

place-selective cells are hypothesized to provide, not only a mnemonic function through 

supporting reactivation of previously traversed trajectories, but a planning function by 

generating novel place cell sequences, based on the learned contingencies between locations 

(Johnson and Redish, 2007, Pfeiffer and Foster, 2013, Mattar and Daw, 2018). The related 

successor representation model (Stachenfeld et al., 2017, Garvert et al., 2017) also focuses 

on learned relationships among locations, by proposing that place selectivity itself is built 

from experience of state transitions to reflect expectations about future locations. A key 

challenge for future work addressing these ideas will be studying hippocampal activity in 

tasks, like the planning one used here, which manipulate animals' experience of 

environmental relationships, to reveal how they leverage this knowledge to guide choice.

STAR Methods

CONTACT FOR RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Oliver M. Vikbladh (omv208@nyu.edu).

SUBJECT DETAILS

The NYU committee on activities involving human subjects approved this study, and all 

participants gave written informed consent before participation. 19 individuals, who had 

undergone unilateral anterior temporal lobectomy (ATL) for the treatment of intractable 

epilepsy, were recruited from the New York University (NYU) Patient Registry for the Study 

of Perception, Emotion and Cognition (PROSPEC). A clinical neuropsychologist (MRM or 

KB) conducted all standardized procedures for screening patients for inclusion into NYU 

PROSPEC. Patients were only selected for inclusion in the study if there was no evidence of 

global cognitive dysfunction as measured by a comprehensive neuropsychological 

evaluation, an FSIQ (Wechsler Adult Intelligence Scale-Fourth Edition (Wechsler, 2008) 

above 80, no evidence of diffuse atrophy on MRI (e.g., brain tumor or idiopathic epilepsy), 

or and no history of psychiatric or neurologic disease other than the primary etiology for the 

focal brain lesion. The patient participants had a mean age of 37.0 years (SE=1.5), mean IQ-

score of 109.7 (SE=2.8) and 10/9 male to female ratio. 19 healthy controls were also 

recruited from the local community through internet-based advertisement and gave consent 

to participate in the study. The control participants had a mean age of 39.3 years (SE=3.6), 

mean IQ-score of 108.7 (SE=3.6) and 11/8 male to female ratio.

METHOD DETAILS

MRI Scanning—When post-surgical structural brain scans (T1 MP-RAGE) were not 

available from the referring center, the Department of Radiology at the NYU School of 

Medicine, patients were imaged at the NYU Center for Brain Imaging on a 3-Tesla Siemens 

Allegra head-only MR scanner. Medical Center scans were obtained using 1.5 or 3-Tesla 

Siemens full-body MR scanners. Image acquisitions included a conventional three-plane 

localizer and two T1-weighted gradient-echo sequence (MP-RAGE) volumes (TE = 3.25 ms, 
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TR = 2530 ms, TI = 1.100 ms, flip angle=7° FOV=256 mm, voxel size=1×1×1.33 mm). 

Acquisition parameters were optimized for increased gray/white matter image contrast.

Task Order—On the day of testing, participants completed the two behavioral tasks 

separated by a short break. For all participants the sequential decision-making task was 

given first, followed by the spatial memory task. For the control participants the completion 

of the tasks was followed by the administration of the WAIS-IV. For the patient participants, 

the WAIS-IV had been completed during screening procedures for inclusion into PROSPEC.

Sequential-Decision Making Task—Participants completed 200 trials of a two-step 

Markov decision task designed to quantify the extent to which participants use a world 

model to prospectively evaluate actions (Daw et al., 2011). The task was framed as a game 

about mining for space treasure (Decker et al., 2016) and was presented with Matlab, using 

the Psychophysics Toolbox extensions (Kleiner et al., 2007). Each trial involved two choices 

in succession, followed by reward (Figure 2). Participants first made a choice between two 

actions, depicted as spaceships, randomly presented on the left and right. The choice 

resulted in a transition to one of two second-stage states (depicted as a red or purple planet). 

One spaceship most commonly (p=.7) transitioned to the purple planet, and otherwise made 

a rare transition (p=.3) to the red planet. For the other spaceship, probabilities were reversed. 

Participants were informed that each spaceship was more likely to go to a different planet 

but not which planet, nor the explicit transition probabilities.

Subsequently, participants made a choice between two actions depicted as a pair of aliens 

that were unique to the planet, randomly presented on the left and right. Each alien was 

associated with a probability of monetary reward (vs nothing) that slowly diffused over trials 

according to an independent random walk. Rewards were paid out at the end of the 

experiment at a rate of 15 cents per reward. The random change in the second-stage reward 

probabilities encouraged participants to adjust their choice preferences at both stages trial-

by-trial, so as to maximize payoffs. For each choice, participants had 3 seconds to respond; 

or else the trial was aborted with a time-out message.

Prior to the experiment, participants completed an extensive instructional tutorial. The 

tutorial included a 20-trial practice run, using a different set of visual stimuli (planets, 

spaceships, and aliens) but otherwise identical.

Spatial Memory Task—Each participant completed 64 trials of a spatial memory task, 

identical (with one exception, see below) to the task used by Doeller et al. (2008). On each 

trial, participants navigated a virtual reality arena using keyboard presses. UnrealEngine2 

Runtime software (Epic Games) was used to present a first-person perspective view of the 

arena. The virtual arena (Figure 2 Left) was bounded by a circular wall, contained a single 

intra-maze landmark in the form of a traffic cone, and was surrounded by distant cues 

(mountains, clouds, and the sun) projected at infinity. Both the boundary (wall) and 

landmark (cone) were rotationally symmetric, leaving the distal cues as the main source of 

orientation.
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At the beginning of each trial, a picture of one of four objects was presented on a grey 

background for 2 s. Participants were then placed in a random position within the arena 

without any objects, one-fifth of the radius from the center of the arena and facing a random 

direction (note that in Doeller et al. (2008) the starting radius was not restricted). 

Participants subsequently had 12 seconds to navigate to the correct location of the object as 

they remembered it from previous trials, and indicate that position by a button press. 

Following this button press, the object immediately appeared in its correct location. If no 

response had been made in 12 seconds, the object also appeared in its correct location 

automatically. Participants ended the trial by collecting the object in its correct location. A 

fixation cross was then presented for 2 s, before the start of the next trial.

The task consisted of 64 trials divided into 4 continuous blocks, each containing 4 pseudo-

randomized presentations of each of the 4 objects. Between blocks, the landmark moved in 

relation to the boundaries, such that there were four arena configurations, with the landmark 

roughly in the middle of the north, south, west, and east sectors of the arena, as defined by 

the distal cues (Figure 2 Middle). The order of arena configurations over blocks was 

counterbalanced across participants and experimental groups. Participants were not informed 

of the landmark movements prior to the experiment.

During the first block, the correct location of all objects was in rough proximity of the 

landmark. Two of the objects were ‘boundary objects’, for which the correct locations were 

fixed relative to the environmental boundaries across the whole experiment. The other two 

objects (unannounced to the participants) were ‘landmark objects,’ for which correct 

locations were fixed at a constant distance and direction to the intra-maze landmark even as 

the landmark moved.

The task probed for memory of correct object locations within the arena. Critically, by 

manipulating the landmark location in relation to the boundary and distal cues, the task 

distinguished whether participants stored place memory of allocentric location in relation to 

the boundary and distal cues, or by egocentric response memory in relation to individual 

landmarks (Figure 4 Right). The original study, using the same procedure during fMRI in 

healthy participants, showed that boundary-related and landmark-related memory correlated 

with activity in the right posterior hippocampus and striatum, respectively (Doeller et al 

2008).

Participants practiced in an unrelated virtual environment with a different set of object 

stimuli before performing the experiment. Additionally, before the first trial, participants 

collected each of the objects once in their correct block 1 locations.

QUANTIFICATION AND STATISTICAL ANALYSIS

MRI Image Processing—The high-resolution structural images from each patient were 

normalized to Montreal Neurological Institute (MNI) standard space using FSL FLIRT 

(FMRIB’s Linear Image Registration Tool; http://fsl.fmrib.ox.ac.uk/fsl) (Jenkinson and 

Smith, 2001). This consisted of a two-step procedure: First, using MRIcron (http://

www.mccauslandcenter.sc.edu/mricro/mricron/), a mask was drawn over the lesion and any 

craniotomy defect to prevent bias in the transformation, then masked voxels were assigned a 
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weight of “0” and ignored during a subsequent 12-parameter affine transformation of the 

lesioned brain to the standard MNI 1 mm reference volume (Mackey et al., 2016). The 

second step was manually tracing the lesions on individual slices of the patients’ brains 

overlaid on the standard MNI brain template, while crosschecking in all three planes. This 

tracing procedure produced a 3D mask with “1” indicating the presence of the lesion and “0” 

the presence of normal tissue. All patients had surgical lesions, which made the margins 

readily visible on the T1-weighted MRI images. In instances where there was uncertainty 

regarding the lesion margins, the treating neurosurgeon(s) and/or neuro-radiologists were 

consulted.

The lesion masks drawn in MNI space were subsequently overlaid on the Harvard-Oxford 

Structural Atlas) (Mazziotta et al., 2001) to estimate the extent of damage to the 

hippocampus (Figure 1). Hippocampal lesion size was calculated as the voxel overlap 

between the individual lesion masks and the hippocampus as defined by the Atlas with p>.5.

Sequential-Decision Making Task – Regression Analysis—The logic of the task 

exploits the noisy coupling between spaceships and planets to measure model-free learning - 

directly learning the value of spaceship choices vs. model-based planning - prospectively 

computing the value of the spaceship choices in terms of the planets they lead to.

For instance, consider on some trial choosing the spaceship that usually transitions to the 

purple planet, but instead being taken to the red planet (a “rare” transition). On the red planet 

your choice of alien is subsequently rewarded. In this situation model-free and model-based 

strategies make conflicting predictions about first-level choice behavior on the next trial. 

Participants using a model-free strategy will be more likely to choose the same spaceship on 

next trial, as it was rewarded. Conversely, participants using a model-based strategy will be 

more likely to switch and choose the other first-level action. This is because the model-based 

strategy computes the value of the spaceships using a cognitive map or model of their 

transition probabilities to the respective planets and the reward expected at the planets.

The goal of analysis was to estimate, for each participant, the extent to which they followed 

either strategy. Following previous work (Daw et al., 2011), we did this two ways, using a 

factorial logistic regression that captures the above qualitative logic, and fits of a more 

elaborate, but more assumption-laden, computational learning model.

We analyzed the first-level choices over spaceships using mixed-effects logistic regression 

(estimated using the fitglme function in Matlab). For each trial, the dependent variable 

(coded as stay with the same spaceship or switch, relative to the previous trial) was 

explained in terms of two events from the previous trial: whether reward was received, 

whether the planet encountered was reached following a common or rare transition given the 

spaceship chosen, and the interaction of these two factors. Our measure of model-free choice 

was the main effect of reward; our measure of model-based choice was the interaction of 

reward by transition type (common vs. rare). We further interacted the task factors with 

experimental group (lesion vs. control) as well as with two nuisance covariates, IQ and age, 

which have both been shown to affect behavior on this task (Gillan et al., 2016). The 
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intercept, and the regression coefficients for reward, transition, and their interaction were all 

taken as random effects (allowed to vary across participants).

To test our predictions about the relationship between reinforcement learning strategies 

employed in the decision-making task and place memory performance from the spatial 

memory task, we also specified a second regression model which interacted the task- and 

group-related factors (reward, common vs rare, group, and their interactions) with 

participant-specific average boundary distance error (dB). IQ was also included as a 

nuisance variable. The interactions with dB (up to four-way) measure the extent to which the 

various effects in the decision task systematically vary, across participants, with their spatial 

memory performance; i.e. this is analogous to extracting per-participant effect sizes from the 

decision model and correlating them with dB, but by estimating that correlation as an effect 

within the regressing defining those decision effects, accounts properly for uncertainty in the 

per-participant estimates. We also calculated a ratio dB/(dL+dB), where dL and dB where 

participant wise means of landmark and response distance error. This ratio was also used in 

a separate model interacted with task- and group-related factors.

Sequential-Decision Making Task – Computational Model Fit—The logistic 

regression analysis considers only the previous trial’s experience in predicting each choice; 

this simplification is motivated by a limiting argument over the learning rate parameter in a 

more elaborate RL model of the data (Daw et al., 2011). In order to ensure that our results 

were not affected by neglecting the effect of earlier trials, we repeated our analyses fitting 

each participant’s trial-by-trial choices with a full RL model in which each choice depends 

on values learned from all previous rewards (based on Daw et al., 2011, but using the 

version from Gillan et al. 2016). To estimate the model we utilized Markov Chain Monte 

Carlo (MCMC) methods, implemented in the Stan modeling language (Stan Development 

Team). Given an arbitrary generative model for data dependent on free parameters, the 

method permits samples to be drawn from the posterior probability distribution of parameter 

values, conditional on the observed data. From the quantiles of these distributions, we 

constructed confidence intervals – technically, credible intervals – over the likely values of 

the free parameters (Kruschke, 2010). We also report the posterior likelihood that the 

credible region contains zero, as one minus the size of the largest symmetric credible 

interval that excludes zero, which is roughly comparable to a two-sided P value.

For each model, we produced 4 chains of 10,000 samples each. The first 2500 samples from 

each chain were discarded to allow for equilibration. We verified the convergence of the 

chains by visual inspection, and additionally by computing for each parameter the ‘potential 

scale reduction factor’ R (Gelman and Rubin, 1992). For all parameters, we verified that 

R < 1.1, a range consistent with convergence (Gelman, Carlin, Stern, and Rubin, 2003).

We simultaneously estimated a model of all the data, incorporating individual parameters for 

each participant nested within a population-level model of the distribution of these 

parameters for each group.

At the participant level, the model is the same as the one used by Gillan et al. (2016), and 

full equations are presented there. In brief, the model learns from experience to predict 
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values Q(s,a) for the different actions a (rockets, aliens) in the different states (planets and 

the starting state). Different RL algorithms, model-based and model-free, produce different 

estimates Q at each step. First-level (spaceship) choices are determined by softmax choice, 

according to the weighted combination of model-based and model-free Q values, with 

weightings controlled by the free inverse temperature parameters βMB and βMF; a third 

parameter βstick captures any value-independent bias to stay or switch. Second-level (alien) 

choices are determined by a single set of Q values (since model-based and model-free 

evaluation coincide for terminal actions), with inverse temperature βstage2. The various Q 
values are updated according to delta rules with a free learning rate parameter α. Finally, the 

net model-free weighting βMF is itself derived from the weighted combination of Q values 

learned by two variants of TD learning, TD(0) and TD(1), with weights βMF0 and βMF1. 

(This is a minor change of variables with respect to the standard model-free TD(λ) 

algorithm used to hybridize these learning rules in Daw et al., 2011. Here the second 

temperature parameter replaces the eligibility trace parameter λ used in that model, which 

has the advantage of eliminating its 0,1 boundaries.) Following estimation, we reverse the 

change of variables by computing the net model-free weighting as βMF = βMF0
α + βMF1, 

where the α accounts for a difference in scaling between the two parameters (see Gillan et 

al., 2016). When making group comparisons, group estimates of βMF0 are scaled by the 

estimated α of the corresponding group.

The model thus estimates six free parameters per participant: α, βMB, βMF0, βMF1, βstick and 

βstage2, and our main hypotheses of interest concern group-wise differences in βMB and the 

net βMF.

Group-level Modeling and Estimation for Computational Model Fit—The model 

was specified hierarchically, so that the participant-specific parameter estimates were 

assumed to be drawn from a population-level distribution, separately for the patient and 

control groups. In particular, parameters θ s (a six-vector) for each participant s were 

modeled as drawn from a multivariate normal with mean μ  and covariance Σ. An additional 

vector μ les coded any difference in means for the lesion group (i.e., their mean was 

μ + μ les, allowing us to test for group differences in each parameter by comparing the 

corresponding element of μ les to zero). For the parameter α (which is constrained to 0,1), 

the corresponding element of θ s (which has infinite support) was transformed through the 

CDF of the standard normal.

We jointly estimated the posterior distribution over the individual and group-level 

parameters using MCMC as described above, which required specifying prior distributions 

(“hyper-priors”) on the parameters of the group level distributions. In particular, priors for 

the elements of μ  and μ les were individually normal (mean=0, SD=2), which is 

uninformative within the relevant range. The covariance Σ was specified (as recommended 

in the Stan documentation) as the product of a correlation matrix Ω (which had an LKJ prior 

with shape v =2; Lewandowski et al., 2009) scaled element wise by the outer product of a 
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scale vector τ  (whose elements were again taken as normal, mean=0, sd=2) with itself. This 

model also included individual IQ scores and age as covariates.

In order to test the interaction between performances in the two tasks, we then expressed a 

new model with group-specific parameter estimates (priors were normal distributions with 

mean = 0 and sd=1) that specified how individual z-scored participant-wise estimates of 

mean boundary distance error (dB) predicted the participant-specific parameter estimates. 

This model also included individual IQ scores as a covariate.

Spatial Memory Task Analysis—To measure memory of locations in relation to 

boundary and landmark cues, we focused our main analysis on the trials following the 

relative movement of the landmark in relation to the boundaries. Reliance on boundary cues 

was quantified by boundary distance error (dB), where dB was the distance from the 

response location to the correct location as defined by the boundary and distal cues in the 

previous block (Figure 4 Right). Reliance on landmark cues was quantified by landmark 

distance error (dL), where dL was the distance from the response location to the correct 

location as defined by the landmark, according to the position of the object relative to the 

landmark in the previous block, translated with respect to the landmark’s new position 

(Figure 4 Right). Low dB thus indicated greater reliance on boundary cues, which we 

interpret as ‘place memory’, and low dL indicated greater reliance on landmark cues, which 

we interpret as ‘response memory’.

To capture the repeated-measure structure of the data, all statistical analyses of performance 

in the task were done using mixed-effects linear regression, treating participant as a random 

factor. The models were estimated using the fitlme function in Matlab, with standard errors 

computed using the Satterthwaite approximation to the degrees of freedom when the model 

was linear, and Wald (asymptotic Gaussian) test for logistic models. The dependent variable, 

distance error (dB and dL respectively for each trial) was regressed on the key explanatory 

variables lesion group, distance error-type (dB or dL) and object type (boundary or 

landmark), while also controlling for additional nuisance explanatory factors, age and IQ.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

We tested planning and spatial memory in people with hippocampal damage and controls

Patients relied less on both model-based planning and allocentric spatial memory

The planning impairment was related to the amount of damage to right hippocampus

Planning and place memory covaried in controls, but were less related in patients
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Figure 1: Patient lesion masks.
Slices (y=82, 92, 102, 112, 122, 132) showing all 19 hand-drawn patient ATL lesion masks 

normalized to the MNI template. Heat maps indicate the number of masks overlapping at a 

given voxel. The hippocampus, as defined by Harvard-Oxford Lexicon (p>.5), is shown in 

blue.
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Figure 2: Two-step Markov Decision-Task.
On each trial the participants chose one of two first level actions (spaceships). One space 

ship transitions the participant to red planet with p=.7 while the other space ship transitions 

the participant to red planet with p=.3. Having transitioned to a second level state, 

participants chose between two second level actions (aliens) that were unique to each planet. 

Each alien was associated with a unique, slowly drifting, probability of receiving reward.
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Figure 3: Model-free and model-based regression weights for controls and patients.
Estimated with a logistic mixed-effects regression controlling for IQ and age. Error bars 

indicate standard error. The interaction of strategy (model-free vs. model-based) by group 

was significant (z=2.028, p=0.043).
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Figure 4. Left: Virtual arena as seen from first-person perspective.
Landmark (cone), arena boundary (wall) and distal cues (mountains) are visible. Middle: 
Spatial Task Block Structure, with virtual arena as seen as from above. Between blocks 

the landmark (cone) moved in relation to the boundaries (large purple circle). Correct 

location of the two boundary objects (OB1 and OB2) stayed constant with respect to 

boundaries across all blocks. Correct location of the two landmark objects (OL1 and OL2) 

stayed constant with respect to the landmark across all blocks. Right: Measuring reliance 
on boundary and landmark cues. The landmark (cone) moves (dotted line) in relation to 

boundaries (large purple circle) between blocks. In a trial preceding a landmark move, an 

example object’s correct location (purple o), i.e. where the object appears during feedback, 

Vikbladh et al. Page 28

Neuron. Author manuscript; available in PMC 2020 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is in close proximity to the landmark (shaded cone). If participants remember this object 

location in relation to boundaries and distal cues, the predicted object location in the next 

block would also be indicated by the purple o. Conversely, if participants learned the object 

location in relation to the landmark, the predicted object location after the landmark moves 

to its new location (filled coned) would be the orange o. On the trials following movement of 

the landmark we thus operationalize place memory by the boundary distance error (dB) 

between their response (cross) and the location predicted by boundaries and distal cues 

(purple o). Response memory is operationalized by the landmark distance error (dL) 

between their response (cross) and the location predicted by the landmark cue (orange o). 

Lower dB and dL thus means greater reliance on boundary and landmark cues, respectively.
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Figure 5: Boundary (dB) and response (dL) distance error (arbitrary units) for all objects on 
trials that follow movements of the landmark.
Estimated with a linear mixed-effects regression, controlling for IQ and age. Error bars 

indicate standard error. There was a significant group difference in boundary distance error 

(F1,39.41=2.510,p=0.016), but not landmark distance error (F1,85.3=0, p=0.9990) with a 

significant interaction of group by cue type (F1,97.58=5.508, p=0.021).
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Figure 6: Relationship between model-based planning and boundary distance error (arbitrary 
unit) in controls and patients.
Estimated with a logistic mixed-effects regression, controlling for IQ. Error bars indicate 

80% confidence intervals. Individual place memory performance is reflected by mean 

boundary distance error (dB) from the spatial task. Dots indicate estimates for individual 

participants, calculated from the mixed-effects logistic regression. The trend was significant 

in the control group (z=6.6455, p= 0.001), but not in the left patient group (z=0.156, 

p=0.875). The slope differed significantly between groups (z=2.137, p=0.032).
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Figure 7. Top: Model-free and model-based regression weights controls, right and left lateralized 
ATL patients.
Estimated with a logistic mixed-effects regression, controlling for IQ and age. Error bars 

indicate standard error. The difference in model-free vs. model-based was significantly 

different between the control and right patient group (z=2.295 p=0.022). Middle: Boundary 
(dB) and response (dL) distance error (arbitrary units) for controls and patients with 
right and left lateralized ATL. Estimated with a linear mixed-effects regression, 

controlling for IQ and age. Error bars indicate standard error. There was a significant 

difference between dB and dL when comparing the control and right patient group 
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(F1,92.22=4.463 p=0.034). Bottom: Relationship between model-based planning and 
boundary distance error (arbitrary unit) for controls and patients with right and left 
lateralized ATL. Estimated with a logistic mixed-effects regression, controlling for IQ. 

Error bars indicate 80% confidence intervals. Individual place memory performance is 

reflected by mean boundary distance error (dB) from the spatial task. Dots indicate estimates 

for individual participants, calculated from the mixed-effects logistic regression. The 

association differed significantly between the control and right patient group (z=2.5497, 

p=0.011).
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Figure 8: Relationships between model-based planning and hippocampal lesion size., for patients 
with right and left lateralized ATL.
Estimated with mixed-effects regressions, controlling for IQ, age, and total size of lesion. 

Error bars indicate 80% confidence intervals. Dots indicate estimates for individual 

participants, calculated from the mixed-effects logistic regression. There was a significant 

relationship in the right patient group (z=2.831, p=0.005) but not in the left patient group 

(z=1.062, p=0.2882), with a significant difference between the right and left patient groups 

(z=2.508, p=0.0122).
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB Mathworks https://www.mathworks.com

Psychophysics Toolbox Kleiner et al., 2007 http://psychtoolbox.org/

UnrealEngine2 Epic Games http://api.unrealengine.com/udk/Two/WebHome.html

Stan Modeling Language Stan Development Team https://mc-stan.org/

FSL FLIRT Jenkinson and Smith, 2001 http://fsl.fmrib.ox.ac.uk/fsl

MRIcron NITRC http://www.mccauslandcenter.sc.edu/mricro/mricron/

Neuron. Author manuscript; available in PMC 2020 May 08.

https://www.mathworks.com/
http://psychtoolbox.org/
http://api.unrealengine.com/udk/Two/WebHome.html
https://mc-stan.org/
http://fsl.fmrib.ox.ac.uk/fsl
http://www.mccauslandcenter.sc.edu/mricro/mricron/

	Summary
	eTOC Blurb
	Introduction
	Results
	Participant Characteristics
	Patients display shift from model-based to model-free strategy
	Patients display impaired boundary-driven place memory
	Relationship between model-based planning and boundary-driven place memory
	Deficits are more robust for patients with right lateralized ATL
	Lesion-size in the right hippocampus predicts model-based planning deficits

	Discussion
	STAR Methods
	CONTACT FOR RESOURCE SHARING
	SUBJECT DETAILS
	METHOD DETAILS
	MRI Scanning
	Task Order
	Sequential-Decision Making Task
	Spatial Memory Task

	QUANTIFICATION AND STATISTICAL ANALYSIS
	MRI Image Processing
	Sequential-Decision Making Task – Regression Analysis
	Sequential-Decision Making Task – Computational Model Fit
	Group-level Modeling and Estimation for Computational Model Fit
	Spatial Memory Task Analysis


	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4
	Figure 5:
	Figure 6:
	Figure 7
	Figure 8:
	Table T1

