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Observational study of long-
term persistent elevation of 
neurodegeneration markers after 
cardiac surgery
Matthew DiMeglio1, William Furey1, Jihane Hajj2, Jordan Lindekens3, Saumil Patel4, 
Michael Acker5, Joseph Bavaria5, Wilson Y. Szeto5, Pavan Atluri5, Margalit Haber6, 
Ramon Diaz-Arrastia6 & Krzysztof Laudanski   4

Surgery and anesthesia induce inflammatory changes in the central nervous system, which ultimately 
lead to neuronal damage concomitant with an increase in the level of neurodegeneration markers. 
Despite some experimental data showing prolonged activation of the immune system post-surgery, 
no study has determined the extent of long-term elevation of neurodegeneration markers. The 
purpose of this study was to investigate the serum levels of tau protein, ubiquitin carboxyl-terminal 
hydrolase L1 (UCH-L1), neurofilament light (NF-L), and glial fibrillary acidic protein (GFAP) after 
elective cardiac surgery with the implementation of cardiopulmonary bypass (CPB). The serum levels 
of these markers from 30 patients were compared longitudinally to the baseline (pre-surgery or t0), at 
24 hours (t+24), at 7 days (t+7d), and at 3 months (t+3m). The secondary outcome was the production of 
macrophage-colony stimulating factor (M-CSF) and tumor necrosis factor-α (TNF-α) in vitro by isolated 
monocytes in response to lipopolysaccharide (LPS) as the measure of immune system activation. The 
tertiary outcome was the serum level of C-reactive protein (CRP), serum amyloid P (SAP), and α-2-
macroglobulin (A2M). Serum levels of tau protein increased 24 hours after surgery (p = 0.0015) and 
remained elevated at 7 days (p = 0.0017) and three months (p = 0.036). Serum levels of UCH-L1 peaked 
at 24 hours (p = 0.00055) and normalized at 3 months. In vitro secretion of M-CSF by LPS-stimulated 
peripheral monocytes, but not TNFα, correlated highly (r = 0.58; p = 0.04) with persistent elevation 
of serum tau levels at 3 months. The serum CRP and SAP increases correlated with tau post-CPB levels 
significantly at 3 months. We demonstrated that elevation of serum tau levels at 24 hours, 7 days, and 3 
months after heart surgery is concomitant with some traits of inflammation after CPB. The elevation of 
tau several weeks into recovery is significantly longer than expected.

There is well-established evidence suggesting that surgery and anesthesia have a significant impact on imme-
diate neurocognitive recovery1–5. However, the connection between long-term cognitive functioning and the 
emergence of neurodegenerative disorders such as Alzheimer’s or Parkinson’s disease, and a para-surgical insult 
preempting the emergence of symptoms by a long period of time, has been debated2,4. This is of particular impor-
tance in elderly subjects6–11. The effect of para-surgical stress can amplify the detrimental effects of common 
elderly comorbidities such as malnutrition, deconditioning, and delirium4,10.

The exact mechanism of postoperative cognitive decline is not clear but exceeding the ability of allostatic 
coping to para-surgical stress will result in a new immunostasis9. In particular, the immune system may evolve 
towards prolonged subclinical activation12. A rise in neurodegeneration markers has been noted in cerebrospinal 
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fluid after cardiac surgery both with and without the implementation of cardiopulmonary bypass (CBP)13. 
Most studies focused on a short-term observation window not exceeding 72–96 hours. The development of 
ultra-sensitive techniques (SiMoA™, single molecule arrays, single molecule enzymatic assay) has enabled robust 
measurements of markers in blood. Blennow et al. (2011) showed that anesthesia and/or surgery result in a tem-
porary increase of tau protein and neurofilament light in the serum up to 96 hours after non-cardiac surgery14.

The underlying pathogenesis of cognitive dysfunction after surgery is debated and multifaced. The relationship 
between microemboli and cognitive dysfunction has been discussed15,16. Abnormalities in arterial and venous 
flow were suggested as well17. Some emphasized the effect of hypotension/hypoxia, hypercarbia, and anesthetic 
toxicity as contributing factors. However, neuroinflammation occupies the most dominant place in a discussion 
of postoperative cognitive decline3,11,18. Post-cardiac surgery inflammation leads to an elevation in free radicals, 
acute phase proteins, complement abnormalities, and cellular abnormalities3,18,19. The lack of correlation with the 
degree of surgical injury and postoperative decline suggests local inflammatory mechanisms16,20,21. Activation 
of native resident and brain-specific macrophages is often implicated as the driving force behind post-cardiac 
surgery neuronal damage19,22. Importantly, once activated, microglia can remain active for a prolonged time after 
surgery or any priming event22–24. Production of M-CSF is characteristic of atypically activated monocytes and 
microglia and has been linked to neurodegeneration22,25–28. Several functions and regulation characteristics of 
microglia are mimicked by peripheral blood monocytes (MO)27,29. Considering that obtaining tissue samples 
from a living donor is prohibitive, monitoring the function of blood MO allows for an estimation of the neuroin-
flammatory process23,30.

In this study, we investigated the dynamics of four markers of neurological injury after heart surgery involving 
cardiopulmonary bypass. Tau protein is a well-known marker associated with Alzheimer’s disease (AD)4,30,31. 
Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is neuron-specific and required for normal synaptic and 
cognitive function32. UCH-L1 gene is linked to AD, traumatic brain injury, PD, and an increase in extracellular 
fluid suggesting neuronal injury33. Neurofilament light (NF-L) is emerging as a serum marker of axonal neuro-
degeneration in AD and other neurodegenerative disorders, closely tracking the degree of tissue damage34,35. 
Glial fibrillary acidic protein (GFAP) is produced by glial cells and astrocytes after PAMP stimulation leading 
to neuronal tissue protection, but when apoptosis occurs GFAP leaks into CSF and blood36–39. Considering that 
neuroinflammation has been shown to be much more persistent after surgery, we hypothesized that markers of 
neuronal damage may persist as long as the neuroinflammation, or generalized inflammation, persists, well after 
72 hours post-surgery13,14.

Methods
Study sample.  The study was approved by the Institutional Review Board at the University of Pennsylvania 
(#815686). The study was performed by the ethical standards in the 1964 Declaration of Helsinki and its later 
amendments. All participants in the study provided written informed consent.

The study sample consisted of serial collection of blood samples before surgery (t0), and 24 hours (t+24h), 7 days 
(t+7d), and 3 months (t+3m) after the cardiac surgery. All patients were scheduled for elective heart surgery at two 
university hospitals in the northeast region of the United States. The average case volume exceeds 500 per year 
in either location. The demographic and entry characteristics are presented in Table 1. Five different surgeons 
participated in the study. Due to the high protocolization of pre-, intra- and post-operative care, the samples were 
relatively homogenous in terms of the use of non-steroidal inflammatory drugs, statins, and peri-surgical steroid 
dosing (Table 1).

We approached a total of 51 patients. 37 patients agreed to 3 months of follow up. A total of 30 patients were 
finally included in the analysis due to sample availability (all four time points were collected). The sample size was 
based on prior comparable studies14,39.

Measurement of neurodegeneration and inflammatory markers.  Blood samples were collected in 
EDTA tubes (BD Biosciences, San Jose, CA), at the times specified above. The samples were centrifuged within 
30 minutes of collection to separate serum from cellular components. Serum was subsequently stored at −80 °C 
until measurement was performed.

Plasma concentration of neurodegeneration markers was measured in the serum using the SiMoA neurology 
4-plex assay which measures GFAP, UCH-L1, total tau, and NF-L in a serum sample simultaneously. The lower 
limits of detection of the assay for GFAP, UCH-L1, total tau, and NF-L are 0.221 pg/ml, 1.74 pg/ml, 0.024 pg/ml,  
and 0.104 pg/ml, respectively. The inter-lot and inter-instrument coefficient of variation (CV) for each of the 
proteins were <5%. All samples were run in duplicates. The serum level of CRP, serum amyloid protein α, 
α-2-macroglobulin, and haptoglobin were measured using a multiplex kit (Millipore, Burlington MA). The sam-
ples were run on Flex 3D (Bio-Rad; Hercules CA). The detection limit is specified by the manufacturer.

Measurement of monocyte activation.  MOs were separated as described previously and stimulated for 
18 hours with lipopolysaccharide (LPS; [50 ng/ml]; Enzo Biological; Farmingdale NY)39. The TNFα (Biolegend, 
San Diego CA) and M-CSF (Thermofisher, New York NY) levels in supernatants were measured using the ELISA 
technique as described by the manufacturers.

Statistical analysis.  A preliminary power calculation was conducted based on prior studies investigating 
the changes in serum level of neuronal damage biomarkers and prolonged MO activation14,39. We needed to col-
lect data on 29 patients in order to achieve α of 0.05 and power of 0.85 with ~25% increase in serum tau level as 
compared to pre-surgical level assuming a bilateral null hypothesis.

Blood samples were taken at four different time points (baseline (t0), 24 hours (t+24h), 7 days (t+7d), and 3 
months (t+3m)) from patients undergoing heart surgery with the application of cardiopulmonary bypass. Data 
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were compared to the pre-CPB values of the same patient (t0). For some analysis, we used 25% elevation in serum 
level of neurodegeneration marker based on prior analysis and perception of significance14,33–35,39.

Mean (X) and standard deviation (SD) were used to present the parametric data while median (Me) and 75% 
upper and 25% lower quartile (IQ) were chosen for non-parametric data. The parametric nature of the data was 
confirmed by Levene and Shapiro-Wilk tests. t-tests for repetitive samples and Wilcoxon matched pair tests were 
conducted depending on the characteristics of the data. ANOVA or Kendall’s test was conducted for multiple 

Patient Characteristics (N = 30)

Age, mean(SD), years 67.9 (8.85)

Sex - Male no (% of total). 21.0 (70%)

BMI mean(SD) [kg/m²] 26.9 (5.3)

Anesthesia & Surgery Data

Duration of anesthesia; mean(SD) [min] 389.3 ± 89.07

Duration of surgery; mean(SD) [min] 272.1 ± 83.2

Duration of CBP, mean(SD) [min] 123.5 ± 56.5

Duration of X-clamp, mean(SD) [min] 80.2 ± 44.4

Coronary artery bypass surgery no. (% of total). 10 (33%)

Mitral valvuloplasty no. (%ana of total). 8 (26.7%)

Aortic valve replacement no. (% of total). 7 (23.3%)

Aortic aneurysm repair no. (% of total). 2 (6.7%)

Others, no (% of total). 3 (10%)

Opioid/Sedative Usage

During Surgery

   Morphine Equivalents, mean(SD) [mg] 120.3 ± 42.6

   Midazolam, mean(SD) [mg] 4.4 ± 2.1

   Corticosteroid Administration (% of all cases) 10

In 24 h post-surgery

   Morphine Equivalents, mean(SD) [mg] 32.4 ± 38.8

   Midazolam, mean(SD) [mg] 1.2 ± 4.3

   Aspirin Administration (% of all cases) 60

   Ketorolac Administration (% of all cases) 3.3

Transfusions

During surgery

   Packed Red Blood Cells, mean (CI95%) [ml] 0 (0;1200)

   Fresh Frozen Plasma, mean (CI95%) [ml] 0 (0;2250)

   Platelets, mean (CI95%) [ml] 0 (0;1032)

In 24 h post-surgery

   Packed Red Blood Cells, mean; (CI95%) [ml] 0 (0;600)

   Fresh Frozen Plasma, mean; (CI95%) [ml] 0 (0;900)

   Platelets, mean; (CI95%) [ml] 0 (0;900)

   Total Crystalloid during surgery[ml] 2500 (400;5200)

ICU stay

APACHE score at 1 h, mean(SD) 20.5 (4.8)

APACHE score at 24 h, mean(SD) 12.0 (4.9)

APACHE score at 48 h, mean(SD) 12.1 (5.7)

Comorbidities

Acute Coronary Syndrome 9 (30.0%)

Chronic heart failure 5 (16.7%)

Connective tissue disease (non-active) 5 (16.7%)

Peripheral vascular disease 3 (10.0%)

Cerebrovascular disease 4 (13.3%)

Type 2 diabetes 1 (3.3%)

Liver disease 0 (0%)

AIDS 0 (0%)

COPD 1 (3.3%)

Any tumor (last five years) 1 (3.3%)

Renal failure (moderate-severe) 5 (16.7%)

Table 1.  Clinical characteristics of the study sample.
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group comparisons with a Bonferroni statistic for post-hoc analysis. Most comparisons were done through longi-
tudinal analysis using patient pre-CPB values (t0) as the baseline unless otherwise specified. The data was flagged 
as significant if the one-tailed hypothesis test resulted in p < 0.05 on both ends of confidence intervals. Statistica 
v11.0 (Statistica, Tulsa, OK) was used for data analysis.

Results
Tau protein is significantly and persistently elevated after cardiac surgery with the application 
of cardiopulmonary bypass.  We analyzed the post-CPB dynamic of serum levels of four markers of neu-
rological injury. The distribution of serum levels of each neurodegeneration marker varied significantly at each 
time point (Fig. 1). Neither serum GFAP nor NF-L had a significant increase after surgery over time, though 
significant variability existed in the case of NF-L serum levels (Fig. 2A,B). UCH-L1 was elevated at 24 hours 
(UCH-L1t0 = 21.6 ± 13.8 CI95% 10.4;18.6 vs UCH-L1t24h = 53.5 ± 60.9 CI95% 47.6;84.8; p = 0.00055) but nor-
malized at the remaining points (Fig. 2C). Initial serum level of tau was low (taut0 = 1.6 ± 1.26 CI95% 1.0;1.7) 
but significantly increased at 24 hours after surgery (taut24h = 2.9 ± 2.14 CI95% 1.7;2.9; p = 0.0015) and remained 
elevated at both 7 days (taut7d = 2.8 ± 2.68 CI95% 2.14;3.65; p = 0.0017) and 3 months (taut7d = 2.1 ± 1.39 CI95% 
1.43;2.44; p = 0.036) (Fig. 2D). The different temporal characteristics of the markers can be appreciated more 
when a relative change to pre-CPB levels is visualized (Fig. 3). Among the individuals with an increase of serum 
tau protein over 25% from pre-CPB baseline at 3 months after surgery, only UCH-L1 was borderline co-elevated 
(tau[high] = 31.2 ± 32.2 vs. tau[low] = 10.86 ± 8.24; t = 1.93; p = 0.066) but the levels were highly varied.

The pre-CPB level of respective neurological markers correlated with increases at 3 months for GFAP (r = 0.40; 
p = 0.034), UCH-L1 (r = 0.49; p = 0.028) and tau protein (r = 0.49; p = 0.008) but not NF-L. Tau levels at 24 hours 
correlated with APACHE admission score (r = 0.41; p = 0.031), but other markers did not. The serum levels of 
neurological markers of injury did not significantly correlate with the Charlson Comorbidity Index, age, gender, 

Figure 1.  Distribution of biomarker levels at each time point.
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duration of anesthesia, surgical attending, cross-clamp and surgery length, or length of ICU or hospital stay (data 
not shown).

We correlated the circulating characteristics of MO with changes in tau protein at 3 months. Production of 
both cytokines was elevated at 3 months in response to LPS as compared to pre-CPB levels (data not shown). In 
vitro production of M-CSF in response to LPS correlated highly (r = 0.58; p = 0.04) with persistent elevation of 
serum tau levels. Production of TNFα in response to LPS showed non-significant correlations (r = 0.27; p = ns). 
Serum tau protein had a low but significant correlation with SAP (r = 0.40; p = 0.041; Fig. 4A) and CRP (r = 0.47; 
p = 0.01; Fig. 4B) but not α-2-macroglobulin (r = 0.072; p = 0.709; data not shown).

Discussion
This study demonstrated the persistence of elevations in serum tau levels at 24 hours, 7 days, and 3 months after 
cardiac surgery involving cardiopulmonary bypass. Elevation in S100 has been observed up to 72 hours post 
cardiac surgery while serum NF-L was elevated 48 hours after non-cardiac surgery13,14,33. NF-L was reported to be 
elevated up to 12 days after traumatic brain injury40. The increase in serum tau protein correlated with some acute 
phase proteins and production of M-CSF by isolated MO. None of the anesthesia, surgical, or recovery factors 
were related to the peak levels of studied neurological markers.

Figure 2.  Changes in neurodegeneration markers level after cardiac surgery with involvement of 
cardiopulmonary bypass (CPB). The level of NF-L and GFAP was highly variable (A,B). UCH-L1 showed 
significant increase in serum levels at 24 hours after surgery while tau protein levels remained elevated even 3 
months after CPB (C,D). *Denotes significance level below 0.05.

Figure 3.  The relative changes in serum level of neurodegeneration markers showed different time 
characteristics for each marker after cardiac surgery.
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Here, we demonstrated that serum tau remained elevated beyond 7 days after cardiac surgery. The degree of 
elevation in tau protein at three months correlated only with the pre-surgical tau levels. This observation corre-
lates well with other studies suggesting that only pre-existing brain vulnerability or degree of neuronal insult is 
related to POCD3,4,7,41,42. Other markers showed different time dynamics with UCH-L1 peaking at 24 hours. The 
sequential nature of the changes in serum levels of UCH-L1 and tau suggests that their leak into the bloodstream 
is a combination of a post-CPB increase in their tissue expression and ongoing damage to the neuronal tissues. 
NF-L release has been demonstrated previously to be elevated for prolonged periods of time14,34. We reported 
NF-L levels conservatively as non-significant due to the high variability in values, despite non-parametric analysis 
being borderline statistically significant.

GFAP, NF-L, and UCH-L1 are critical to withstand stress. Their cellular expression are reflective of 
post-DAMP or PAMP exposure while their release is reflective of ongoing tissue necrosis32,33,35,36. In contrast, 
tau protein is predominantly seen in patients with ongoing neurological disorders, suggesting that its release 
is a function of pre-surgical degenerative processes which is exacerbated by the stress related to cardiac sur-
gery1,20. Neuroinflammation has been frequently suggested as CPB-initiated, but once started it may become a 
self-sustained process22,24. Microglia are linked to post-surgical neuro-inflammation22,23,43. Though we did not 
study the microglia directly, we observed increased levels of M-CSF in peripheral blood monocytes and serum 
levels of SAP for over a 3-month period. Similar persistence in microglia activation has been reported after heart 
surgery and the inflammatory process24,39. Considering high homology between peripheral blood MO and micro-
glia, observed activation of peripheral MO reflect persistent microglia priming by CPB27,29. Also, M-CSF has been 
linked to a release of tau protein and cognitive decline28. However, it is also possible that the release of neurode-
generation markers triggered mononuclear cell activation and their migration inside the CNS25,26.

Our study could not account for some variables. Postoperative cardiology care may impact the recovery of 
patients. Statin and ASA in particular are related to modulation of the inflammatory responses33. On the other 
hand, cardiac care after surgery within our health system is highly standardized. Though we collected several 
anesthetic, operator and surgical factors; we did not quantify the frequency and degree of intraoperative hypo-
tension, hypoxemia, hyperoxia, and acidosis15,20,44–46. However, the definition of any of these complications is 
ambiguous and confusing at best47. Our study was not intended to formally investigate neurocognitive outcomes 
and link them to the elevation of the neurodegeneration markers. From all studied individuals, only three were 
in a rehabilitation center at 28 days after surgery, and all of them were home at 3 months. This suggests that they 
attained a functional level of recovery comparable to that before surgery. It is likely that post-CPB injury takes a 
significant amount of time to develop while our window of observation (3 months) was too short or too subtle 
to detect2,5–7,44.

In summary, our study showed the persistent elevation of serum tau protein after heart surgery with the 
implementation of cardiopulmonary bypass. The increase in serum tau protein correlated with production of 
M-CSF in response to LPS, a potential surrogate of microglial priming.

Conclusion
Our study aimed at understanding the dynamics of neuroinflammatory markers among individuals undergoing 
cardiac surgery with the application of CPB. Most importantly, our study demonstrated a delay in the peak time 
of neurodegeneration markers that could be a factor of CPB implementation. While the rise in neuronal injury 
markers has been well documented in prior studies, its elevation was not documented past 72 hours post-insult. 
This also calls for further investigations which could potentially involve a longitudinal follow up of individuals 
undergoing cardiac surgery with CPB.
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