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Eukaryotic cells organize their intracellular components into
organelles that can be membrane-bound or membraneless. A
large number of membraneless organelles, including nucleoli,
Cajal bodies, P-bodies, and stress granules, exist as liquid drop-
lets within the cell and arise from the condensation of cellular
material in a process termed liquid–liquid phase separation
(LLPS). Beyond a mere organizational tool, concentrating cellu-
lar components into membraneless organelles tunes biochemi-
cal reactions and improves cellular fitness during stress. In this
review, we provide an overview of the molecular underpinnings
of the formation and regulation of these membraneless organ-
elles. This molecular understanding explains emergent proper-
ties of these membraneless organelles and shines new light on
neurodegenerative diseases, which may originate from distur-
bances in LLPS and membraneless organelles.

In The Origin of Life, Soviet biochemist Alexander Oparin (1)
proposed that life originated as coacervate drops of organic
materials. The theory was grounded in the simple observation
that droplets of organic molecules coalesce spontaneously from
an otherwise dilute solution. Oparin’s coacervate idea eventu-
ally lost support because it failed to account for the membrane
barriers that all cells use to separate inside from out and that
eukaryotic cells use to further compartmentalize their cellular
biochemistry inside membrane-bound organelles (1). However,
cells also organize components into nonmembrane-bound
organelles, suggesting that Oparin’s coacervate idea deserves a
second look (2–4). In fact, many cellular organelles are conden-
sates of protein, nucleic acid, or both. In the nucleus, these
include nucleoli, Cajal bodies, nuclear speckles, paraspeckles,
histone–locus bodies, nuclear gems, and promyelocytic leuke-
mia (PML)2 bodies (5–7). The cytoplasm also contains several

membraneless organelles, including P-bodies, stress granules,
and germ granules (6, 8). In this review, we highlight advances
in our understanding of the molecular language of these mem-
braneless organelles with respect to how they form, what func-
tions they serve, what rules regulate them, and how their dys-
regulation may contribute to human disease.

Membraneless organelles are liquids that organize the
cell

Early evidence that membraneless organelles may behave as
liquids came from study of the Caenorhabditis elegans germ
granule, or P granule. P granules are collections of RNA and
RNA-binding proteins (RBPs) that accumulate on the posterior
side of the C. elegans zygote before the cell divides into a pos-
terior and anterior cell (9, 10). By fluorescently labeling a con-
stitutive P-granule protein, Hyman and co-workers (9) discov-
ered that P granules display liquid-like properties: the granules
are spherical, fuse with one another, deform under shear stress,
have fast internal rearrangement as assessed by recovery after
photobleaching, and drip off the surface of the nucleus like a
liquid. These observations led to the conclusion that P granules
are liquid droplets inside the cell that form via a process called
liquid–liquid phase separation (LLPS) (Fig. 1A). Burgeoning
evidence now suggests that a wide range of membraneless
structures–from ribonucleoprotein (RNP) granules like the
nucleolus to centrosomes and clusters of signaling molecules
on membranes (Fig. 1B)– exhibit liquid-like properties and
coalesce through an LLPS mechanism (11–18).

Phase separation and transition: liquids, gels, and crystals

The example of a salad dressing illustrates a simplified ver-
sion of LLPS (16). Even after a vigorous shake, the oil and water
in the salad dressing separate into a demixed two-phase system
that has a lower free energy than the fully mixed state. This type
of demixing is often called LLPS or a phase transition. Two
types of interactions contribute to the process: the homotypic
interactions between two molecules of oil or two molecules of
water and the heterotypic interactions between a water and oil
molecule. Entropy-driven mixing is disfavored due to the
higher strength of the homotypic interactions over the hetero-
typic interactions, which leads to a phase-separated two-state
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system of lower free energy (16, 19). This simple example of
phase separation extends more generally to solutions of poly-
mers, for which the physics of LLPS has been well described
(20 –23). As polymers, proteins and nucleic acids are subject to
the same underlying physics of LLPS (Fig. 1A) (19).

The concept that proteins undergo phase transitions is
not novel, especially not to protein crystallographers whose
work relies on coaxing proteins into crystals and who often
observe gels, aggregations, and phase separation of proteins
as side products of the crystallization process. As an exam-
ple, lysozyme undergoes LLPS, gelation, and crystallization
depending on certain conditions of temperature, salt concen-
tration, and protein concentration (24, 25). Wang et al. (26)
have more recently demonstrated that oligomeric peptides
undergo LLPS in vitro, with LLPS stimulated by low tempera-
ture, crowding agents such as polyethylene glycol (PEG), and
pH close to the pI. Together, the observations that both pep-
tides and well-folded globular proteins undergo liquid demix-
ing in vitro indicate that many if not all proteins can undergo
LLPS in conducive environmental conditions. It is not our
intention to trivialize the finding that proteins undergo LLPS
but rather to point out that this property extends to all proteins
and polymers in general. Indeed, RNAs can also phase separate
in vitro (27, 28). The critical question then is to understand
what makes phase separation biologically consequential and
achievable within the cellular environment, which we address
in the next two sections.

Biological consequences of phase separation

Life has harnessed the ability of proteins and other biopoly-
mers to phase separate into liquids and, in some cases, further
transition to gels and solids. We highlight some of the emergent
biological properties of phase-separated compartments below.

Organization

First, LLPS serves as a dynamic organizing principle that
enables cells to spatiotemporally compartmentalize specific

biochemistry, provide specific infrastructure, or both (29).
LLPS enables compartmentalization within a boundary while
still allowing for both internal rearrangement and diffusion of
biomolecules into and out of the compartment (29). For exam-
ple, neurons have postsynaptic densities (PSDs), which are pro-
tein-rich compartments on the intracellular side of the postsyn-
aptic plasma membrane that undergo remodeling in protein
composition in response to long-term potentiation, i.e. the per-
sistent strengthening of synapses due to recent patterns of
activity, which underlies learning and memory (30, 31). Zeng et
al. (30) propose a phase-separation model for the formation
and remodeling of PSDs with supporting evidence that two
major protein components of the PSD, SynGAP and PSD-95,
can form liquid droplets in vitro. Because neurons have large
surface areas, and consequently a large space for protein diffu-
sion, spatially confining molecules involved in the same bio-
chemical pathways poses a challenge. The formation of a PSD
through a phase-separation mechanism allows neurons to
locally concentrate protein without having to globally up-reg-
ulate protein synthesis.

In a similar vein, neuronal mRNP-granule assembly medi-
ated by LLPS of low-complexity domains of ataxin 2 is critical
for long-term memory formation in Drosophila (32, 33). This
mRNP-granule– driven mechanism of long-term plasticity dif-
fers from how another RBP, CPEB/Orb2, underlies long-term
potentiation. CPEB/Orb2 forms self-templating amyloid or
prion conformers that directly stimulate synaptic mRNA trans-
lation (34 –36). Thus, different RBPs may function via distinct
assembly mechanisms and different material phases to encode
long-term memories.

Neurons also utilize LLPS for functional purposes in the tight
but dynamic clustering of neurotransmitter-laden synaptic ves-
icles (SVs) at synapses (37). These clusters serve as a replenish-
able pool of SVs, which can be rapidly mobilized for exocytosis
during periods of heightened synaptic activity. It had remained
unclear how SVs could remain motile while being confined in

Figure 1. LLPS phase separation in vitro and in vivo. A, in a mixture of two types of molecules, LLPS leads to the formation of two phases akin to droplets of
oil appearing from a mixture of oil and water. Proteins can undergo a similar phase separation. In this case, the RBP FUS (olive circles) undergoes LLPS upon
cleavage of the maltose-binding protein (MBP) tag (cyan circles) and forms liquid droplets that are enriched in FUS compared with the surrounding medium. B,
LLPS underpins the biogenesis of a wide array of membraneless organelles within cells. Depicted here is a nonexhaustive list of these organelles.
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these clusters. It is now suggested that the physiological medi-
ator of SV clustering, synapsin, forms a liquid phase that con-
nects and recruits SVs in these clusters (37). This phase can be
rapidly dispersed via synapsin phosphorylation by calcium/
calmodulin-dependent protein kinase II (CaMKII) (37), which
would emancipate SVs en masse for rapid bursts of exocytosis
upon synaptic stimulation.

Phase separation is also implicated in transcription, both at
the level of transcriptional activation and repression. In Dro-
sophila polytene cells, for instance, the application of stresses
like heat shock induces formation of transcription puffs at the
sites of heat-shock protein (Hsp) genes where active transcrip-
tion occurs (38 –40). Studies on the recruitment of proteins,
such as RNA polymerase II and topoisomerase, to these sites led
Zobeck et al. (40) to originally propose a model in which a
porous transcription compartment forms at the Hsp gene loci.
In retrospect, these data support a phase-separation model for
transcriptional control (41). A phase-separation model has also
been proposed for the clustering of enhancer elements in DNA
together with coactivator proteins to form super enhancers
(42–45). Moreover, prion-like domains (PrLDs) of transcrip-
tion factors can cluster into dynamic hubs that stabilize DNA
binding and recruit chromatin-remodeling factors and RNA
polymerase II (46 –49). These hubs can manifest as phase-sep-
arated structures at elevated transcription-factor expression
levels (46 –49). LLPS also functions in transcriptional repres-
sion. For example, heterochromatin-mediated gene silencing is
driven via compartmentalization of condensed chromatin into
phase-separated liquid droplets formed by heterochromatin
protein 1� (50, 51). The involvement of phase separation in
regulating genome architecture and transcriptional output pro-
vides an exciting new avenue of research.

Finally, it is important to note that not all membraneless
organelles are fully liquids; many likely exist along a continuum
from more liquid-like to more gel-like, depending on the inter-
action strength of the constituents (29). On the gel side of the
spectrum is an additional example of an organizational role for
phase separation: the nuclear-pore complex (NPC). The central
channel of the NPC is a gel-like, phase-separated structure that
organizes the cell by acting as a barrier to diffusion of molecules
above 30 – 40 kDa into or out of the nucleus (52–54). Similar
selective-permeability barriers also form at the base of primary
cilia (55, 56). Thus, depending on the structural, functional, or
organizational need, the cell employs phase separation that
spans from more dynamic, liquid-like compartments to more
static, gel-like compartments. For example, globular S-crystal-
lin proteins of different sizes assemble into a gel of varying
density, thereby establishing a refractive-index gradient that
forms the parabolic lens of the squid eye (57). At the extreme
end of the spectrum, stable solid phases composed of amyloid
or prion conformers are utilized as with CPEB/Orb2 prions in
long-term potentiation (35, 36), Xvelo amyloids in Balbiani
bodies that specify germline identity (58), or transient Rim4
amyloids in meiotic control (59 –61).

Tuning reactions

Membraneless organelles likely tune and accelerate bio-
chemical reactions in vivo in a manner akin to how various

synthetic chemical reactions can be accelerated in microdrop-
lets in vitro (62). The specific microenvironment within the
liquid phase may serve to tune reaction rates and biochemical
activities inside membraneless organelles. Phase separation can
increase the concentration of certain molecules within dense
liquid condensates compared with the surrounding solution by
as much as 2 orders of magnitude (13). Given the dependence of
reaction rates on reactant concentrations, achieving a locally
high concentration of molecules due to phase separation can be
a biological mechanism for increasing reaction rates. This pre-
diction has been demonstrated in vitro by using an aqueous
two-phase system to concentrate RNA substrate into liquid
droplets and measuring the rate of substrate cleavage by a
ribozyme (63). Concentrating the RNA and ribozyme into
dense liquid droplets increased the reaction rate, suggesting
that coacervation inside a cell can have a similar effect (63).
Nuclear RNP granules called Cajal bodies provide one such in
vivo example. Cajal bodies are the sites of assembly of the
U4/U6�U5 tri-snRNP complex, which forms 11 times more effi-
ciently within Cajal bodies than in the surrounding nucleo-
plasm (64).

Beyond increasing reaction rates, LLPS may also tune a bio-
chemical process by acting as a filter to regulate which mole-
cules enter a liquid droplet and which molecules stay out. In
the case of Cajal bodies, only the fully formed U4/U6�U5 tri-
snRNP complex can leave the nuclear body, whereas the di-
snRNP complex cannot, which enables selective accumulation
of a reactant into a confined space (65). A model of membrane-
less organelles acting as a filter also applies to the partitioning of
RNA, which can tune the type of RNA chemistry that occurs in
the organelle. RNAs can influence the compositional specificity
of intracellular phases, with Langdon et al. (66) showing that
RNA structure and RNA–RNA interactions affect which RNAs
partition into liquid droplets. There is other evidence that the
length of RNA affects which RNAs become more concentrated
in liquid droplets, with longer RNAs partitioning more effec-
tively into the droplet phase (63). Meanwhile, Nott et al. (67)
have discovered that the microenvironment within phase-
separated liquid droplets favors melting of double-stranded
nucleic acids, stabilization of single-strand RNA secondary
structure, and partitioning of RNA into droplets based on the
stability of folding rather than the length (68). The discrepancy
in the length dependence of RNA may be because Nott et al.
(67) used liquid droplets arising from RBPs for their study,
whereas Strulson et al. (63) used an aqueous two-phase system.
Regardless, these findings present important steps toward
understanding the molecular determinants of phase separation,
some of which will be discussed later. The length dependence of
RNA partitioning into liquid droplets is particularly interesting
in light of data that local protein concentration and RNA length
alter the binding mode and RNA-remodeling activity of the
RNA helicases LAF-1 and DDX3X, both of which partition into
membraneless organelles in vivo (69). Examining how tuning
protein and RNA partitioning into membraneless organelles
can modulate organelle activity will be an important avenue of
further research.
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Cellular fitness

One of the emergent properties of LLPS is that it is environ-
mentally tunable and can thus play a cytoprotective role by
sensing and responding to stress (29). Protein folding within the
crowded intracellular environment is a challenge that is accen-
tuated by cellular stresses that may trigger protein misfolding
(35). The formation of reversible, phase-separated structures
enables cells to store their proteins and RNAs temporarily in a
manner that allows for their rapid recovery after dissipation of
the stress. In yeast, the prion protein, Sup35, acts as a pH sensor
and forms liquid condensates that undergo a phase transition to
gels in response to a stress-induced drop in cytoplasmic pH
(70). Upon stress, the formation of these Sup35 gels are protec-
tive and allow the yeast to better recover from the stress (70). In
a similar manner, yeast poly(A)-binding protein (Pab1) acts as a
sensor for pH and thermal stresses (71). In response to stress,
Pab1 releases its bound mRNAs (which enables translation of
key stress-response transcripts) and forms reversible, phase-
separated hydrogels (71). Complementary findings have been
made with another yeast RBP, Pub1 (72). Indeed, in response to
thermal stress, yeasts form assemblages of functional proteins
held together by weak interactions (73). These assemblages dis-
solve when the stress subsides, allowing for recovery of cellular
proteins without widespread misfolding or degradation (73).
Depending on the type of stress, assemblage dissolution can be
spontaneous or may require protein disaggregases, such as
Hsp104 (70, 72, 74). This controlled and reversible phase sepa-
ration of mature proteins likely represents an adaptive strategy
to stress, and it contrasts with previous models where stress-
induced aggregates were thought to be disordered accumula-
tions of misfolded, denatured proteins (73). Results in yeast also
extend to mammalian cells, where stress-induced stalling of
translation leads to the condensation of protein and RNA into
stress granules, which are dissolved after stress by Hsp110,
Hsp70, and Hsp40 (8, 75). Importantly, stress granules protect
against cellular senescence by sequestering PAI-1, an estab-
lished promoter of senescence (76). Overall, the ability of cells
to form assemblages of proteins and nucleic acids in response to
stress appears to be a conserved mechanism for cells to weather
deleterious conditions.

Molecular language of phase separation

Although many if not all proteins can undergo phase transi-
tions in vitro, not all proteins do so under physiological condi-
tions. One of the common features of proteins that undergo
phase separation in a biologically meaningful manner is the
presence of multivalent binding domains, which we discuss
below.

Multivalency: the key principle

The overarching property of proteins that phase separate is
multivalency in interacting partners. Li et al. demonstrated this
important principle by creating model proteins composed of
tandem repeats of either a ligand or its binding partner (13).
Combining repeats of an SH3 domain and its proline-rich motif
(PRM) binding partner readily initiated phase separation of the
proteins into liquid droplets (13). Increasing the interaction
strength of the proteins by increasing the number of repeats of

the two domains led to gelation of the liquid droplets (13). In
this system, it is specific multivalent protein–protein interac-
tions that drive phase separation.

Intrinsically disordered domains

Multivalency can arise from protein–protein interactions
between ordered domains (13). However, intrinsically-disor-
dered domains represent another method for achieving multi-
valency and often contain multiple short-linear motifs (SLiMs)
that mediate protein–protein interactions (13). Our under-
standing of the molecular determinants of phase transitions
increased with the discovery that biotinylated isoxasole revers-
ibly precipitates many components of RNP granules (77, 78).
The presence of low complexity PrLDs and RNA-recognition
motifs (RRMs) are common denominators for many of the pro-
teins precipitated, and in the case of TIA-1, the presence of a
PrLD was sufficient for precipitation (77). This observation
highlighted the importance of disordered regions, especially
PrLDs, as a determinant of phase separation.

PrLDs represent a subset of low-complexity domains that
show similar amino acid composition to yeast prion domains
(79 –85). These domains are enriched in polar, uncharged
amino acids, such as asparagine (Asn), glutamine (Gln), tyro-
sine (Tyr), and serine (Ser), as well as glycine (Gly) (79 –85).
Yeast prion domains enable certain yeast proteins such as
Sup35, Ure2, and Rnq1 to form prions, infectious proteins that
usually propagate via self-templating amyloid forms (34). Typ-
ically, amyloid fibrils are highly-stable cross–�-structures,
which represent an extreme form of phase separation to solid
phases that are difficult to reverse (35). Indeed, specialized pro-
tein disaggregases such as Hsp104 or Hsp110, Hsp70, and
Hsp40 are typically required to reverse their assembly (86 –89).
The precise features of prion domains and PrLDs that enable
them to form phase-separated liquids, gels, or prions are still
being delineated (79, 90 –95).

In humans, of the 240 genes that encode proteins with a
PrLD, a remarkable 72 encoded RBPs (84). These include FUS,
TDP-43, TAF15, EWSR1, hnRNPA1, hnRNPA2, and TIA-1,
which are components of RNP granules that are heavily impli-
cated in neurodegenerative disease (82) and are precipitated by
the biotinylated isoxasole compound (77). At high protein con-
centrations, the PrLD mediates the phase transition of FUS and
hnRNPA1 into hydrogels in vitro that bind the PrLD of other
RNP granule components. This observation led Kato et al. (77)
to posit that the ability of low-complexity domains to reversibly
form labile amyloid-like states lies at the crux of RNP granule
formation. Numerous studies have since corroborated the
importance of intrinsically-disordered domains, especially of
PrLDs, in the formation of phase-separated membraneless
organelles (11, 96 –103). In some cases, deletion of the PrLD of
key RBPs (e.g. TIA-1 and FUS) completely abrogates the forma-
tion of RNP granules (102, 104, 105). The natural tendency of
PrLDs to engage in promiscuous interactions and aggregation
promotes phase separation.

Evidence has also emerged that PrLDs may interact with
another type of intrinsically disordered domain, termed RGG
domains, to drive phase separation (106 –110). RGG domains
are enriched for arginine and glycine residues (111), can bind
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RNA and (112, 113), and are often found in RBPs with PrLDs
(85). Indeed, for FUS and related RBPs, LLPS is elicited effec-
tively via multivalent interactions between PrLD tyrosines and
RGG arginines (106 –108). These contacts are, in turn, modu-
lated by negatively charged residues (107). Glycines confer
liquidity, whereas glutamines and serines elicit gelation (107).
Thus, a precise molecular grammar for phase separation by
FUS and related RBPs begins to materialize (107).

RNA- and DNA-binding domains

RBPs present a special class of proteins that have biologically
relevant phase behaviors. Many membraneless organelles are
RNP granules that perform various RNA-processing activities,
consist of RBPs and RNA, and assemble via LLPS of RBPs and
RNA (8, 114). The RBPs within these granules contain multiple
multivalent domains, including RRMs and intrinsically-disor-
dered regions, which work together synergistically to modulate
phase behavior (106 –108, 110, 113, 115). For many of these
RBPs, the purified proteins alone undergo LLPS in vitro (11,
101, 116, 117), and the intrinsically-disordered regions of these
proteins are sufficient for droplet formation (99, 118). How-
ever, phase separation by the intrinsically-disordered region
alone can lack the additional levels of regulation that arise from
the presence additional multivalent domains like RRMs, RGG
domains, and oligomerization domains (106, 107, 110, 113, 115,
119). The ability to bind to multivalent scaffolds, such as DNA
and RNA, through RRMs, zinc fingers, or other nucleic acid–
binding domains presents another common characteristic of
proteins that undergo LLPS (29). The role of RNA as a scaffold
for phase separation is evident from studies on several RBPs,
including FUS (103) and Whi3, a fungal RBP that regulates
nuclear division and cell polarity (120). In vitro, RNAs that bind
Whi3 promote Whi3 phase separation (120) and encipher RNP

granule identity (66). Mutations in the Whi3 RRM that abro-
gate RNA binding also prevent RNA-stimulated phase transi-
tions of Whi3, suggesting that the RRM enables multiple Whi3
proteins to bind to the same RNA (120).

Oligomerization domains

Protein valency increases with the presence of oligomeriza-
tion domains. For example, TDP-43, a highly expressed nuclear
RBP, contains an N-terminal domain that forms oligomers
(117, 121–124). Recently, Wang et al. (117) established that
polymerization of the N-terminal domain promotes LLPS of
TDP-43 in vitro and that a single phosphomimetic mutant in
the N-terminal domain can reduce the propensity of TDP-43 to
phase separate. The ability of oligomerization domains to
nucleate a locally high concentration of a protein to promote
phase separation has been used by Shin et al. (125) to form
optogenetically controlled liquid droplets in vivo. Here, the
intrinsically-disordered regions of several RBPs are fused to
Cry2, a protein that oligomerizes in response to blue light (125).
Oligomerization of Cry2 elicited by blue light nucleates intra-
cellular droplets of the fusion proteins (125). Thus, environ-
mentally-responsive oligomerization domains can promote
phase separation in response to specific environmental cues.

Weak interactions maintain membraneless organelles in
phase

The essential physics of polymer phase separation are well-
established and help inform biological phase separation (19).
Concentrating molecules into a confined space can carry an
energetic cost. Numerous weak interactions work together to
counteract the entropic cost for phase separation as well the
interfacial free energy cost to create a phase boundary. The
molecular interactions found to be important in phase separa-

Figure 2. Critical interactions that drive LLPS. The interactions important in LLPS include cation–�, �–�, electrostatic, and transient cross–�-contacts.
Proteins that undergo LLPS are enriched for low-complexity disordered regions and multivalent domains. Polymers of ions, such as RNA, may additionally act
as scaffolds or molecular seeds for LLPS. The image for transient cross–�-contacts and LARKS comes from Hughes et al. (134).
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tion include �–� stacking, cation–� interactions, charge–
charge interactions, and transient cross–�-contacts (Fig. 2).

�–� interactions

Aromatic residues tyrosine (Tyr), tryptophan (Trp), and phe-
nylalanine (Phe) as well as residues arginine (Arg), glutamine
(Gln), asparagine (Asn), aspartic acid (Asp), and glutamic acid
(Gln) contain delocalized � electrons in their side chains that
can engage in �–� stacking (126). Work to understand the
sequence features of phase-separating proteins has uncovered
�–� interactions as critical (126). Using a comprehensive
mutagenesis approach, for example, Pak et al. (127) uncovered
that phase separation of nephrin intracellular domain depends
strongly on the presence of tyrosine residues, as missense muta-
tions to those residues reduced the ability of the protein to form
liquid droplets in cells. Similar observations have been made
with FUS and hnRNPA2 PrLDs in vitro (128, 129). The gel-like
state of the nuclear-pore complex results from �–� interac-
tions between phenylalanine residues in the FG repeats of
nucleoporins (52, 53). Remarkably, Vernon et al. (126) have
established that long-range �–� contact propensity alone can
identify the majority of known phase-separating proteins, high-
lighting the critical role for �–� interactions in LLPS.

Cation–� interactions

Cation–� interactions occur between the positively-charged
amino acids lysine and arginine and the electron-rich aromatic
groups. These interactions have also gained importance as driv-
ers of LLPS (106 –108, 110, 113). For the RNA-helicase, Ddx4,
cation–� interactions between FG and RG regions of the pro-
tein are drivers of protein phase separation in vitro and in vivo
(130). As a caveat, interaction between Phe and Arg could also
include �–� interactions, which likely contributed to the phase
separation of Ddx4 as well. Surprisingly, short-range cation–�
interactions are strong enough to overcome long-range
charge– charge repulsion and cause two positively charged
polymers to coacervate in vitro (131). It is also interesting to
note that an emergent property of multiple cation–� and �–�
interactions that drive LLPS is the ability to melt nucleic acid
duplexes by disrupting the �–� interactions that maintain
them (67).

Charge– charge neutralization

Charge– charge interactions have also gained attention as
important drivers of phase separation. Oppositely charged
polymers when brought together can coacervate into liquid
droplets through charge neutralization, as has been shown for
mixtures of RNA and cationic peptides (4, 132). Although this
may be a simplified artificial system, the phenomenon of
long-range charge– charge interactions driving phase sepa-
ration has also been observed in proteins in vitro and in vivo
(127, 130). An emerging theme is that it is not the presence of
charged residues per se, but rather the arrangement of
charged resides into stretches that is important for phase
separation (127, 130, 133). Working in this manner, clusters
of charged residues act akin to a multivalent domain to pro-
mote phase separation.

LARKs and transient cross–�-contacts

Several RBPs that undergo LLPS contain PrLDs. In the RBP
FUS, for example, a portion of the PrLD forms fibrils in which
stretches of amino acids assemble into intermolecular cross–�-
sheets as typically found in amyloid fibrils (35, 95). However,
recent crystallographic studies of fibrils formed by short segments
of the PrLDs of RBPs that undergo LLPS have uncovered a struc-
tural difference compared with classic amyloid fibrils (134–136).
Although amyloid fibrils tend to have cross–�-sheets with inter-
digitated amino acids that form steric zippers, fibrils formed by
short segments of PrLDs of RBPs that undergo LLPS have kinked
cross–�-sheets termed low-complexity aromatic–rich kinked seg-
ments (LARKS) (134). These kinked �-sheets are less thermody-
namically stable than the �-sheets of amyloid fibrils, and proteins
with PrLDs enriched for LARKS are found in membraneless
organelles that assemble via LLPS (134). Together, these findings
suggest that weak, transient cross–�-contacts might contribute to
LLPS, whereas more stable cross–�-contacts contribute to patho-
logical amyloidogenesis.

Modulators of phase separation

One of the fundamental principles of a living organism is the
ability to adapt to change. Cells must constantly tune their bio-
chemistry in response to environmental cues, and the mem-
braneless organelles within a cell must similarly be responsive
to intra- and extracellular signals. To regulate phase separation,
cells rely on several processes, including post-translational
modifications and seeding mechanisms.

Post-translational modification (PTMs)

PTMs provide cells with a powerful means to facilitate or
antagonize LLPS in response to environmental signals (137).
Indeed, SLiMs often mediate protein–protein interactions that
drive phase separation and are frequently the target of regula-
tion by PTMs (13, 138). PTMs can promote LLPS, for example,
by increasing the effective valency of a protein. In the nucleus,
there are membraneless organelles called PML bodies for which
the PML protein acts as a scaffold (Fig. 1B). SUMOylation of
PML is necessary for proper formation of PML bodies because
the small ubiquitin-like modifier acts as a binding ligand that
recruits other proteins, such as Daxx, into the membraneless
organelle (139 –141). Similarly, tyrosine phosphorylation of the
protein nephrin promotes phase separation of nephrin with the
protein NCK because the phosphotyrosine acts as a docking
site for NCK (13). Phosphorylation of serines in the FUS PrLD
fluidizes FUS droplets (115, 142). In contrast, phosphorylation
can promote the disruption of phases as with the dissolution of
Rim4 assemblies by Ime2 (60) and the dissolution of various
nuclear membraneless organelles during mitosis by Dyrk3
(143). Likewise, arginine methylation of the RBPs Ddx4,
hnRNPA2, and FUS can antagonize phase separation (99, 106,
113, 130). This list of PTMs involved in regulation of phase
transitions is by no means exhaustive, but rather represents a
small subset of the numerous ways that PTMs can modulate
LLPS.
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Seeding mechanisms

Phase transitions are concentration-dependent, switch-like
phenomena that occur above a certain local critical concentra-
tion (29). Cells can promote phase separation through a nucle-
ator that seeds a locally higher concentration of certain biomol-
ecules to reach the necessary critical concentration. We
highlight three nucleators below.

RNA—Although RBPs receive a lot of attention in phase sep-
aration, RNAs also play key roles in the formation of various
membraneless organelles (28, 66, 105). The function of several
membraneless organelles is intimately centered around RNA,
such as mRNA decay in P-bodies, mRNA storage in stress gran-
ules, mRNA splicing in nuclear speckles, and rRNA synthesis in
nucleoli (29). Indeed, RNA acts as a potent, biologically impor-
tant nucleator of intracellular phase separation. As examples,
RNA induces the phase separation of MEG-3, a key scaffold
protein in C. elegans P granules (144), stalling of translation
during a stress response exposes free mRNAs that act as nucle-
ators for stress granules (28, 145), and Men �/� noncoding (nc)
RNAs seed the formation of nuclear paraspeckles (146, 147). It
is noteworthy that there are many ncRNAs for which biological
functions are not well known (148). It is possible that these
RNAs regulate phase transition events in cells like the Men �/�
ncRNA.

Poly(ADP-ribose)—Besides RNA, the cell also utilizes RNA-
like molecules to seed LLPS. One such molecule is poly(ADP-
ribose) or PAR, a polymer of ADP-ribose monomers that is
involved in the formation of several stress-triggered mem-
braneless organelles (149). For example, PAR recruits tran-
scription factors to the heat-shock protein locus in Drosophila
polytene cells in response to heat shock and recruits DNA-
damage repair factors to sites of DNA damage (40, 101, 150,
151). PAR is both a PTM and an RNA-like scaffold that assem-
bles proteins, including FUS and TDP-43, into membraneless
organelles via LLPS (101, 150, 152). PAR is also found in stress
granules (153). Thus, PAR has a wide-reaching role in stress-
triggered assembly of membraneless organelles.

Polyphosphates—In light of the importance of charge–
charge interactions and polyanion seeds like RNA in the molec-
ular language of phase separation, it seems plausible that other
polyanions, like polyphosphates for instance, may also act as
seeds for phase separation. Cremers et al. (154) have previously
elucidated a role for polyphosphates in nucleating amyloids,
whereas Racki et al. (155) have uncovered that polyphosphate
granules assemble and coalesce during starvation-induced
stress response in bacteria. The uncanny similarity between
RNP-granule biogenesis via LLPS and polyphosphate granule
assembly merits further exploration.

Proline cis-trans isomerization

A key feature of several phase-separating RBPs is the pres-
ence of a PrLD (84), which can often contain sporadic proline
residues. Given that proline introduces kinks as a result of its
constrained side-chain geometry and given that PrLDs can
aggregate into amyloid fibrils, prolines may serve as a natural
fluidizer in PrLDs and other low-complexity domains to pre-
vent aberrant aggregation. Proline isomerization may then

serve a possible role in regulating phase transitions mediated
by low-complexity domains. Indeed, peptidyl-prolyl cis-trans
isomerases colocalize with stress granules, bind hydrogels
formed from the PrLDs of RBPs, and increase the solvent acces-
sibility of certain residues in hnRNPA2 as it assembles into
fibrils (129). Importantly, peptidyl-prolyl cis-trans isomerases
can also function as protein disaggregases with activity against
amyloid fibrils (87, 156). Thus, proline cis-trans isomerization
may be another mechanism by which cells modulate the phase
behavior of proteins.

Aberrant phase transitions in neurodegenerative
disease

A hallmark of several neurodegenerative diseases is aberrant
protein aggregation: �-synuclein aggregates in Parkinson’s dis-
ease, �-amyloid and tau in Alzheimer’s disease, and TDP-43
and the FET family of proteins in amyotrophic later sclerosis
(ALS) and frontotemporal dementia (FTD) (35). For RBPs
implicated in ALS and FTD, LLPS provides a mechanistic link
between normal cellular function and disease phenotypes.

FUS, TDP-43, hnRNPA1, and TIA-1 are among the RBPs
that are associated with ALS and FTD, which coalesce into
membraneless organelles called stress granules (83). Observa-
tions of purified FUS, hnRNPA1, and TIA-1 uncovered that
these proteins form dynamic liquid droplets in vitro that age
over time to become more static, fibrillar aggregates (11, 101,
157). The conversion from a liquid state to a more aggregated
state has been termed an aberrant phase transition (101). The
final aggregated form of the protein bears resemblance to the
protein aggregates found in patients with ALS and FTD. Fibril-
lization can occur within the condensed liquid state, suggesting
that concentrating these RBPs in membraneless organelles via
LLPS as part of normal cellular biology may have the inadvert-
ent effect of triggering protein aggregation over time (11, 83,
101). Indeed, data indicating that aggregates of these RBPs are
immunoreactive for other components of stress granules have
provided further evidence that stress granules may be the sites
of disease biogenesis (83, 158). However, RBPs with PrLDs that
are connected to neurodegenerative disease like FUS, TDP-43,
TAF15, EWSR1, and hnRNPA1 are intrinsically aggregation-
prone (81, 109, 159 –161). Thus, pathological aggregation could
also be nucleated outside of stress granules. Pathological aggre-
gates could then subsequently sequester specific stress-granule
proteins.

Additional evidence connecting aberrant phase transitions
to disease comes from analysis of mutations in these RBPs that
are associated with hereditary forms of neurodegenerative dis-
ease. Disease-associated mutations often exacerbate protein
aggregation and alter the phase behavior of the protein (11,
101). For example, ALS and multisystem proteinopathy-associ-
ated mutations in the PrLD of hnRNPA1 and hnRNPA2
increase the amyloidogenicity of these proteins and accelerate
fibrillization (81). Additionally, ALS-linked mutations in
TDP-43 also promote aggregation and alter TDP-43 phase
behavior (118, 152, 159). The PrLDs of these proteins normally
form weak, transient interactions with each other in the liquid
droplets. Some disease-associated mutations strengthen the
otherwise transient interactions in the PrLD, leading to less
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dynamic droplets and RNP granules (11, 101, 157, 162). Like-
wise, the arginine-rich, dipeptide-repeat proteins, poly-PR and
poly-GR, produced by repeat-associated non-ATG translation
of the ALS/FTD-causing G4C2 repeat expansion of C9orf72 also
accelerate aberrant phase transitions of RBPs with PrLDs and
perturb the phases of several membraneless organelles (132,
163–165). The protein aggregates seen in disease likely repre-
sent an end-stage phenotype after aberrant phase separation
has overwhelmed the cellular machinery that ordinarily
reverses these altered phases.

Counteracting neurodegenerative diseases with
knowledge of phase separation

Neurodegenerative disease like ALS and FTD lack effective
therapies. Recent advances in our understanding of how altered
phase transitions contribute to these disorders reveal several
potential avenues for therapeutics. These include: 1) enhancing
the machinery already present inside cells to maintain RNP-
granule dynamics; and 2) targeting the factors that recruit RBPs
to RNP granules.

The cell has various molecular chaperones that remodel mis-
folded proteins and contribute to proper maintenance of RNP-
granule dynamics (166). Nuclear-import receptors also act as
chaperones and dissolvases that reverse LLPS and aberrant
phase separation of their RBP cargo (106, 110, 113, 119). Small-
molecule enhancers of these chaperones or de novo– designed
chaperone proteins with enhanced disaggregase activity thus
present promising approaches for targeting neurodegenerative
diseases (86, 87, 167–170).

Targeting the specific factors that recruit neurodegenerative
disease-associated RBPs to RNP granules may also therapeuti-
cally tune the accumulation of these RBPs inside stress gran-
ules. For example, knockdown of Ataxin 2 reduces accumula-
tion of TDP-43 in stress granules and is therapeutic in reducing
TDP-43 toxicity in several ALS models (171, 172). Additionally,
molecular seeds like PAR that nucleate RNP granules can
also be potential targets for therapies using antisense oligo-
nucleotides or small-molecule inhibitors of specific PAR po-
lymerases (101, 152) or methods to up-regulate specific PAR
glycohydrolases (173). Finally, RNA acts both as a molecular
seed in the cell as well as a safeguard against aberrant phase
separation in the nucleus where RNA concentration is
higher (174). Thus, expression or delivery of certain RNAs
that are particularly effective at reducing aberrant protein
phase separation may also be therapeutic. Overall, we antic-
ipate that advances in our understanding the molecular lan-
guage of phase separation will ultimately enhance efforts to
combat neurodegenerative diseases
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