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ABSTRACT The streptococci are increasingly recognized as a core component of
the cystic fibrosis (CF) lung microbiome, yet the role that they play in CF lung dis-
ease is unclear. The presence of the Streptococcus milleri group (SMG; also known as
the anginosus group streptococci [AGS]) correlates with exacerbation when these
microbes are the predominant species in the lung. In contrast, microbiome studies
have indicated that an increased relative abundance of streptococci in the lung, in-
cluding members of the oral microflora, correlates with impacts on lung disease less
severe than those caused by other CF-associated microflora, indicating a complex
role for this genus in the context of CF. Recent findings suggest that streptococci in
the CF lung microenvironment may influence the growth and/or virulence of other
CF pathogens, as evidenced by increased virulence factor production by Pseudomo-
nas aeruginosa when grown in coculture with oral streptococci. Conversely, the pres-
ence of P. aeruginosa can enhance the growth of streptococci, including members of
the SMG, a phenomenon that could be exacerbated by the fact that streptococci are
not susceptible to some of the frontline antibiotics used to treat P. aeruginosa infec-
tions. Collectively, these studies indicate the necessity for further investigation into
the role of streptococci in the CF airway to determine how these microbes, alone or
via interactions with other CF-associated pathogens, might influence CF lung dis-
ease, for better or for worse. We also propose that the interactions of streptococci
with other CF pathogens is an ideal model to study clinically relevant microbial in-
teractions.

KEYWORDS Streptococcus, Streptococcus milleri group, cystic fibrosis, exacerbation,
polymicrobial

CYSTIC FIBROSIS LUNG INFECTIONS ARE POLYMICROBIAL AND INCLUDE
STREPTOCOCCI

Patients with cystic fibrosis (CF) have a thick, dehydrated mucus in their airway,
which reduces mucociliary clearance and allows for colonization by bacteria. The lung
infections in CF patients have been demonstrated to be polymicrobial and complex
(1–3), and correlations between certain lung pathogens and declining lung function
have been established, as demonstrated for Pseudomonas aeruginosa (4), despite the
current high level of antibiotic treatment and eradication strategies (5). Historically,
Streptococcus spp. isolated from airway-derived sputum samples were considered to be
oropharyngeal contaminants from the process of expectoration (6) or were not isolated
at all in clinical laboratories (7). However, streptococci are increasingly recognized as
members of the CF lung microbiome, having been cultured from and identified
through 16S rRNA gene sequencing of bacteria from literally thousands of sputum and
lavage samples (1, 2, 6–21). Streptococci have also been found in multiple protected
brush samples collected using a bronchoscope (11); using such protected brushes
greatly reduces the risk of contamination by oral flora and supports the conclusion that
these microbes are indeed found in the lower airway in patients with CF. As outlined
below, specialized medium is required for selecting for the growth of streptococci (7,
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22); thus, these organisms can often be missed during routine plating of clinical
samples from patients with CF (20). Finally, given the proximity of the oral cavity and
the lower airway, it is not surprising to find in the lung microbes that have been seeded
from the oral microbiota (23–28). Thus, the presence of Streptococcus in the CF airway
available to interact with P. aeruginosa and other organisms should not come as a
surprise.

Here, we explore the complex role of streptococci in CF-associated airway infections
(Fig. 1), in particular, the observation that streptococci, in a species-dependent fashion,
either may be associated with a lower disease burden than typical CF pathogens (2, 9,
12, 21, 29) or, alternatively, may contribute to pulmonary exacerbations (1, 6, 17–19).
We also review recent studies indicating that streptococci influence and can be
influenced by other microbes in the context of a polymicrobial infection in patients
with CF.

THE STREPTOCOCCUS MILLERI GROUP AS AN AGENT OF EXACERBATION

Several studies have characterized the correlation between the Streptococcus milleri
group (SMG; also known as the anginosus group streptococci [AGS]) and pulmonary
exacerbation (1, 7, 17, 30). These studies demonstrate that when SMG isolates are the
numerically dominant pathogens in the lung, patients experience an exacerbation that
will not resolve until the levels of SMG in the airway have been adequately reduced
through antibiotic therapy (1, 7, 17, 30). Utilizing a semiselective agar medium for the
detection of SMG isolates, Sibley and colleagues found that these microbes have an
overall prevalence of �40% in their patient population and that in cases where the
patient was hospitalized for a pulmonary exacerbation, SMG isolates were observed to
reach numerical dominance (�107 CFU per milliliter of sputum) (7). Another group
demonstrated that nalidixic acid and sulfamethazine (NAS) agar also allowed for
semiselective quantification of SMG isolates from sputum samples; these investigators
isolated members of the SMG from 6 out of 10 sputum samples from patients with CF
(31). Together, these data suggest that the members of the SMG represent significant
(and underappreciated) pathogens in CF airway disease. Furthermore, it was demon-
strated that in 73% and 29% of cases, respectively, P. aeruginosa and Staphylococcus
aureus were found to cocolonize patients with SMG isolates, indicating that this group
of streptococci may interact with these better-known CF pathogens, which could affect
the virulence and growth of these pathogens (7).

IS THERE A ROLE FOR TYPICAL PATHOGENIC STREPTOCOCCI IN CF?

As discussed above, streptococci found in the CF airway are typically associated with
the normal oral flora. However, recent studies suggest that pathogenic streptococci
that are typically associated with acute infections of the respiratory tract can also be
found in the airways of patients with CF. For example, 15 of 318 (4.7%) adults examined
in a retrospective study were culture positive for group A streptococcus (GAS) in their
sputum, and 7/15 of these patients were suffering from an exacerbation at the time of
the positive culture (32), analogous to the observations made for SMG isolates and
exacerbation described above. In another study, �20% of the 212 children with CF
studied were shown to have detectable Streptococcus pneumoniae when oropharyngeal
swab specimens were analyzed by quantitative PCR (33). Interestingly, Dennis and
colleagues showed that mucoid variants of S. pneumoniae could be isolated from the
sputum of children with CF (32). Furthermore, while these mucoid strains showed
reduced initial biofilm formation in vitro compared to nonmucoid strains, they even-
tually formed more robust biofilms and were more virulent in a mouse model of CF.
Thus, the phenotypes of the mucoid and nonmucoid S. pneumoniae strains mirror those
of mucoid and nonmucoid P. aeruginosa strains (34, 35). The mucoid phenotype of the
S. pneumoniae isolates was due to capsule production, and these strains switched to a
nonmucoid phenotype, likely via phase variation, while growing in biofilms (32, 36),
which is likely their mode of growth in the context of a CF-related infection.

The interaction of P. aeruginosa with S. pneumoniae has not been investigated in any
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FIG 1 Streptococci can influence cystic fibrosis airway disease. In CF airways, an increased prevalence of Streptococcus spp. has been correlated with clinical
stability, lower inflammation, and/or less severe outcomes (2, 9, 12, 21, 29), but it is unclear whether this is due to direct interactions with the airway epithelium,
is due to interactions between the streptococci and the microbiome that lead to increased microbial diversity, or is a consequence of less damage to the airway.
Oral streptococci have been demonstrated to inhibit P. aeruginosa growth through the production of hydrogen peroxide and reactive nitrogenous
intermediates (49–51); by inhibiting P. aeruginosa, streptococci could open up niches for increased microbial diversity in the lung, which could aid clinical
stability. In contrast, the predominance of SMG isolates has been correlated with exacerbation (1, 7, 17, 30), and this may be due to interactions between the
SMG isolates and other CF pathogens, such as P. aeruginosa. Oral streptococci have been demonstrated to stimulate increased virulence factor production by
P. aeruginosa (43–45) through AI-2 signaling (43), and this could lead to dysbiosis in the lung and eventual exacerbation. The arrows indicate both direct and
indirect interactions that are suggested to occur in the CF airways. The blue arrows indicate generally positive effects, the red arrows indicate generally negative
effects, and the arrows are labeled with the factors (if known) involved in these effects. (Copyright William Scavone, Kestrel Studio; reproduced with permission.)
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depth, but one report suggests a mechanism whereby P. aeruginosa could promote the
growth or persistence of S. pneumoniae. The LasB elastase, whose production can be
stimulated by streptococci, as discussed below, was shown using in vitro studies to
reduce the efficacy of alveolar macrophages in the clearing of both P. aeruginosa and
S. pneumoniae by �2-fold (37). These data indicated that P. aeruginosa could modify
the airway environment to promote the persistence of S. pneumoniae. Therefore, we
would suggest that future studies of P. aeruginosa-Streptococcus interactions include S.
pneumoniae and GAS, as well as the more typical CF-associated streptococcal species.

STREPTOCOCCI ARE ASSOCIATED WITH DISEASE LESS SEVERE THAN THAT
CAUSED BY TRADITIONAL CF PATHOGENS

Five recent microbiome studies indicate that colonization of the CF lung by oral
Streptococcus spp. may be associated with a disease burden less severe than that
associated with typical CF pathogens (2, 9, 12, 21, 29). Work from our group has
indicated that an increased relative abundance of members of the genus Streptococcus
in the lung, determined by 16S rRNA gene sequencing, correlates with clinical stability
(2). Another study utilizing 16S rRNA gene sequencing indicated that the relative
abundance of streptococci was significantly lower in patients with CF in the lowest
quartile of forced expiratory volume in 1 s (FEV1), a key marker of lung function (9); thus,
a low relative abundance of streptococci (and, thus, a higher abundance of other CF
pathogens) was associated with poorer lung function. It has also been demonstrated
that the relative abundance of streptococci increases when patients undergo CF
transmembrane conductance regulator modulation therapy with ivacaftor, while the
relative abundance of P. aeruginosa declines (12). In another study, Acosta et al.,
studying a cohort of 104 patients with CF (18 to 22 years of age), showed that higher
levels of Streptococcus were associated with a decreased likelihood of progressing to
early end-stage lung disease (29). Furthermore, Coburn et al., examining 269 patients
over a 60-year age range, identified Streptococcus spp. to be part of the core lung
microbiota (as assessed via analysis of sputum) and observed a greater degree of
dominance of this microbe in younger patients (�25 years of age) and in patients with
less severe disease (21). The same study (21) observed that when Streptococcus spp.
were the dominant organisms, the overall diversity of the community was higher in
both pediatric and adult patients. This finding is consistent with that of a longitudinal
study of CF patients reported by Zhao and colleagues, especially for the samples from
early in life (38). Finally, a separate study suggests that the increased diversity in CF
airway communities is beneficial, as low diversity was associated with more rapid lung
function decline over the following 5-year period (29). Perhaps this increased diversity
helps to mitigate airway damage directly or by effectively competing against traditional
CF pathogens, such as P. aeruginosa and Burkholderia. Zemanick et al. made similar
observations studying a cohort of 136 pediatric and 10 adult patients with CF across
several centers (14), with Streptococcus spp. more frequently being the dominant
microbe among younger subjects (�6 years old) and with an inverse correlation
between airway inflammation and the levels of Streptococcus spp. being seen. Impor-
tantly, these investigators found that the lower levels of inflammatory markers associ-
ated with the presence of Streptococcus spp. remained even after controlling for the
relative abundance of Pseudomonas via a multivariate regression analysis; we take these
data to suggest that it is the presence of Streptococcus, rather than the absence of
Pseudomonas, that is associated with lower airway inflammation. Finally, metatranscrip-
tome analysis of a cohort of patients with a second disease associated with chronic
bacterial infections in the airway, chronic obstructive pulmonary disease (COPD),
showed that while patients with the highest levels of transcriptionally active Strepto-
coccus spp. had higher bacterial loads, they were less likely to suffer from an exacer-
bation (39).

Together, these studies indicate that the streptococci may influence disease pro-
gression through a mechanism that is not currently understood but that may function
by mitigating airway inflammation and/or damage. While the absence of any bacterial

Minireview Journal of Bacteriology

June 2019 Volume 201 Issue 11 e00115-19 jb.asm.org 4

https://jb.asm.org


load in the airway is preferred, in the context of CF, these studies suggest in the
aggregate that if microbes are present, the less severe outcome appears to be associ-
ated with a high relative abundance of streptococci. It is important to note here that we
are not suggesting that Streptococcus should be considered a probiotic to treat
CF-associated infections but, rather, are noting several clinical associations wherein
patients with higher loads of Streptococcus, compared to other CF pathogens’ appear
to have a lower disease burden. Of course, given the correlative nature of these studies,
it is equally possible that less damaged lungs better support high relative levels of
streptococci.

The data presented here, combined with the findings of the studies described above
associating SMG members and S. pneumoniae with exacerbation in CF, paint a com-
plicated picture of how streptococci impact the host in the context of polymicrobial CF
airway infections. Thus, in future studies examining the role of Streptococcus spp. in
disease, it is of utmost importance to understand which species of these microbes are
present, as well as which strains should be chosen for use in any in vitro studies.

STREPTOCOCCI IMPACT P. AERUGINOSA BIOLOGY, VIABILITY, AND VIRULENCE
FACTOR PRODUCTION

There are several studies that indicate that streptococci and P. aeruginosa cocolonize
patients with CF (1, 2, 8, 10), and thus, these microbes likely have the opportunity to
interact with each other, although additional studies are sorely needed to understand
the extent of this interaction in vivo. In vitro studies also demonstrate that mucoid and
nonmucoid P. aeruginosa strains can coaggregate with a variety of oral streptococci (40,
41), and our group showed that P. aeruginosa and Streptococcus constellatus could form
mixed microcolonies in vitro when these microbes formed biofilms on a CF patient-
derived airway cell line (42). These data both indicate the potential for these different
microbes to physically interact and provide a mechanism whereby these oral microbes
might be carried deeper into the airway via their physical association with P. aeruginosa.
Recent studies have just begun to explore how such interactions might impact the
respective microbes in the context of polymicrobial infections, and we review such
studies below.

One study demonstrated that an oropharyngeal Streptococcus isolate interacts with
P. aeruginosa through AI-2 signaling and that this signal induces transcription of the P.
aeruginosa virulence factors elastase, phenazines, and rhamnolipids, resulting in in-
creased P. aeruginosa-mediated virulence in a rat agar bead model of chronic lung
infection (43). In contrast, the oropharyngeal Streptococcus isolate did not contribute to
lung disease in monoculture in the rat lung. These results are further supported by
additional studies that demonstrate increased elastase, phenazine, and rhamnolipid
production by P. aeruginosa strains exposed to streptococci, including Streptococcus
anginosus (44, 45). Interestingly, two lasR mutant variants of P. aeruginosa from patients
with CF showed more robust pyocyanin and elastase production and associated host
damage and inflammation when grown in coculture with several SMG members (44),
indicating that coculture with another microbial species can (at least in part) bypass the
quorum sensing (QS) defect of the lasR mutant strains. Analogous observations have
been made for P. aeruginosa lasR mutants growing in coculture with the fungus
Candida albicans (46), indicating that the loss of QS signaling observed for pure strains
of P. aeruginosa isolated from the CF airway may not accurately reflect the situation in
the context of an in vivo, polymicrobial infection. Furthermore, a recent study also
demonstrated that S. anginosus can stimulate P. aeruginosa to convert from a mucoid
phenotype to a nonmucoid, high-pyocyanin-producing phenotype in an in vitro, hy-
percapnic (10% CO2) environment; this phenotype is associated with the reduced
survival of Galleria mellonella wax moths, which are used as an insect model of
pathogenesis, during infection (47, 48). Taken together, these data call into question
the strengths of the conclusions that can be drawn regarding the virulence potential of
strains in the CF airway based solely on in vitro clinical culture data assaying single
species.
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In contrast to the positive interaction described above, some interactions between
P. aeruginosa and streptococci can be detrimental to P. aeruginosa. For example, oral
streptococci, such as S. oralis, S. sanguinis, and S. gordonii, have been shown to produce
H2O2, which can inhibit P. aeruginosa when the streptococci are established as primary
colonizers (49, 50). Interestingly, these interactions are influenced by environmental
conditions, such as (i) aerobic conditions, when S. oralis can cocolonize with P. aerugi-
nosa (49); (ii) conditions in which streptococci can use H2O2 production to outcompete
P. aeruginosa in 10% CO2 (49); or (iii) environments wherein S. parasanguinis, S. gordonii,
and S. sanguinis can produce H2O2, which reacts with excess nitrite in the medium to
form reactive nitrogenous intermediates (RNI) that inhibit P. aeruginosa growth (50, 51).
Together, these studies indicate that the local environment might play a large role in
the outcome of interactions among these microbial species, which is of great relevance
to a CF airway, which includes anoxic and hypoxic environments (52–54), as well as the
more typical normoxic environment. It is also important to note that there is clearly
variability in the observations made regarding interactions as a function of which
isolate of P. aeruginosa and/or a Streptococcus sp. is used; therefore, investigators
should strongly consider using multiple isolates of P. aeruginosa (mucoid and nonmu-
coid) and multiple Streptococcus species (and isolates of those species) to better
understand the generality of any finding related to polymicrobial interactions.

As mentioned above, Scoffield and Wu (50) documented that S. parasanguinis, S.
gordonii, and S. sanguinis can inhibit the growth of P. aeruginosa when provided with
nitrite; it is the interaction of the nitrite plus the Streptococcus-derived peroxide that
results in the generation of RNI. Given the evidence that P. aeruginosa participates in
dissimilatory nitrogen metabolism in environments like the CF airway (55–57) and the
evidence for nitrate and denitrification in CF patient sputum (58–62), there is a clear
potential for the generation of RNI in the context of these polymicrobial infections.
Further supporting their model, in a subsequent report (51), Scoffield and Wu showed
that a P. aeruginosa strain defective for its nitrite reductase (nirS) showed increased
sensitivity to nitrite-mediated killing, likely due to the accumulation of nitrite in the
culture (51) and, presumably, increased RNI production. Interestingly, these investiga-
tors identified a mutation in the permease component of an ABC transporter (PA3252)
that was resistant to this killing by S. parasanguinis (50), indicating the possibility that
the relationship between these microbes has the potential to evolve in the context of
chronic, long-term CF airway infections. These investigators did show that S. parasan-
guinis could protect Drosophila from a P. aeruginosa infection, indicating an important
proof of principle that such interactions may indeed occur in vivo.

Finally, it is likely that other metabolic interactions in the CF airway might drive
changes in the interaction between P. aeruginosa and Streptococcus. As an example,
Flynn and colleagues (63) showed that P. aeruginosa can only inefficiently utilize the
mucins found in abundance in the CF airway, but they demonstrated that some
anaerobes, including Streptococcus, as well as Prevotella and Veillonela, can degrade
mucins and generate small fatty acids that can be utilized by P. aeruginosa for
enhanced growth. Oral streptococci have previously been shown to effectively degrade
salivary mucins (64). In particular, Hunter and colleagues, using growth and mutational
studies in vitro and measuring the gene expression of P. aeruginosa in sputum, noted
that propionate is one such carbon/energy source produced by anaerobes and utilized
by P. aeruginosa (63). Indeed, this report and others have detected propionate in lavage
and sputum samples from the CF airway (63, 65, 66). There are likely additional such
interactions between these (and other) microbes driven by metabolic cross feeding that
will be uncovered going forward.

P. AERUGINOSA IMPACTS STREPTOCOCCAL VIABILITY AND GROWTH

Just as streptococci can impact P. aeruginosa, the converse is true as well. A recent
report from our group demonstrated that P. aeruginosa limits Streptococcus growth,
likely via iron sequestration, in minimal medium coculture conditions (67). Iron avail-
ability in the airway has been demonstrated to range from 0.02 �M in healthy controls
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to levels as high as 8 �M in CF patients, and the measured patient-to-patient variability
is quite high in CF patient sputum (68–71). Furthermore, the extent of iron bioavailable
to streptococci is unclear and difficult to determine. Given the potentially high con-
centration of iron in the CF airway, it is not clear if P. aeruginosa and streptococci are
competing for iron in the CF lung and, if so, when or where.

P. aeruginosa has also been demonstrated to suppress S. constellatus biofilm
formation through the secretion of monorhamnolipids and �-hydroxyalkanoyl-�-
hydroxyalkanoic acids (HAAs) (42). This suppression of biofilm formation can be alle-
viated by treatment of CF patients with the maintenance antibiotic tobramycin. These
data indicate that the CF airway environment and therapeutics used in the context of
CF can also modulate microbe-microbe interactions directly, as described above, and
perhaps indirectly via altering the airway environment via modulating iron levels, for
example.

In contrast to the negative interactions described above, recent studies have found
that P. aeruginosa can also enhance Streptococcus growth through one or more
currently undescribed pathways (42, 44, 47, 48, 67). For example, our group demon-
strated that P. aeruginosa clinical and laboratory strains can enhance the growth of
multiple oral Streptococcus spp., including members of the SMG, through a currently
unknown mechanism (67). These data indicate that the presence of P. aeruginosa can
promote the growth and/or persistence of streptococci in the context of the CF airway.

Interestingly, a recent study using a metagenome-based approach argued that
Streptococcus spp. replicated their genomes (a surrogate for growth) 40- to 60-fold
faster than P. aeruginosa (72). This finding would be consistent with the published
observations that coculture of Streptococcus with P. aeruginosa enhances the growth of
the Streptococcus with no obvious benefit to P. aeruginosa growth (42, 67).

Furthermore, Scoffield and colleagues investigated the increased biofilm formation
of S. parasanguinis cocultured with a mucoid P. aeruginosa strain and found that S.
parasanguinis is able to bind to P. aeruginosa-produced alginate using the streptococcal
surface adhesin BapA1 in vitro or BapA1 and Fap1 in a Drosophila melanogaster
coinfection model (73).

Taken together, these studies indicate that, at least in some contexts, P. aeruginosa
can enhance Streptococcus species growth or biofilm formation; however, the mecha-
nisms underlying such interactions are still poorly understood. Thus, a significant effort
directed toward understanding the mechanisms underlying P. aeruginosa-Streptococcus
interactions will likely be fruitful going forward.

INTERACTIONS BETWEEN STREPTOCOCCI AND OTHER CF-ASSOCIATED
PATHOGENS

Very few studies have investigated the interactions between streptococci and other
pathogens in the context of CF. For example, anaerobic Gram-negative bacteria that
produce �-lactamases, in particular, Bacteroides spp., have been shown to protect GAS
from penicillin in a mouse model of infection (74), and thus, it is possible that other
�-lactamase-producing microbes could exert a similar protective effect for other strep-
tococci (75, 76).

Additionally, there is a dearth of investigations into multispecies interactions (i.e.,
the interactions of 3 or more microbes) in the context of CF, but two interesting studies
have investigated how polymicrobial interactions among S. anginosus, S. aureus, and P.
aeruginosa affect antimicrobial susceptibility in a multispecies biofilm (77, 78). The first
study indicates that S. anginosus biofilm cells can be protected from cell wall-active
antibiotics when grown in a multispecies biofilm with P. aeruginosa and S. aureus or
when S. anginosus monoculture biofilms are treated with S. aureus supernatant (77),
indicating that S. aureus is able to protect S. anginosus from these antibiotics. Addi-
tionally, these investigators demonstrated that S. aureus is sensitized to both cell
wall-active antibiotics and others antibiotics, like tobramycin, in a multispecies biofilm
with P. aeruginosa and S. anginosus (77). P. aeruginosa antibiotic sensitivity is relatively
unaffected during polymicrobial culture (77), a finding consistent with the findings of
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our studies (79). In a subsequent study, the same team explored the mechanism
whereby coculture in a community could render S. anginosus biofilm cells protected
from the cell wall-active antibiotic vancomycin (78). Tavernier et al. reported (78) that
in the presence of P. aeruginosa, S. anginosus produces a thicker cell wall, which has
previously been described to be a mechanism by which S. aureus is protected from
treatment with vancomycin (80–82). Consistent with this observation, coculture of S.
anginosus with P. aeruginosa resulted in the upregulation of 36 genes in the cell wall
synthesis and recycling functional category, the largest such category of genes up-
regulated in S. anginosus during growth in coculture, compared to their regulation in
a monoculture of S. anginosus.

Together, these studies indicate that the interactions among streptococci and other
CF pathogens can be complex, and the possible outcomes of these interactions in the
CF lung microenvironment are not always obvious. However, given that �30% of
patients with CF have both S. aureus and P. aeruginosa in their airway (83, 84) and SMG
members were found to cocolonize patients infected with P. aeruginosa and S. aureus
(2, 7, 85), such polymicrobial interactions are likely not uncommon. Additionally,
interactions with streptococci are not limited to the lower airways, and a multitude of
studies have investigated polymicrobial interactions with streptococci in the oral
microbiome (reviewed in reference 86). These oral microbiome studies may provide
some insights into how streptococci could interact with microbes in the CF airway.
However, further research is required to fully understand how streptococci might
interact with other CF lung pathogens and how these interactions may modulate
microbial growth or biofilm formation and/or impact the host airway.

CONCLUSIONS

The role that streptococci play in the CF lung needs to be investigated further,
because the current evidence indicates that the predominance of the Streptococcus
milleri group correlates with exacerbations, while the increased relative abundance of
other streptococci may correlate with a lower disease burden in CF patients. It is
currently unclear how these complex relationships between streptococci and outcomes
in CF patients are mediated.

For the detrimental interactions, it is unclear whether these effects are due directly
to the interactions between Streptococcus spp. and the host or whether streptococci are
able to negatively influence patient health indirectly through interactions with cocolo-
nizing microbes within the lung (Fig. 1). The data thus far indicate that oral streptococci
can potentiate virulence factor production of P. aeruginosa in vitro and in vivo (43–45,
47, 48).

In contrast, as described above, younger and healthier patients earlier in the disease
stage are found to have a greater diversity in the airway microbiome, including more
streptococci, and, thus, a lower abundance of typical CF pathogens. It is possible that
the streptococci found in the airway are able to reduce the relative abundance of P.
aeruginosa through the production of hydrogen peroxide (49) and reactive nitrogenous
species (50, 51), as described in in vitro coculture studies. Alternatively, oral streptococci
may actively reduce inflammation, a conclusion consistent with a recent report (87).
Finally, streptococci may exert their impact via a niche exclusion mechanism, that is, by
simply preventing high-level colonization of the airway by P. aeruginosa or other CF
pathogens. Additional studies are required to determine the nature of the influence
that the streptococci have on the CF airway.

Finally, it is currently unknown what kinds of interactions streptococci may have
with CF lung pathogens other than P. aeruginosa, such as S. aureus, Stenotrophomonas,
Burkholderia, or others. All of these interactions can potentially impact host health, as
well as the responsiveness of these microbes to therapeutics. It is clear that for
polymicrobial interactions, such as those in CF patients, that we must move beyond the
one-bug mind-set. The observation that streptococci can have differential impacts on
patient outcomes adds an additional layer of complexity to any analysis. We would
argue, however, that the large available data sets on the airway microbiota in CF
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patients during clinical stability and disease exacerbation, plus the rich clinical data
available, provide a unique opportunity to study polymicrobial interactions and their
impact on the host using streptococci as model organisms.

Given the well-documented nature of polymicrobial infections in the context of CF
(1–3), we suggest that interactions of streptococci with other CF-related pathogens is
an emerging model system that may be used to provide an understanding of the
molecular mechanisms of microbe-microbe interactions; such studies can exploit the
abundant extant data regarding the environmental, nutritional, and microbial context
of the CF lung. While other interactions have been studied in depth, particularly
between P. aeruginosa and S. aureus and their negative impacts on CF patients (84), we
see that one advantage of using streptococci as a model system is, as described above,
the participation of these microbes in processes with varied impacts on the host. We
also argue that the most productive approach to dissecting such interactions is to
leverage multiple techniques, including microbiome studies, in vitro models, clinical
studies, the latest omics (metagenomics, metabolomics, proteomics) technologies, and
modeling, and such data have been generated for sputum, lavage, and brush samples
from the CF airway. Finally, the ability to generate complementary data from laboratory
experimental models and the analysis of large clinical data sets make such an approach
particularly powerful.
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