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Abstract

Background: For treating a complex disease such as cancer, some effective means are needed to control biological
networks that underlies the disease. The one-target one-drug paradigm has been the dominating drug discovery
approach in the past decades. Compared to single target-based drugs, combination drug targets may overcome
many limitations of single drug target and achieve a more effective and safer control of the disease. Most of existing
combination drug targets are developed based on clinical experience or text-and-trial strategy, which cannot provide
theoretical guidelines for designing and screening effective drug combinations. Therefore, systematic identification of
multiple drug targets and optimal intervention strategy needs to be developed.
Results: We developed a strategy to screen the synergistic combinations of two drug targets in disease networks
based on the classification of single drug targets. The method tried to identify the sensitivity of single intervention and
then the combination of multiple interventions that can restore the disease network to a desired normal state. In our
strategy of screening drug target combinations, we first classified all drug targets into sensitive and insensitive single
drug targets. Then, we identified the synergistic and antagonistic of drug target combinations, including the
combinations of sensitive drug targets, the combinations of insensitive drug target and the combination of sensitive
and insensitive targets. Finally, we applied our strategy to Arachidonic Acid (AA) metabolic network and found 18
pairs of synergistic drug target combinations, five of which have been proven to be viable by biological or medical
experiments.
Conclusions: Different from traditional methods for judging drug synergy and antagonism, we propose the
framework of how to enhance the efficiency by perturbing two sensitive targets in a combinatorial way, how to
decrease the drug dose and therefore its side effect and cost by perturbing combinatorially a main sensitive target
and an auxiliary insensitive target, and how to perturb two insensitive targets to realize the transition from a disease
state to a healthy one which cannot be realized by perturbing each insensitive target alone. Although the idea is
mainly applied to an AA metabolic network, the strategy holds for more general molecular networks such as
combinatorial regulation in gene regulatory networks.
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Background
In the past decades, effective treatments of a complex
diseases require practical means to control the bio-
logical networks underlying the disease. Biological net-
works are often robust to external disturbances, so it
is difficult to control network dynamics by controlling
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a single target, and drugs targeting multiple targets
may counter these troubles [1]. It has been long
realized that the behavior of drug molecules in a dis-
ease network can be complex. The one-target one-
drug paradigm has been the dominating drug discovery
approach which result in many drugs marketed but can-
not treat certain complex diseases sufficiently [2–4].
In fact, drug combination therapeutics are often more
effective and are used to treat various complex diseases
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in recent years. To overcome the limitations of the single-
target-based drugs, growing attention has been paid to
drug discoveries involving multiple targets at the level of
disease networks [5]. Actually, it has been a long history
of using combination drugs to treat diseases. For exam-
ple, the Traditional Chinese Medicines (TCM), especially
herbal medicines, which can be viewed as the combina-
tions of multiple compounds with synergy effects, have
been used for thousands of years [6].

A diverse range of works have been carried out in the
emerging field of multi-target drug design, many methods
have been proposed to identify effective drug combina-
tions [5, 7–11]. It is recommended that system-oriented
drug design should consider the intrinsic properties of
biological systems, such as robustness [12]. Many math-
ematical models of disease-relevant pathways have been
constructed which have the potential to elucidate under-
lying mechanisms of diseases and to identify treatment
strategies [13, 14]. And analyzing the properties of net-
works can attribute to identify potential drug targets and
understand the connectivity between them [15, 16].

There may be many beneficial outcomes of synergy,
such as increasing the therapeutic effect, reducing the
dose but increasing or maintaining the same efficacy to
avoid toxicity or reducing the cost of the drug, minimizing
or slowing the development of drug resistance. For these
therapeutic benefits, drug combinations have been widely
used and become the leading choice for treating the most
dreadful diseases, such as cancers and infectious diseases.

In this paper, we developed a strategy to screen multiply
drug targets combinations. For a given disease network,
we tried to identify effective points and the combination
of interventions that can restore the disease network to a
desired normal state. In our strategy, we first classified all
drug targets into sensitive and insensitive single drug tar-
gets. Then, we identified synergy and antagonism for all
drug target combinations which include the combinations
of sensitive drug targets, the combinations of insensi-
tive drug targets, and the combinations of sensitive and
insensitive drug targets. We applied our strategy to the
arachidonic acid (AA) metabolic network and we found
18 pairs of synergistic drug target combinations, five of
which have been proven to be viable through biological or
medical experiments.

Results
The statement of screening drug target
combinations
Feedback loops, cross-talk and other network-intrinsic
properties can make the effects of drug molecules much
more complicated than predicted by a linear one-drug
one-target approach [17]. We here develop a strat-
egy to screen synergetic drug target combinations with
pre-determined therapeutic effects. For convenience, two

network states are defined in the disease network: the dis-
ease state and the normal state (or desired state). The
disease state is a network state which the production of
disease-related molecules is abnormal. The normal state
is the network state which one would like to achieve
after taking medicine. The main procedure of screening
the synergetic drug target combinations is to perturb the
network and optimize it toward the normal state.

Determining the sensitive and insensitive individual drug
targets
Before screening the synergetic drug target combinations,
we need to identify the sensitive and insensitive individual
drug targets. All single drug targets are ranked according
to a criterion that measures their potential in restoring the
network state when they are perturbed. In other words,
we can rank the individual drug targets according to their
sensitivities. The process of determining the sensitive and
insensitive individual drug targets includes the following
steps:

Step 1: Define the disease and normal states. A state
can be defined as a steady state or transient of a network,
which can be a collection of concentrations of proteins or
metabolites. Generally, the disease state is a steady state of
a disease network under standard parameters. The normal
state is the desired state after perturbations.

Step 2: Select reactions that can be controlled by drugs.
For example, if the drug targets are enzymes, conveniently,
we mark all drug targets with d1, · · · , di, · · · , dn, and mark
the initial concentration of the i-th enzyme with Edi.

Step 3: Change the concentration of the selected target
enzyme until the network is translated into the normal
state. We use Ehi to mark the concentration of the i-th
enzyme after changing.

Step 4: Define the degree of change in concentration of
each enzyme as �Ei/Edi, where �Ei = |Edi−Ehi|. Rank the
value of �Ei/Edi from small to large. Then, we can have an
order of drug targets, as shown in Table 1.

We define a threshold of a and a is a constant. An
enzyme which satisfies the condition �Ei/Edi ≤ a is
defined as a sensitive drug target, and an insensitive drug
target otherwise.

Table 1 Ranking the value of �Ei
Edi

from small to large

Number Enzyme �Ei/Edi

1 d1 �E1/Ed1 < 1
...

...
...

j dj �Ej/Edj ≤ 1
...

...
...

n dj �Ej/Edj > 1
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Screening synergistic drug target combinations
Identifying the synergistic combinations of sensitive drug
targets
With the development of medicine science and pharma-
cology industry, combinatorial drugs are becoming the
standard to cure many complex diseases [18]. As a result,
some methods have been proposed to identify effective
drug combinations. Combination index (CI) analysis is
widely used to evaluate drug interactions in combination
drug disease treatment. The Loewe additivity model has
been widely used when the combined effect of two drugs
is additive. The model can be written as:

(D)1
(Dx)1

+ (D)2
(Dx)2

= 1, (1)

where (D)1 and (D)2 are the respective combinatorial
doses of drug 1 and drug 2, and (Dx)1 and (Dx)2 are the
corresponding single doses for drug 1 and drug 2 with
the same effect. When (1) holds, it can be concluded that
the combinatorial effect of the two drugs is additive. Based
on (1), the CI can be defined as:

CI = (D)1
(Dx)1

+ (D)2
(Dx)2

. (2)

According to (2), the CI can be used to classify drug
interactions as synergistic, additive, antagonistic and
hybrid [19]. And the corresponding curves are shown
in [20].

1. Synergy: CI < 1. In this case, the effect of the drug
combination is superior to each single drug, for exam-
ple, the combined drugs allow each drug to have a smaller
dose. Therefore, the synergistic combination of drugs can
exhibit fewer side effects in the treatment of diseases.

2. Antagonism: CI > 1. In this case, the effect of each
single drug is superior to the drug combination, and the
combined drugs may require each drug to have more dose.
This may lead to increased drug costs and greater side
effects.

3. Additivity: CI = 1. In this case, the efficiency of
the combinatorial drugs is equal to the efficiency of the
single drug. At the same time, this additivity type also pro-
vides a standard for judging synergistic and antagonistic
combinations.

4. Hybrid. For a drug combination, some drug dose
combinations

(
(D)1
(Dx)1

′, (D)2
(Dx)2

′) satisfy CI > 1, while other

drug dose combinations
(

(D)1
(Dx)1

′′, (D)2
(Dx)2

′′) satisfy CI < 1.
That is to say, this drug combination can have synergistic
or antagonistic effects, depending the drug doses of the
combination.

In the past, Chou and co-workers have proposed
semiquantitative methods for describing the degrees of
synergism or antagonism [6]. These methods are now
expanded as shown in Table 2 [21]. Using the CI grad-
ing, synergism is subdivided into nearly additive, slight

Table 2 Description and symbols of synergism or antagonism in
drug target combination studies analyzed with the CI method

Range of Combination Index Description Graded Symbols

< 0.1 very strong synergism + + + + +

0.1-0.3 strong synergism + + + +

0.3-0.7 synergism + + +

0.7-0.85 moderate synergism + +

0.85-0.90 slight synergism +

0.90-1.10 nearly additive + -

1.10-1.20 slight antagonism -

1.20-1.45 moderate antagonism - -

1.45-3.3 antagonism - - -

3.3-10 strong antagonism - - - -

> 10 very strong antagonism - - - - -

synergism, moderate synergism, synergism, strong syn-
ergism, and very strong synergism and antagonism is
divided by a similar way [21]. We mainly concern about
the qualitative shape of the isobolograms for correctly
identifying the drug pair categories, and use the smallest
or largest CI of all drug dose combinations as the CI for
this drug pair [22].

In recent years, the development of disease types is very
rapid, but the development of drugs is far slow than the
development of diseases which leads to the case that there
are no suitable drugs to cure many complex diseases. It is
very difficult to find a new drug, which inspires us to find
new combination of old drugs. Based on this biological
significance, we try to study the combinations of sensitive
drug targets.

For all drug target combinations of sensitive drug tar-
gets, we analyze the synergy and antagonism of the sensi-
tive drug target combination by computing CI according
to the doses of drugs. What’s more, we rank the degrees of
synergism or antagonism of all drug target combinations
according to Table 2.

Identifying the synergistic combinations of insensitive targets
In biomedical, when the two drugs are used alone, they
can not cure a disease, but when the two drugs are used
in combination, the disease can be cured or the effect
can be obviously improved. The combination of insensi-
tive drug targets may provided an idea for solving such
problems.

For the insensitive drug targets, we combine them in
pairs and calculate �Ei/Edi where �Ei = |Edi − Ehi|.
The drug combinations which �Ei/Edi ≤ 1 needs to be
satisfied for the perturbation to insensitive targets can
guarantee that the doses of drugs are used less than those
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used before combination. So, if each drug target of a com-
bination satisfy �Ei/Edi ≤ 1, then this combination is
defined as synergistic combinations.

Identifying the synergistic combinations of sensitive and
insensitive drug targets
In clinical treatment, many diseases do not have a suitable
treatment because the used drugs are relatively expensive.
If the dosage of expensive drugs can be reduced with the
auxiliary of cheap drugs, a better treatment strategy is able
to be designed. Based on the above ideas, the combina-
tions of sensitive and insensitive drug targets may provide
a feasible method.

For the combination of the sensitive and insensitive
drug targets, we calculate the �Ei/Edi of sensitive and
insensitive drug targets respectively.

For the sensitive drug target, we define a constant α and
set the following formula:

(�Ei
Edi

)1

(�Ei
Edi

)2 = (�Ei)
1

(�Ei)2 = α (3)

where (�Ei/Edi)
1 is the value of �Ei/Edi after combi-

nation and (�Ei/Edi)
2 is the value of �Ei/Edi before

combination. α can be determined in advance and satisfy
0 < α < 1.

Then, we find the drug target combination which insen-
sitive drug targets satisfy �Ei/Edi ≤ 1 and the sensitive
drug targets is (�Ei)

1/(�Ei)2 = α. Such combinations are
defined as synergistic.

The principle of synergistic combinations of sensi-
tive and insensitive drug targets is reducing the dosage
of drugs perturbed to sensitive target by the auxiliary
drug, i.e., the perturbation to insensitive drug target. The
drug combinations in which �Ei/Edi ≤ 1 needs to be
satisfied for the perturbation to insensitive targets and
(�Ej)

1/(�Ej)2 = α (0 < α < 1) for the sensitive tar-
get can guarantee that the doses of drugs are used less
than those used before combination. In this case, the drug
combinations can improve the efficacy and reduce the
doses of drugs and their side effects. For example, for
a combination of sensitive and insensitive drug targets,
if the perturbation to the sensitive drug target satisfies
(�Ej)

1 � (�Ej)2, and the cost of drug for the insen-
sitive target is relatively low, then such a perturbation
combination may have more advantages.

Applying the strategy of screening drug target
combinations to AA metabolic network
The metabolic network of AA in human PMNs
Now, we apply our strategy to the Arachidonic Acid
(AA) metabolic network. There have been some stud-

ies on drug combinations of AA metabolic network [23].
Inflammation is a type of nonspecific immune response
to infection, irritation, or other injury. It is characterized
by redness, swelling, pain, and some loss of function [24].
Many key enzymes involved in AA metabolic network are
responsible for generating inflammation mediators. The
AA metabolic network with a multi-cellular ensemble of
human polymorphonuclear leukocytes (PMNs), endothe-
lial (EC) and platelet (PLT) cells. Extensive researches
on the metabolism of AA metabolic network in human
PMNs have been performed. Leukotrienes (LTs) LTs are
the major inflammatory mediators produced in PMN
[25]. In this paper, we study the dynamic properties of
the AA metabolic network in human PMNs, as shown
Fig. 1, to gain more insights into anti-inflammatory
drug target design. Ordinary differential equations
(ODEs) are constructed to simulate the its dynamics,
where 24 equations were constructed (see Additional
file 1). All the parameters of the ODEs are shown in
Additional file 2.

Determining the sensitive and insensitive individual drug
targets in AA metabolic network
It is showed that LTs rather than prostaglandins (PGs)
are the main inflammatory mediators produced in human
PMNs [17]. Here, the disease state of the AA network is
defined as a state where the output of LTs is markedly
above the normal level. Since the standard parameters
fitted correspond to the abnormal metabolism of LTs,
the stable state under standard parameters is described
as the disease state. The desired state after perturba-
tion is defined as low output of inflammatory medi-
ators, that is, the cumulative output of LTB4 should
be smaller 10% than that in the disease state. Since
it is difficult to give a definite cutoff to distinguish
between normal and disease states and the threshold
is set to be 10%. Eight enzymes in the AA metabolic
network are selected as drug targets, because perturb-
ing them individually can induce the transition of the
AA metabolic network from a disease state to a normal
one [3, 17].

The process of determining the sensitive and insensitive
individual drug targets in AA metabolic network includes
the following steps:

Step 1: Define the disease and normal states. The nor-
mal state is defined as a state where 1h cumulative produc-
tion of LTB4 is less than 10% of that in the disease state.
The fluxes of other metabolites are not monitored.

Step 2: Eight enzymes are chosen as drug targets (as
shown in Table 3). We mark the initial concentration of
the i-th enzyme with Edi.

Step 3: Change the concentration of each target enzyme
until the 1h cumulative production of LTB4 is just below
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Fig. 1 The AA metabolic network in human PMNs. AA is metabolized through three main pathways: the 5-LOX pathway (red line), the 15-LOX
pathway (blue line), and the COX-2 pathway (green line). PGE2, LTA4, and LTB4 are the major inflammatory mediators produced in the COX-2 and
5-LOX pathways. A total of 24 feedback loops, which are involved in the network, make important contributions to the regulation of inflammatory
mediators

10% of that in the disease state. After 1h, we mark the
changed concentration of the i-th enzyme with Ehi.

Step 4: Define the degree of change in concentration of
each enzyme as �Ei/Edi, where �Ei = |Edi − Ehi|, and
rank the value of �Ei/Edi according to the degree.

To ensure the sensitivity of drug targets, we set a =
1, i.e, when the transition is realized, the perturbation
quantity is equal to or less than the initial concentration
of the selected target. Then, four enzymes which satisfy
�Ei/Edi ≤ 1 can be selected as sensitive drug targets and

Table 3 Ranking the value of �Ei
Edi

from small to large

Number Enzyme �Ei/Edi

1 CYP4F3 0.0769

2 PLA2 0.1979

3 PHGPx 0.213043

4 TXAS 0.99999

5 15-LOX 43.6388

6 5-LOX 135.4

7 LTA4H 15066606.44

8 12-LOX 1.52 × 1017

the remaining four enzymes are insensitive, as shown in
Table 3.

Screening synergistic drug target combinations in AA
metabolic network
Identifying the synergistic combinations of sensitive drug
targets
We use CI to identify the synergistic and antagonistic
combinations of sensitive drug targets. According to Eq. 2,
we calculate CI value of every combination of sensitive
drug targets. We mainly concern about the qualitative
shape of the CI isobolograms for correctly identifying syn-
ergistic drug pairs, and use the smallest or largest CI of all
dose combinations as the CI for one drug target pair. The
CI isobolograms of each combination of sensitive drug
targets are shown in Fig. 2.

We rank the combinations of sensitive drug targets by
the value of CI and the degrees of synergism or antag-
onism according to Table 2, as shown in Table 4. It is
obviously that there are four pairs of combinations that
have synergistic effects, and three pairs of combinations
have antagonistic effects. Especially, the combination of
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Fig. 2 The result of identifying the synergistic and antagonistic combinations of sensitive drug targets. In this figure, there are three type curves in
this figure. The points represent different drug doses. a and b are the synergistic combinations. c and d are antagonism combinations. e and f are
hybrid type

TXAS and CYP4F3 is the type of hybrid. For different drug
dose combinations, TXAS and CYP4F3 may have synergy
or antagonism.

Identifying the synergistic combinations of insensitive targets
There are four insensitive drug targets which satisfy
�Ei/Edi > 1. Now, we combine them in pairs and

calculate the value of �Ei/Edi after combination, as shown
in Fig. 3. It is obviously that two combinations satisfy
the condition �Ei/Edi ≤ 1. The two combinations are
5-LOX, LTA4H and 5-LOX, 12-LOX. According to our
strategy, these two combinations are synergistic drug tar-
get combinations. In other words, these two pair targets
are synergistic combinations and we can perturb them

Table 4 Description and symbol of synergy or antagonism in drug target combination of sensitive drug targets studies analyzed by CI
method

Combination name Value of Combination Index Description Graded Symbols

PHGPx-TXAS 0.8806 Slight synergism +

TXAS-CYP4F3 0.91 Nearly additive + -

PLA2-CYP4F3 0.92 Nearly additive + -

PHGPx-CYP4F3 0.92 Nearly additive + -

PLA2-PHGPx 1.0442 Nearly additive + -

TXAS-CYP4F3 1.1850 Slight antagonism -

PLA2-TXAS 1.45 Antagonism - - -
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Fig. 3 The result of calculating the �Ei/Edi of insensitive drug targets. Two combination (5-LOX, LTA4H and 5-LOX, 12-LOX) can satisfy �Ei/Edi ≤ 1

by drugs in a combinatorial way to realize the transi-
tion from the disease to the normal state. The result is
partially consistent with the biological findings because
5-LOX is a standard drug target among the key enzymes
involved in the network responsible for generating inflam-
mation mediators [17]. More importantly, some studies
also support that the two combinations of 5-LOX, LTA4H
and 5-LOX, 12-LOX are feasible drug target combinations
in AA metabolic network [26, 27].

Identifying the synergistic combinations of sensitive and
insensitive drug targets
We have determined that four among all eight drug tar-
gets are sensitive and the other four are insensitive. So,
there are 16 pairs of combinations of sensitive and insen-
sitive drug targets totally. For the sensitive drug targets,
we set α = 0.8 and α is the constant in formula (3).
In other words, the quantity of perturbation or drug to
the sensitive target needed can be decreased 20% after
the auxiliary perturbation to the insensitive target is per-
formed. More exactly, synergistic drug target combination
means �Ei/Edi ≤ 1 for the insensitive drug target and
(�Ej)

1/(�Ej)2 = 0.8 for the sensitive drug target.
After calculating, there are 12 pairs of drug target com-

binations which can satisfy above conditions, as shown
in Fig. 4. There are thee combinations have been proven
to be viable by the corresponding biological experi-
ments, including the combination of 15-LOX and PLA2
[28], combination of PLA2 and LTA4H [29], and com-
bination of PLA2 and 5-LOX [30]. Especially, it has
been found that pathway including PLA2 and LTA4H in

AA metabolic network is very important for traditional
Chinese medicine anti-inflammatory herbal formulae and
the treatment of cancers [29, 31, 32].

Discussion
Due to the complexity nature of many diseases and the
rising drug resistance, drug combination is becoming the
standard treatment of many complex diseases. In this
paper, we present a strategy to identify effective drug tar-
get combinations. Different from existing methods, the
proposed strategy aims to identify effective drug target
combinations from the perspective of network or systems
biology. First, we select the enzymes as individual drug
targets which can induce a transition from a disease state
to a desired state when they are perturbed alone. Then,
we divide them into sensitive and insensitive drug tar-
gets. Finally, we identify the synergistic and antagonistic
combinations of all two types drug targets.

For the sensitive drug targets, we judge the synergistic
and antagonistic of combination by the method of CI. For
the combination of insensitive drug targets, two pairs of
combination can restore the network to the normal state
under our condition, and these combinations may be of
great significance in biomedicine. For example, in the pro-
cessing of disease treatment, when two drugs are used
alone, they can not cure the disease, but when the two
drugs are used simultaneously, the disease can be cured
or the effect can be significantly improved. For the com-
bination of sensitive and insensitive drug targets, it can
reveal the intrinsic mechanism of the treatment of some
diseases. For example, a single drug interventions for a
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Fig. 4 The combination of sensitive drug targets and insensitive drug targets. The red numbers represent the synergistic combinations

disease have reduced or no effect due to the rapid drug
resistance response, however the joint intervention of two
or more drugs show better efficacy and lower drug resis-
tance. Similar situation can be often seen in the treatment
of diseases. In many cases, although a single drug can cure
a disease, the simultaneous intervention of multiple drugs
not only can increase the efficacy but also can reduce the
side effects of drugs.

In the part of identifying the synergistic and antagonistic
combinations of the sensitive drug targets by computing
CI, for any one pair of combination, we mark one drug
target with A and another with B. In the process of calcu-
lating CI, we first keep the concentration of A unchanged,
and then adjust the concentration of B to restore the
disease network to a normal state. Then we keep the con-
centration of B unchanged and adjust the concentration
of A to restore the disease network to normal. We can get
the same result in the two methods. We give one example
of the combination of PLA2 and CYP4F3 in Fig. 5.

Conclusion
In this paper, we provide a new strategy to find the poten-
tial effective drug target combinations of all three types of
drug target combinations involved in our paper. Among
the combinations of drug targets we have screened, there
are five combinations have been proven to be viable by
the corresponding biological experiments, including the
combination of 5-LOX and 12-LOX [26], combination
of 5-LOX and LTA4H [27], combination of 15-LOX and
PLA2 [28], combination of PLA2 and LTA4H [29, 31, 32]
and combination of PLA2 and 5-LOX [30]. What’s more,
if we can combine the price and doses of drugs, we can
have a better optimization. Although we mainly apply the

proposed strategy to screen the effective combinations
of two drug targets, the strategy can also be used to
screen effective combinations of multiple drug targets in a
straightforward manner.

Methods
Construction of the AA metabolic network model in human
PMN
On the basis of the AA metabolic network, a set of
ODEs were constructed to describe cell behavior of
inflammation in human PMN(see details in Supplemen-
tary information). The ode 45 s routine of Matlab was used
to integrate the ODEs. Michaelis Menten equations (Eq.3)
were used to describe enzyme catalytic reactions in the
network:

d[ S]
dt

= Kcat[ Et] [ S]
Km+[ S]

(4)

where [ S] is the concentration of the substrate, [ Et] is the
total concentration of enzyme, Kcat is turnover number,
and Km is the Michaelis-Menten constant.
If competitive reversible inhibitors are involved in the
catalysis, the equation is:

d[ S]
dt

= Kcat[ Et] [ S]
Km(1 + [I]

Ki
)+[ S]

(5)

where [ I] is the concentration of inhibitor and Ki is the
inhibition constant, which is defined as:

Ki = [ E] [ I]
[ EI]

(6)
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Fig. 5 The CI isobolograms of PLA2 and CYP4F3

If the inhibitors are irreversible, we assume the enzymes
would decay according to the following equation:

d[ E]
dt

= −K[ E] [ I] (7)

where K is a constant.
When activators are involved in the catalysis, we use the
following equation:

d[ S]
dt

= Kcat(1 + ([ A] /KI))[ Et] [ S]
Km+[ S]

(8)

where [ A] is the concentration of activator and KI is a
constant.
When up regulation occurred though transcription, we
described its effect with the following equation:

d[ E]
dt

= k[ g]2

[ g]2 +[ k]2 (9)

where [ g] is the concentration of the metabolite up reg-
ulating the transcription of the enzyme, K and k are
constants.
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Additional file 1: The ordinary differential equations of AA metabolic
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Additional file 2: A total of 23 reaction constants was taken from
experimental values, while the others were obtained by fitting the
calculated production of LTB4. (PDF 119 kb)
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