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Summary

Lyme borreliosis is caused by multiple species of the spirochete bacteria Borrelia burgdorferi 
sensu lato. The spirochetes are transmitted by ticks to vertebrate hosts including small and 

mediumsized mammals, birds, reptiles, and humans. Strain-to-strain variation in host specific 

infectivity has been documented, but the molecular basis that drives this differentiation is still 

unclear. Spirochetes possess the ability to evade host immune responses and colonize host tissues 

to establish infection in vertebrate hosts. In turn, hosts have developed distinct levels of immune 

responses when invaded by different species/strains of Lyme borreliae. Similarly, the ability of 

Lyme borreliae to colonize host tissues varies among different spirochete species/strains. One 

potential mechanism that drives this strain-to-strain variation of immune evasion and colonization 

is the polymorphic outer surface proteins produced by Lyme borreliae. In this review, we 

summarize research on strain-to-strain variation in host competence and discuss the evidence that 

supports the role of spirocheteproduced protein polymorphisms in driving this variation in host 

specialization. Such information will provide greater insights into the adaptive mechanisms 

driving host and Lyme borreliae association, which will lead to the development of interventions 

to block pathogen spread and eventually reduce Lyme borreliosis health burden.
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Abbreviated Summary

Lyme disease causing bacteria species are transmitted between ticks and different vertebrate hosts 

including mammals, birds, and reptiles, and different bacteria species are associated with different 

hosts. Potential mechanisms driving these bacteria-host associations include: strain-to-strain 

differences in the induced innate and adaptive immune response and bacteria protein variants that 

display differentially binding activity to cells.
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Variability in host species association with Lyme borreliae

Lyme borreliosis is the most common vector-borne disease in the United States and Europe 

(Steere et al., 2016). The disease is caused by the spirochetal bacteria Borrelia burgdorferi 
sensu lato (hereafter B. burgdorferi sl), which is vectored by Ixodes spp. ticks (Radolf et al., 
2012). Following a tick bite, the spirochetes can hematogenously disseminate from the tick 

bite site in the skin to distal tissues and organs within a host (Brisson et al., 2012). In 

humans, the spirochete colonization of distal tissues leads to multiple pathologies including 

arthritis, carditis, and neuroborreliosis (Rosa et al., 2005). In nature, ticks can acquire and 

transmit Lyme borreliae between multiple vertebrate reservoir hosts, including avian, reptile, 

and mammalian hosts (Kurtenbach et al., 2006). The ability of B. burgdorferi to survive in 

ticks, be transmitted to, and systemically infect hosts is essential for the maintenance of this 

spirochete in the enzootic cycle.

Borrelia burgdorferi sl is comprised of more than 15 genospecies (subspecific designation of 

species based on genotypes), each comprising multiple strains (Mead, 2015; Steere et al., 
2016). Interestingly, an association between different classes of vertebrate hosts and some B. 
burgdorferi sl genospecies or strains has been observed (Kurtenbach et al., 2006) (Table 1). 

For example, B. afzelii, B. bavariensis, B. bissettii, B. californiensis, B. carolinensis, B. 
japonica, B. kurtenbachii, B. mayonii, B. spielmanii, and B. yangtzensis, have been found in 

rodents such as mice (field mice: Apodemus flavicollis and A. sylvaticus; wood/harvest 

mice: Micromys minutus) and voles (Clethrionomys glareolus, Microtus arvalis) 

(Kurtenbach et al., 1998; Hanincova et al., 2003; Richter et al., 2004b), while B. garinii, B. 
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valaisiana, and B. turdi have typically been isolated from avian hosts such as the ring-necked 

pheasant (Phasianus colchicus), the Atlantic puffin (Fratercula arctica), the common 

blackbird (Turdus merula), and numerous other passerine species (Humair et al., 1998; 

Kurtenbach et al., 1998; Gylfe et al., 1999; Hanincova et al., 2003b; Comstedt et al., 2006). 

Borrelia lusitaniae was identified mainly in reptiles such as lizards (Richter and Matuschka, 

2006; Amore et al., 2007). The host-specific infection of these spirochetes indicates that 

these species are specialists in the enzootic cycle. Unlike the specialists, B. burgdoferi sensu 

stricto (hereafter B. burgdorferi) has been isolated from multiple classes of vertebrate 

animals (e.g. mammalian, avian, and reptilian hosts) and thus could be considered a 

generalist species (Lane and Loye, 1989; Levin et al., 1996; Kurtenbach et al., 2006; 

Swanson and Norris, 2007). However, previous observations propose that some genotypes of 

B. burgdorferi are more prevalent in mammalian hosts such as small rodents whereas others 

are more widespread in avian hosts (Wang et al., 2002; Brisson and Dykhuizen, 2004; 

Brisson and Dykhuizen, 2006; Hanincova et al., 2006; Brisson et al., 2008; Brinkerhoff et 
al., 2010; Mechai et al., 2016; Vuong et al., 2014; Vuong et al., 2017). These findings raise 

the possibility of inter-strain variation of spirochete-host associations.

In support of this association, when different vertebrate hosts are infected by Lyme borreliae 

via ticks or needles, some spirochete species/strains preferentially infect small rodents 

(Matuschka and Spielman, 1992; Hu et al., 2001; Wang et al., 2002; Derdakova et al., 2004; 

Richter et al., 2004; Hanincova et al., 2008; Craig-Mylius et al., 2009; Tonetti et al., 2015; 

Rynkiewicz et al., 2017), while others more efficiently colonize avian hosts (e.g. pheasant, 

Coturnix quail, and American robins) (Isogai et al., 1994; Kurtenbach et al., 2002b; 

Ginsberg et al., 2005). Additionally, upon infection, Lyme borreliae species/strains differ in 

their ability to survive in the bloodstream or disseminate to distal tissues in Mus musculus 
(mice) or Peromyscus leucopus (white-footed mice) (Anderson et al., 1990; Barthold et al., 
1991; Norris et al., 1995; Wang et al., 2002; Barbour et al., 2009; Baum et al., 2012; Chan et 
al., 2012). Consistent with this observation, the ability of hematogenous dissemination by 

these spirochetes and the severity of manifestations vary among spirochete species and 

strains during infection in humans (Anderson et al., 1990; Wang et al., 2002; Carlsson et al., 
2003; Logar et al., 2004; Dykhuizen et al., 2008; Wormser et al., 2008; Craig-Mylius et al., 
2009). These findings elucidate a spirochete strain-to-strain variation in the host-specific 

infectivity. Below we discuss the potential mechanisms to drive this host tropisms of Lyme 

borreliae.

Hosts develop variable levels of innate and adaptive immune responses 

when infected with different species/strains of Lyme borreliae

The innate immune response is one factor that controls survival and disease severity of Lyme 

borreliae in vertebrate hosts (Barthold, 1999; Wang et al., 2001; Pachner et al., 2004; Steere 

and Glickstein, 2004). Upon tick bite, spirochetes can be engulfed by dendritic cells at the 

bite site in the skin, which permits host cells to produce antigens and activate naive T cells 

(Mason et al., 2014). Meanwhile, Lyme borreliae outer surface proteins recognized by 

multiple receptors (e.g. toll-like receptors) on the surface of macrophages lead to the 

activation of these cells (Talkington and Nickell, 2001; Alexopoulou et al., 2002; Wooten et 
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al., 2002; Jacchieri et al., 2003; Soloski et al., 2014). This activation promotes the 

production of proinflammatory cytokines and chemokines and the phagocytosis of 

spirochetes (Rittig et al., 1992; Modolell et al., 1994; Montgomery et al., 1996). Effector 

molecules are then produced, which facilitates neutrophil infiltration of the infection site, 

resulting in disease manifestations in humans (Defosse and Johnson, 1992; Gebbia et al., 
2001; Anguita et al., 2002). Non-reservoir mammalian hosts (e.g. humans or M. musculus 
mouse models) in vivo, cultivated macrophages, or dendritic cells in vitro develop distinct 

levels of cytokines and chemokines in response to different Lyme borreliae species/strains 

(Strle et al., 2009; Strle et al., 2011; Mason et al., 2015). The ability to trigger varying 

degrees of cytokine and chemokine production in different species/strains during infection is 

strongly correlated with the severity of resulting manifestations (Widhe et al., 2004; Jones et 
al., 2008; Strle et al., 2009; Strle et al., 2011). Additionally, complement has been 

demonstrated to prevent spirochetes from efficiently disseminating to distal tissues and 

appears to play a role in the differential clearance of numerous Lyme borreliae species in 
vivo (Lawrenz et al., 2003; Woodman et al., 2007). This is addressed in more detail in the 

following section.

The adaptive immune response also confers clearance of Lyme borreliae and may lead to 

clinical manifestations, such as arthritis. The B cell mediated antibody immune response 

plays a major role for pathogen clearance (Steere and Glickstein, 2004; Blum et al., 2018). 

This B cell immunity is enhanced by B. burgdorferi-specific CD4+ T helper cell (TH1) 

response, in which interferon-γ is the marker (Keane-Myers and Nickell, 1995; Kang et al., 
1997; Zeidner et al., 1997). In fact, humans infected with different Lyme borreliae strains 

generate distinct levels of interferon-γ (Strle et al., 2011). When P. leucopus or M. musculus 
hosts were infected with different B. burgdorferi strains, the levels of antibodies against 

specific B. burgdorferi outer surface proteins and the spirochete burdens varied at heart and 

joint tissues (Wang et al., 2001; Baum et al., 2012). These findings thus raise the possibility 

that the variation in antibody-mediated clearance induced by Lyme borreliae species/strains 

results in different levels of host competence. Further, invariant natural killer T cells (iNKT 

cells) recognize the lipids on the surface of B. burgdorferi to eradicate spirochetes, which 

limits their dissemination to joints and prevents Lyme disease-associated arthritis (Kinjo et 
al., 2006; Tupin et al., 2008; Lee et al., 2010; Lee et al., 2014). However, whether this iNKT-

cell mediated lipid binding activity, pathogen clearance, and alleviation of manifestations is 

strain-specific remains unclear and warrant further investigations.

Lyme borreliae develop host-specific serum resistance activity to evade the 

complement

Complement, composed of numerous serum proteins, is one of the innate immune responses 

in the vertebrate bloodstream (Fig. 2) (Zipfel and Skerka, 2009; Ricklin et al., 2010). The 

formation of enzymatic complement complex proteins, termed C3 convertases, is a critical 

control point in the complement cascade. Two distinct C3 convertases, C4b2a and C3bBb 

(named for the complement components that make them up) are formed from the activation 

of three pathways: the classical pathway, the mannose-binding lectin (MBL) pathway, and 

the alternative pathway (Ricklin et al., 2010; Merle et al., 2015). C4b2a is generated by both 
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the classical pathway, which is initiated by the binding of antibody, antigen, and complement 

C1qrs complexes, and the MBL pathway, initiated by microbial recognition via the 

formation of MBL-microbial carbohydrate complexes (Ricklin et al., 2010; Merle et al., 
2015). C3bBb is formed by the alternative pathway, which is initiated by binding of the 

complement component, C3b, to the microbial surface. C4b2a (consisting of C4b and C2a) 

and C3bBb (consisting of C3b and Factor Bb) then recruit other complement components to 

generate C5 convertases. This leads to downstream effects including the release of 

proinflammatory peptides, the activation of phagocytic clearance, and the formation of a 

membrane attack complex that can lyse pathogens (Ricklin et al., 2010; Merle et al., 2015). 

Vertebrate hosts also produce complement regulatory proteins that bind to complement 

components (Zipfel and Skerka, 2009). These complement regulatory proteins include factor 

H (FH) as well as FH-like protein 1 (the truncated form of FH), both of which bind to C3b 

(Zipfel et al., 2002). These complement regulators recognize and lead to the degradation of 

other complement proteins, eventually inhibiting the complement system (Meri, 2016). The 

complement components and their regulatory proteins exhibit sequence variation among 

vertebrate hosts (approximately 60% to 70% sequence identity among different classes of 

vertebrate animals) (Ripoche et al., 1988; Ripoche et al., 1988b). The sequence variation of 

these proteins suggests a host-to-host difference of complement. Consistent with amino acid 

variation in different host complement proteins, different Lyme borreliae species/strains 

differ in their ability to survive in vertebrate host sera (Kurtenbach et al., 1998b; Kurtenbach 

et al., 2002; Ullmann et al., 2003) (Figure 1). This difference in spirochete survival in the 

serum has been correlated with the spirochetes’ capability to inactivate particular hosts’ 

complement (Kurtenbach et al., 1998b; Kuo et al., 2000; Nelson et al., 2000; Kurtenbach et 
al., 2002).

Spirochetes produce polymorphic outer surface proteins that facilitate 

different levels of host complement evasion

A number of Lyme borreliae polymorphic proteins may be involved in host-to-host 

differences in complement evasion. The main candidates are five Lyme borreliae’s FH-

binding proteins termed CRASPs (Complement Regulator Acquiring Surface Proteins), 

including CspA (also termed CRASP-1), CspZ (CRASP-2), ErpP (CRASP-3), ErpC 

(CRASP-4), and ErpA (CRASP-5) (Table 2) (Kraiczy and Stevenson, 2013). CspA is unique 

among the five CRASP proteins in that it is only expressed when the spirochetes are in the 

tick vector and at the biting site of host skin (Bykowski et al., 2007; Hart et al., 2018). The 

lack of cspA expression results in the inability of spirochetes to survive in vertebrate host 

sera (Brooks et al., 2005; Kenedy et al., 2009; Hart et al., 2018). Additionally, a cspA-

deficient B. burgdorferi is cleared from nymphal ticks feeding on mice, eventually leading to 

a dearth of spirochetes transmitted from ticks to mice (Hart et al., 2018). These defects in 
vitro and in vivo have been attributed to the lack of FH-binding activity of the cspAdeficient 

spirochetes to evade complement in a tick’s blood meal (Hart et al., 2018). Further, CspA is 

highly conserved within each Lyme borreliae species, but exhibits variation at the 

interspecific level (Wallich et al., 2005; Hammerschmidt et al., 2014). These CspA variants 

differ in their ability to facilitate FH-binding and serum survival in a host-specific manner 

and promote distinct levels of B. burgdorferi transmission from ticks to mice. This suggests 
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CspA may play a role in promoting hostspecific transmission of Lyme borreliae (Kraiczy et 
al., 2001; Wallich et al., 2005; Bhide et al., 2009; van Burgel et al., 2010; Hammerschmidt et 
al., 2014; Hart et al., 2018).

CspZ, when produced on the surface of a serum sensitive spirochete, allows for binding to 

human FH and confers spirochete survival in human serum (Hartmann et al., 2006; Siegel et 
al., 2008). Unlike cspA, cspZ is mainly expressed when spirochetes are in vertebrate hosts 

(Bykowski et al., 2007). A cspZ-deficient B. burgdorferi strain has the ability to colonize 

mice at the same levels as its wild type parental strain (Coleman et al., 2008). Additionally, 

Marcinkiewicz and colleagues (2018) incubated wild type B. burgdorferi with human blood 

to induce the production of CspZ. They discovered that this wild type spirochete displayed 

greater levels of bacteremia and dissemination in laboratory mice compared to a cspZ 
deletion mutant under the blood treatment condition (Marcinkiewicz et al., 2018). This 

finding suggests that spirochetes do not require CspZ to survive in mammalian hosts, but its 

presence may enhance the infectivity of B. burgdorferi. Additionally, CspZ is not carried by 

all Lyme borreliae species/strains (Rogers and Marconi, 2007; Rogers et al., 2009). Despite 

its high sequence conservation, i.e. 98% in B. burgdorferi strains, the ability of these strains 

to bind to human FH varies (Rogers and Marconi, 2007). This finding implies that the 2% 

sequence difference may contribute to this variable human FH-binding activity and human 

complement evasion by B. burgdorferi (Brangulis et al., 2014).

The CRASP genes erpP, erpC, and erpA are encoded on highly homologous cp32-derived 

plasmids and are co-expressed when B. burgdorferi is in vertebrate hosts (Bykowski et al., 
2007). The proteins derived from these genes belong to the OspE-related protein family 

(OspE proteins) because of their sequence similarity (77–90% of sequence similarity) 

(Marconi et al., 1996; Stevenson et al., 1996; Akins et al., 1999; Stevenson et al., 2002; 

Kraiczy et al., 2004; Brissette et al., 2008). These OspE proteins, though able to bind to 

human FH, do not promote human serum survival when they are individually produced on 

the surface of serum-sensitive borreliae (Siegel et al., 2010; Hammerschmidt et al., 2012). 

However, simultaneously producing ErpP and ErpA in a serum sensitive spirochete enables 

this strain to survive in human serum (Kenedy and Akins, 2011). Similarly, transposon-

inserted erpA mutant spirochetes co-infected with other transposon mutants exhibited 

decreased levels of colonization in C3H/HeN mice (Lin et al., 2012). These results suggest a 

non-essential but important function of OspE proteins in facilitating mammalian infection, 

consistent with the finding that not every infectious Lyme borreliae species encodes these 

proteins (Alitalo et al., 2005). Variation in OspE proteins has been observed among B. 
burgdorferi sl species/strains (Marconi et al., 1996; Stevenson et al., 1996; Akins et al., 
1999; Stevenson et al., 2002; Metts et al., 2003; Alitalo et al., 2005; Hovis et al., 2006; 

Brissette et al., 2008). OspE variants differ in their FHbinding ability in humans (Stevenson 

et al., 2002; McDowell et al., 2003; Alitalo et al., 2005) and other vertebrate hosts (Hellwage 

et al., 2001; Stevenson et al., 2002; McDowell et al., 2003; Alitalo et al., 2004; Alitalo et al., 
2005), implying a possibility that polymorphic OspE proteins may drive host-specific 

infection.

Additional Lyme borreliae proteins including BBK32 and OspC have been recently 

identified to promote host complement inactivation and/or facilitate the spirochete 
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bloodstream survival and dissemination (Caine and Coburn, 2015; Garcia et al., 2016; Caine 

et al., 2017). BBK32, for example, binds to C1r to inhibit the initiation of the classical 

pathway, but high sequence identity of the variants among Lyme borreliae (greater than 

70%) suggests that this protein is less likely to confer allelic variable and/or host-specific 

complement inactivation (Probert et al., 2001; Garcia et al., 2016). OspC binds to C4b to 

prevent the formation of C4b2a, resulting in spirochete evasion of classical and MBL 

pathways (Table 2) (Caine et al., 2017). In addition, an ospC-deficient B. burgdorferi 
exhibits the defects of bloodstream survival during early stages of murine infection, 

suggesting that OspC facilitates hematogenous dissemination (Caine and Coburn, 2015; 

Caine et al., 2017). OspC has been known as one of the most polymorphic proteins produced 

in Lyme borreliae (approximately 60% sequence identity among B. burgdorferi sl) (Wilske 

et al., 1993). This polymorphic protein also displays variable binding activity to human C4b 

(Caine et al., 2017). These findings thus encourage further investigations into the potential 

role of OspC in promoting the adaptive divergence of B. burgdorferi sl host specific 

infection at the species and strain level.

Polymorphic spirochete adhesins are potential contributors of host-Lyme 

borreliae association

In addition to the evasion of the host immune response, spirochete infectivity may also be 

driven by its ability to colonize host tissues (Coburn et al., 2005; Coburn et al., 2013). Such 

ability is partly attributed to the binding of Lyme borreliae to the extracellular matrix (ECM) 

components, including proteoglycans (Coburn et al., 2005; Brissette and Gaultney, 2014). 

Glycosaminoglycans (GAGs), including dermatan sulfate and heparin sulfate, are the 

components of proteoglycan (Lin et al., 2017). Borrelia burgdorferi colonizes mouse tissues 

less efficiently in mice deficient in decorin, a proteoglycan composed of GAGs (Brown et 
al., 2001). This observation is consistent with a positive correlation of the levels of GAG at 

mouse joints and the severity of arthritis during Lyme disease infection (Bramwell et al., 
2014). In fact, Lyme borreliae produce outer surface proteins (known as adhesins) that 

contribute to spirochete binding to GAGs and proteoglycans, resulting in cell adhesion and 

tissue colonization (Lin et al., 2017). Decorin-binding protein A (DbpA) binds to 

proteoglycan components, including dermatan sulfate, decorin, and biglycan (Guo et al., 
1998; Parveen et al., 2003; Lin et al., 2014) (Table 2). Borrelia burgdorferi strains that lack 

dbpA (and its functional paralog dbpB) are unable to infect mice (Blevins et al., 2008; Shi et 
al., 2008; Weening et al., 2008). This infectivity defect of the dbpBA deficient mutant has 

been correlated with an inability of this strain to bind to decorin and dermatan sulfate 

(Benoit et al., 2011). DbpA variants are extremely polymorphic among B. burgdorferi sl 

(58% sequence identity) (Roberts et al., 1998) and variants from different Lyme borreliae 

species/strains differ in their ability to bind to human decorin/dermatan sulfate/biglycan 

(Benoit et al., 2011; Salo et al., 2011; Lin et al., 2014). Further, the spirochetes producing 

each of these DbpA variants colonize mouse tissues at different levels (Lin et al., 2014). 

Because the lengths of GAGs vary among different vertebrate hosts (Thunell et al., 1967; 

Barry et al., 1994), these findings raise the possibility that DbpA may promote host-Lyme 

borreliae association by facilitating distinct levels of tissue colonization in different hosts. 

Additionally, Lyme borreliae produce OspF-related proteins (OspF proteins) that bind to 
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heparan sulfate to promote spirochete attachment to mammalian cells (Antonara et al., 2007; 

Lin et al., 2015) (Table 2). A recent study indicated that OspF variants from different B. 
burgdorferi strains display slightly different affinity in binding to porcine heparin sulfate 

(Lin et al., 2015). Such finding illuminates the potential role of OspF as a contributor to 

host-Lyme borreliae association. Overall, these variations in protein production among 

species/strains has allowed the spirochetes to effectively infect their specific classes of 

vertebrate hosts, thus reinforcing the host specialization and contributing to the divergence 

of Borrelia burgdorferi sl.

Barriers to investigate host-Lyme borreliae association: Application of 

appropriate spirochete strains and animal models

Investigating the host-specific roles of many Lyme borreliae proteins poses difficult 

challenges. Borrelia burgdorferi sl encodes nearly 100 outer surface proteins, many with 

redundant functions and/or expressed in a similar manner (Fraser et al., 1997; Dowdell et al., 
2017), which makes it difficult to delineate the phenotype promoted by each of these 

proteins and protein variants during infection. Thus, identifying the appropriate spirochete 

background strains with required defects, such as susceptibility to different hosts’ sera, lack 

of infectivity in different hosts, or lack of adhesion to different hosts’ cells, is needed to 

study the influence of the protein variants on host competence. In addition, the major hurdle 

to studying the host-pathogen association of Lyme borreliae is that no well-established 

animal models for non-mammalian hosts are currently available. Though previous efforts on 

using non-mammalian animals for Lyme borreliae infection have been documented (for 

birds, see Burgess, 1989; Bishop et al., 1994; Isogai et al., 1994; Olsen et al., 1996; Piesman 

et al., 1996; Richter et al., 2000; Kurtenbach et al., 2002b; for reptiles see Lane, 1990; Lane 

and Quistad, 1998), obtaining and maintaining wild-caught animals in the laboratory is often 

prohibitive. An additional challenge is that not all vertebrate hosts are able to persistently 

maintain Lyme borreliae (Burgess, 1989; Lane, 1990; Olsen et al., 1996; Piesman et al., 
1996; Richter et al., 2000). Furthermore, interspecies variation within animal orders such as 

rodents (Rodentia) and songbirds (Passeriformes) in Lyme borreliae competence have been 

observed (see Table 1 for references). These findings raise a general issue about which 

animal species appropriately represents a particular category of hosts. These difficulties 

warrant further investigations, as establishing non-mammalian Lyme borreliosis models 

would permit us to replicate the patterns of host competence seen in the field in a more 

controlled laboratory environment.

Conclusion and future work

Lyme borreliae are comprised of numerous strains and species that are maintained in an 

enzootic cycle by surviving in Ixodes ticks and various vertebrate hosts. Variation among 

spirochete species/strains in their ability to infect different hosts has been documented, but 

the cause of this variation remains unknown. Here, we discussed the possibility of variability 

of host immune response to different species of Lyme borreliae, resulting in variable 

infectivity. We also listed potential polymorphic Lyme borreliae proteins that could facilitate 

host-specific infection. Future work is needed to further define these mechanisms using 
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different laboratory animals such as avian and mammalian hosts. This line of investigation 

will help design targeted intervention strategies against these mechanisms to block the 

infection route and ultimately reduce the burden of Lyme borreliosis.
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Figure 1. Potential mechanisms that drive vertebrate reservoir host and Lyme borreliae species 
association.
The indicated B. burgdorferi sensu lato species are acquired and transmitted between Ixodes 
scapularis ticks and different vertebrate reservoir hosts including mammals, birds, and 

reptiles. The potential mechanisms that drive this spirochete-host association include strain 

to strain differences in the induced (A) innate immune responses such as the activation of 

macrophages leading to phagocytosis and cytokine/chemokine release, and the binding of 

spirochete complement regulator-binding proteins (CRBP) to complement regulators (CR) 

and complement binding proteins to complement; (B) adaptive immune response such as 

antibody production; and (C) polymorphic spirochete adhesins facilitate Lyme borreliae 

binding to cells and colonizing tissues.
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Figure 2. Complement activation and control. The host complement is activated via classical, 
mannose-binding lectin (MBL), and alternative pathways.
The classical pathway is activated by the binding of C1q, C1r, and antibodies to the 

pathogen antigens. The MBL pathway is initiated by the binding of lectins and MASP-2 to 

the pathogen’s carbohydrates. Finally, the alternative pathway is triggered by C3b binding to 

the pathogen’s surface structure. Host complement regulators, factor H (FH) and FH-like 

protein 1 (FHL), are targeted by Lyme borreliae surface proteins, CspA, CspZ, and OspE, 

which then inhibits the formation of C3bBb. Borrelia burgdorferi sl outer surface protein 

OspC binds to C4b and prevents the creation of C4b2a. The inhibition of C3bBb and C4b2a 

hinders the generation of C3a, iC3b, and C5a leading to phagocytosis, inflammation, and the 

prevention of C5b-9 formation on the surface of B. burgdorferi and ultimately spirochete 

lyses.
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Table 2.

Lyme borreliae outer surface proteins that confer allelic-variable functions in vitro and/or in vivo.

Lyme borreliae Protein Ligands
a

Allelic-variable functions borreliae

In vitro In vivo

Complement regulator-binding proteins

CspA Factor H FH binding, Serum resistance, 
Complement inactivation

Survival in ticks blood meal, Tick-to-
host transmission

CspZ Factor H FH binding ND
b

OspE (ErpP, ErpC, ErpA) Factor H FH binding ND

Complement-binding protein

OspC C4b C4b binding Early bloodstream survival

Adhesins

DbpA Dermatan Sulfate, 
Decorin, biglycan

Dermatan Sulfate/Decorin/biglycan 
binding, Attachment to cells Tissue colonization

OspF Heparan Sulfate Heparan Sulfate binding ND

a
The ligands that particular Lyme borreliae proteins bind in an allelic-variable fashion

b
Not determined
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