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Abstract

Crohn’s disease and ulcerative colitis are driven by both common and distinct underlying

mechanisms of pathobiology. Both diseases, exhibit heterogeneity underscored by the vari-

able clinical responses to therapeutic interventions.

We aimed to identify disease-driving pathways and classify individuals into subpopula-

tions that differ in their pathobiology and response to treatment.

We applied hierarchical clustering of enrichment scores derived from gene set variation

analysis of signatures representative of various immunological processes and activated cell

types, to a colonic biopsy dataset that included healthy volunteers, Crohn’s disease and

ulcerative colitis patients. Patient stratification at baseline or after anti-TNF treatment in clini-

cal responders and non-responders was queried. Signatures with significantly different

enrichment scores were identified using a general linear model. Comparisons to healthy

controls were made at baseline in all participants and then separately in responders and

non-responders. Fifty-nine percent of the signatures were commonly enriched in both condi-

tions at baseline, supporting the notion of a disease continuum within ulcerative colitis and

Crohn’s disease. Signatures included T cells, macrophages, neutrophil activation and poly:

IC signatures, representing acute inflammation and a complex mix of potential disease-

driving biology. Collectively, identification of significantly enriched signatures allowed estab-

lishment of an inflammatory bowel disease molecular activity score which uses biopsy

transcriptomics as a surrogate marker to accurately track disease severity. This score sepa-

rated diseased from healthy samples, enabled discrimination of clinical responders and

non-responders at baseline with 100% specificity and 78.8% sensitivity, and was validated

in an independent data set that showed comparable classification. Comparing responders

and non-responders separately at baseline to controls, 43% and 70% of signatures were

enriched, respectively, suggesting greater molecular dysregulation in TNF non-responders

at baseline. This methodological approach could facilitate better targeted design of clinical

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006951 April 30, 2019 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pavlidis S, Monast C, Loza MJ, Branigan

P, Chung KF, Adcock IM, et al. (2019) I_MDS: an

inflammatory bowel disease molecular activity

score to classify patients with differing disease-

driving pathways and therapeutic response to anti-

TNF treatment. PLoS Comput Biol 15(4):

e1006951. https://doi.org/10.1371/journal.

pcbi.1006951

Editor: Atle van Beelen Granlund, Norwegian

University of Science and Technology, NORWAY

Received: September 21, 2018

Accepted: March 13, 2019

Published: April 30, 2019

Copyright: © 2019 Pavlidis et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All GSE files are

available from Gene Expression Omnibus at the

following links: GSE16879 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE16879) and

GSE23597 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE23597).

Funding: The authors received no specific funding

for this work.

http://orcid.org/0000-0001-9435-6064
http://orcid.org/0000-0002-4724-848X
http://orcid.org/0000-0002-8609-118X
http://orcid.org/0000-0001-9741-9067
http://orcid.org/0000-0002-3075-2161
http://orcid.org/0000-0001-9233-1664
https://doi.org/10.1371/journal.pcbi.1006951
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006951&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006951&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006951&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006951&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006951&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006951&domain=pdf&date_stamp=2019-05-10
https://doi.org/10.1371/journal.pcbi.1006951
https://doi.org/10.1371/journal.pcbi.1006951
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16879
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16879
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23597
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23597


studies to test therapeutics, concentrating on patient subsets sharing similar underlying

pathobiology, therefore increasing the likelihood of clinical response.

Author summary

Patients exhibiting similar phenotypical characteristics, diagnosed with the same disease,

exhibit variable response to therapeutics. This is a major health care issue, due to the

increased patient suffering and the socioeconomical burden that occurs. Crohn’s disease

and ulcerative colitis constitute good examples of inflammatory conditions, with sufferers

responding differentially to existent therapeutics. Here, we identified disease-driving

pathways and classified individuals into subpopulations that differ in their pathobiology

and response to treatment. We utilized gene set variation analysis and transcriptomic data

from inflammatory bowel disease sufferers to stratify patients at baseline or after anti-

TNF treatment in clinical responders and non-responders. We explored gene signatures

obtained from the literature, relevant to immune processes, which were significantly

enriched in disease compared to healthy controls, as well as before and after treatment.

Using these signatures, we established an inflammatory bowel disease molecular activity

score, which allowed us to separate clinical responders and non-responders at baseline

with high specificity and sensitivity. We validated the proposed approach in an indepen-

dent data set, demonstrating comparable classification. This methodological approach

may lead to better targeted design of clinical studies, allowing the selection of patient shar-

ing similar underlying pathobiology, thus increasing the likelihood of clinical response to

treatment.

Introduction

Inflammatory bowel disease (IBD) is a phenotypically and molecularly heterogeneous condi-

tion characterized by chronic inflammation of the gut [1, 2, 3, 4]. IBD patients unable to find

effective therapy, experience an extremely poor quality of life and can progress to surgical

removal of affected tissues [1, 3]. While controlling inflammation with relevant therapeutics

has been shown to improve quality of life and clinical outcomes [5, 6], biomarkers to guide the

choice of therapeutics are currently limited to CRP and fecal calprotectin, and patients must

often be treated for an extended period to determine if the chosen drug is efficacious [7]. Con-

sidering the size of phase 2 and phase 3 studies in IBD and the increasingly routine inclusion

of biomarker collections it might seem surprising that biomarkers for clinical response have

not been identified. However, availability of data is not the main issue hampering personalized

medicine in IBD. Personalized medicine, especially in Crohn’s disease (CD), is challenged by

the lack of accuracy in defining a responsive phenotype and lack of agreement in the field on

the types of molecular features that should be used to predict patient response [8, 9].

One of the most critical issues hampering identification of biomarkers for clinical response

is the definition of a responder phenotype. Traditionally, CD and UC disease activity scores

are based on patient reported outcomes, physician assessments, and, endoscopic assessment

[1, 3]. While these endpoints are sufficiently accurate to assess efficacy of candidate therapeu-

tics in clinical trials, they require relatively large numbers of subjects in each arm to account

for variability. While there is likely bona fide variation in disease severity, the underlying

molecular dysregulation remains unknown given that spontaneous and permanent remission
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is extremely rare. This variability in disease severity that does not correlate with the underlying

molecular disease, challenges identification of biomarkers to guide treatment decisions

because identification of these biomarkers is predicated on a well-defined and accurate

response phenotype. In other words, all responders, post-treatment should be those that

improved due to the specific mechanism of action of the drug. Introduction of even a small

number of subjects who did not truly respond to the drug into the responder group will force

computational methods to attempt to find biomarkers that apply to both bona fide and errone-

ous responders, alike. This will result in a reduced ability to identify the best biomarkers. In

addition, responders and non-responders incorrectly identified clinically will falsely reduce

sensitivity and specificity of a good biomarker because even a perfect biomarker will not agree

with an erroneous clinical responder classification. Thus, the issues of defining response and

identifying biomarkers for personalized medicine are inexorably linked.

Even with a perfect response phenotype there remains the challenge of identifying the cor-

rect tissue and the correct type of molecular data for biomarker identification. The main candi-

dates have historically been gut tissue, the periphery, and genetics [10, 11, 12, 13, 14]. Gut

tissue is attractive because this is the site of disease, however, many drugs are administered sys-

temically so it is unclear to what degree gut tissue contains information regarding the capabil-

ity of the individual to respond. The opposite argument can be made for the periphery.

Indeed, it is easier to sample and captures the systemic state of the individual, while it may

however not efficiently store information regarding the local state of the gut. Lastly, genetics,

especially genome-wide approaches, presents the challenge of having enough individuals to

identify associations [15]. In general, genetic associations with phenotypes in IBD have been

weak compared to other diseases, though there are some hints that this approach may be fruit-

ful [16, 17].

To address these challenges to personalized medicine in IBD we made several assumptions

in the present work: 1) the response phenotype must be determined as accurately as possible;

2) the site of disease must contain information regarding the response potential of the individ-

ual and 3) both pre- and post-treatment samples are necessary to establish the molecular

impact of the drug and in doing so evaluate the accuracy of the response phenotype. Thus, we

used an established IBD dataset with rigorous response phenotype definitions to test an

approach to capturing the molecular severity of disease [18]. Our results suggest that disease

severity can be accurately tracked using biopsy transcriptomics in a manner that may support

reducing the size of clinical trials designed to test the efficacy of therapeutics. Furthermore,

our results suggest that response to anti-TNF may be related to the degree to which subjects

are molecularly inflamed when the drug is administered. While it is widely assumed that activ-

ity of the TNF pathway would indicate those more likely to respond to anti-TNF therapy (we

assume thanks to the evolution of personalized medicine in oncology) [19, 20], our results sug-

gest the opposite conclusion. Specifically, that subjects with elevated activity of a particular

pathway are less likely to respond to inhibition of that pathway. We hypothesize that this is

due to pharmacological limitations in those patients such that drug levels cannot be increased

to the point where signaling through the pathway is reduced sufficiently for clinical response.

Materials and methods

Gene signature collection

A collection of gene signatures was assembled from publications presenting results of microar-

ray experiments relevant to immune system processes and responses. In general, these signa-

tures include immune cell gene expression profiles from healthy and disease groups and gene

expression changes in response to inflammatory modulators, such as cytokines and drugs. S1
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Table provides an overview of the assembled gene signature collection while S2 Table reports

the genes included in each signature. Gene signatures published in the original manuscripts

were incorporated into our collection as presented by the authors. For other signatures in our

collection, which were not presented in the original manuscript, differential gene expression

analysis was performed using general linear modeling (GLM) of the published microarray

datasets. Gene signatures were split into up- and down-regulated genes relative to control and

sets of less than 5 genes were discarded. HGNChelper R package was used to automatically

update outdated gene symbols [21]. The naming of signatures was based on the following

approach: the tissue or cell type, followed by the experimental condition, organism, experi-

mental setting (i.e. in vivo (IVV), in vitro (IVS) or ex vivo (EXV) stimulation), followed by the

direction of expression (up or down). The signatures are listed in order of their acquisition (S1

and S2 Tables).

When comparing all gene lists from the 103 gene signatures to identify possible gene over-

laps, we found that only 0.5% (28 of the 5253) of pairwise signature comparisons showed an

overlap of 20% or more genes. Thus, these gene signatures predominantly represent lists of

genes that are distinct from each other.

Gene set variation analysis (GSVA)

GSVA was run using the R Bioconductor GSVA package [22]. Enrichment scores (ES) for

gene expression data corresponding to Crohn’s disease (CD) and Ulcerative colitis (UC)

((GEO), GSE16879, [18]) were subjected to statistical analysis with the Array Studio software

(Omicsoft Corp., Research Triangle Park, NC, USA). A GLM was applied to compare enrich-

ment scores between groups. Reported values of significance (p) were adjusted with the Benja-

mini–Hochberg False Discovery Rate (FDR-BH) procedure [23].

Gene signatures ES were significantly different between two groups if the difference in

means of the ES was at least 0.2 and the significance as measured by a t-test was less than or

equal to 0.05.

Visualization of the distribution of ES was performed with the ggplot2 R package [24]. ES

were subjected to hierarchical clustering and visualization utilizing the Euclidian distance met-

ric and the Bioconductor ggplots R package [25].

Analysis workflow

Fig 1 describes the workflow used to analyse the disease data sets using the assembled signature

collection. An ES matrix was generated using GVSA applied to the data sets using the gener-

ated signature collection. GLM analysis was used to select significantly enriched signatures at

baseline when comparing disease groups to NHV common to both diseases. The ES of these

signatures were hierarchically clustered, and the ES for each of these signatures summed to

build a molecular disease severity score. The molecular disease severity score was used to con-

struct classification models using a GLM. For differential gene expression analysis, we defined

a fold change of 2 and a falls discovery rate of 5% (FDR<0.05) as thresholds, using the entire

gene expression platform. Following these criteria, 103 signatures were generated totaling

4322 unique genes. For the I_MSD score, 58 signatures consisting of 3055 unique genes were

used.

Ethics statement

For GSE16879: The study was carried out at the University Hospital of Gasthuisberg in Leuven

(ClinicalTrials.gov number, NCT00639821). The ethics committee of the University Hospital

approved the study and all individuals gave written informed consent. For GSE23597: The
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multicenter, randomized, double-blind, placebo-controlled ACT-1 (Clinical Trials.gov num-

ber, NCT00036439) was conducted globally at 62 (ACT-1) sites between March 2002 and

March 2005. The Institutional Review Board or Ethics Committee at each site approved the

protocols.

Results

Generation of the gene signature library

Previous analyses of transcriptomic data of biopsies taken from subjects with IBD has generally

relied on the analysis of individual genes [18, 26, 27, 28]. Here, we sought to take a different

approach and analyze previously published IBD data using gene expression signatures. Use of

these signatures reduces the complexity of a gene expression dataset from over 50 thousand

probe sets to 103 defined units of biology represented by each signature. The gene signature

library we assembled from GEO datasets representing various pathways or cell types (S1 and

S2 Tables) covering a broad range of immunological processes that could quantify IBD disease

biology. These gene signatures can be used to explore patient stratification and biomarkers of

disease severity with the GSVA algorithm which computes enrichment scores for each sample

and each gene signature. This enrichment score is an estimate of the relative degree to which a

sample expresses the genes in a given signature.

Disease related gene expression and signature library data

Transcriptional data from IBD tissue was available through the gene expression omnibus

(GEO) dataset GSE16879 from Crohn’s disease (CD) and ulcerative colitis (UC) [18]. This

data set was chosen because it represented enough numbers of patients to assess patient strati-

fication and it included patient data before and after a therapeutic intervention (anti-TNF

therapy), yielding clinical responders (R) and non-responders (NR). In addition, the patients

are clinically characterized in detail and criteria for identifying responders and non-respond-

ers well documented [18].

Enriched signatures in Crohn’s disease and ulcerative colitis at baseline

We first assessed which gene signatures showed higher enrichment in each disease by compar-

ing baseline enrichment scores for UC and CD samples to healthy controls (Figs 2 and S1).

Fig 1. Workflow chart used to identify patient level disease driving biology. Disease related gene expression data representing the

differential between either diseased to healthy or pretreated to post-treated samples for either CD or UC were assembled. Also

assembled was a gene expression signature library representing various pathways or cell types. Gene set variation analysis (GSVA)

was then applied to generate an enrichment score (ES) matrix in each disease which then underwent general linear model-based

clustering to enable interpretation.

https://doi.org/10.1371/journal.pcbi.1006951.g001
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Signatures identified in this manner represent biological processes that may be dysregulated in

disease. This analysis identified 59 signatures in CD and 67 signatures in UC that differed

from healthy. 58 of those signatures overlapped between the two lists, suggesting that despite

the clinical differences between the two diseases, biological processes in diseased tissues for

CD and UC are highly concordant. This signature-based approach allows for the possibility

that while different genes may be involved in specific immunological processes between the

two diseases, the immunological processes themselves may be conserved. Notably, all 43 signa-

tures that showed higher enrichment in CD responders, at baseline, compared to the healthy

volunteers, were contained within the aforementioned 58 signatures.

The biology implicated by the 58 signatures shared between CD and UC was diverse. These

signatures were derived from activated T cells, monocytes, macrophages and neutrophils but

also from mouse lungs upon either poly IC or bleomycin treatment (S3 Table). Generally,

many signatures represented acute inflammatory processes. Of note, several signatures derived

from asthma samples from the lungs were also enriched (S3 Table) highlighting conserved dis-

ease mechanisms across various inflammatory diseases.

Next, we used our gene signature approach to explore whether our gene signatures changed

with anti-TNF treatment. We first stratified our population based on whether or not a clinical

response was achieved post-treatment as this factor may influence the observed molecular

changes. Interestingly, in the R population, a total of 40 gene signatures for CD and 38 gene

signatures for UC were found to be significantly down-regulated with anti-TNF treatment

between baseline and post-treatment. All 38 UC gene signatures were part of the 40 CD down-

regulated signatures, suggesting that clinical benefit is associated with resolution of the same

Fig 2. Differential signatures in Crohn’s disease and ulcerative colitis across various patient group comparisons. Venn

diagrams of upregulated signatures significantly enriched using a general linear model analysis on GSVA ES comparing at baseline

(BL) either all (A) or clinical responder (R) (B) or clinical non-responder (NR) (C) participant samples in CD and UC to healthy

volunteers. Also shown are the results comparing R vs NR at BL (D), post-treatment (PT) vs BL in R (E) and NR (F) respectively.

In A, B and C, and in D, E and F the number of signatures positively and negatively enriched are listed respectively.

https://doi.org/10.1371/journal.pcbi.1006951.g002
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types of gene signatures for both diseases. This is consistent with our earlier observation that

the same gene signatures also seem to be present at baseline in both diseases (Fig 1A). Indeed,

the signatures that changed in the R population were a subset of those that were differentially

enriched at baseline compared to healthy (S3 Table). Finally, the NR population had no signifi-

cant molecular changes with our approach. Altogether these results suggested that clinical ben-

efit may be coupled to molecular changes related to the same molecular dysregulation seen at

baseline. Furthermore, this molecular dysregulation is highly conserved between CD and UC

(S3 Table). Our approach appears to preferentially highlight molecular changes associated

with the clinical state of the disease considering that pharmacodynamic changes associated

with anti-TNF treatment were not detected in the NR population.

Hierarchical cluster analysis

Next, the molecular states (baseline and post-treatment, responder and non-responder) were

mapped to a common framework to better understand how they relate. Enrichment scores for

CD and UC (Figs 3 and 4, respectively) were clustered with all samples but only for the signa-

tures that showed higher enrichment in each disease compared to healthy before treatment

(Fig 2A). In CD, we obtained two main sample clusters with this approach (Fig 3). The NR

population, whether at baseline or post-treatment, clustered together, consistent with our ear-

lier observation that there were no molecular changes in this group with treatment. This clus-

ter also included nearly all baseline R samples. Thus, we believe this cluster represents

unresolved molecular disease which exists at baseline in the R population and at baseline and

post-treatment in the NR population. A nearly identical cluster was observed with UC samples

(Fig 4).

The second cluster was almost entirely comprised of healthy controls and nearly all R post-

treatment. This suggests that while R have unresolved molecular disease at baseline, post-treat-

ment this molecular disease has resolved such that it becomes more like healthy controls. An

analysis based on clustering using whole genome expression data produced similar findings

[29]. This is consistent with our earlier assertion that resolution of molecular disease, towards

a healthy molecular state, is associated with clinical response. Again, a similar cluster was

observed with UC samples (Fig 4).

Differences in T, B and monocyte cells are aligned with the identified

patient clusters

Fig 5 shows the enrichment score scatterplots for the activated T, B and monocyte signatures

(#1. Tcell.activated.HS.IVS, #2. Bcell.activated.HS.IVS and #3. Monocytes.activated.HS.IVS; S1

and S2 Tables). These cell types have been described to drive inflammatory processes mediat-

ing pathology in both CD and UC [30, 26, 27]. For all three signatures, the enrichment scores

at baseline were significantly higher when compared to the respective control samples in CD

and UC in both R and NR. Also, an overall trend for higher enrichment in NR was observed in

CD and UC with several differences being statistically significant in either or both diseases

(Fig 5B–5F; S4 Table). That same trend was observed with signatures for activated dendritic

cells (#5. Dendritic.activated HS.IVS), neutrophils (#6. Neutrophil.activated.HS.IVS) and mac-

rophages (#89. Macrophages.GM-CSF.LPSc.HS.IVS) indicative of various cell types showing

activation in CD and UC. However, for the activated natural killer signature (#4.NKcell.acti-

vated.HS.IVS), no differential enrichment across the patient sample groups was observed.

Post-treatment in R, no statistically significant difference was observed with healthy sam-

ples. In contrast in NR, the statistically significant difference with healthy samples was main-

tained. When comparing the enrichment scores from R or NR post-treatment versus baseline,

I_MDS: an inflammatory bowel disease score predictive of response to anti-TNF treatment
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Fig 3. Hierarchical clustering heat map of gene set variation analysis enrichment scores of Crohn’s Disease participant samples. Shown is the heat map

resulting from the hierarchical clustering of the gene set variation (GSVA) enrichment scores (ES) of Crohn’s disease (CD) participant samples (GSE16879)
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all were statistically significant in R and none were in NR. A clear difference was that none of

the dysregulated biology in either disease at baseline was normalized post-treatment in NR.

Indeed, comparing post-treatment R versus NR, all enrichment scores comparisons were sta-

tistically significant with only one exception for activated T cells (Fig 5A).

Looking deeper into T cell biology, we next examined T helper (Th) cell and innate lym-

phoid cell (ILC) signatures. These cell types have been previously described as disease drivers

in IBD [31, 32, 33, 34, 35, 36]. Of note, there was minimal gene composition overlap for all Th

or ILC signatures (Tables 1 and S2) consistent with representing non-overlapping biology.

Without separating R from NR, only the Th17 in CD and the Th1 and Th17 signatures in UC

were enriched (S3 Table). When separating R from NR, none of the Th signatures were

enriched in R in either CD or UC, while all of them enriched in CD and the Th1 and Th17

were enriched in UC. For the ILC signatures, the ILC2 and ILC3 signatures were enriched in

all patient samples in CD while in UC the ILC1 and ILC2 were enriched. Separating samples

into R and NR, none of the ILC signatures were enriched in R while all of them were in NR in

both diseases. We also looked at both the intra- and inter-correlation between the T helper

(Th) signatures and the innate lymphoid cell (ILC) signatures (Table 1).

In CD, all signatures correlated with each other except for the ILC3 with the Th1 and Th2

signatures. Correlations R� 0.7 for the ILC1 signature (#100 siLP.ILC1.MM.UP) was

observed with all three T helper signatures (#36 Th1.activated.HS.IVS.UP, #37 Th2.activated.

HS.IVS.UP, #39 Th17.activated.HS.IVS.UP). Similarly, the ILC2 signature (#101 siLP.ILC2.

MM.UP) was also correlated with all T helper signatures although at a lower level. For the

ILC3 signature (#102 siLP.ILC3.MM.UP) however the only significant correlation was

observed with the Th17 signature. In UC, the ILC1 and ILC2 signatures also correlated with all

T helper signatures and here also the ILC1 signature showed a stronger correlation when com-

pared to ILC2 signature. Finally, no significant correlation was observed between the ILC3 sig-

nature and any of the T helper signatures. In conclusion, strongly correlated signatures were

observed in both CD and UC between ILC1 and ILC2 signatures with all T helper signatures

while the ILC3 signature only correlated in CD with the Th17 signature.

Generation of a signature score in CD and UC

Taken together, our analysis suggests that a shared set of gene signatures differentiates CD and

UC from healthy controls and that resolution of these gene signatures toward a healthy molec-

ular state is associated with clinical response. Furthermore, for both diseases, clinical NRs are

characterized by a lack of change in these gene signatures. In both diseases these observations

could be explained by a tight coupling between gene signature enrichments and clinical state.

These findings raise the possibility that a common set of gene signatures could theoretically be

used to track the clinical state of the subject regardless of whether they have been diagnosed

with CD or UC.

To test this hypothesis, we created a score by first summing the enrichment scores from the

58 upregulated signatures that were differentially expressed compared to healthy controls in

both CD and UC (Fig 2A). For visual convenience, we then subtracted the mean of the healthy

controls such that zero in our score would be considered a state of health. This score represents

the total molecular dysregulation observed for each patient as a distance from normal with the

assumption that each signature is equally important. This assumption is supported by our

using all signatures significantly enriched from comparing post-treatment (PT) vs baseline (BL) in clinical responders (R) and non-responders (NR) as well as

comparing R to NR at BL from Fig 2.

https://doi.org/10.1371/journal.pcbi.1006951.g003
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observation that the overlap between the genes in the signatures in the collection was very

small.

Fig 6 shows the clustering of the scores across the different disease groups. Clinical response

is strongly associated with molecular resolution of the score post-treatment while clinical non-

response is associated to no change in the score post-treatment. This is true for both CD and

UC. Fig 7A shows the resulting scatter plot of the score across the different disease groups. As

expected, the score visually discriminates disease from healthy controls. This is a trivial obser-

vation because the score only includes signatures that were differentially enriched from healthy

controls. These results support the notion that molecular disease burden, as summarized by

our signatures, tracks closely with clinical disease severity and could be explored as a tool for

quantifying disease severity.

In addition to tracking clinical disease severity changes in time, the molecular disease sever-

ity score also appeared to differentiate R and NR populations at baseline (Fig 7A). Responders

were characterized be a reduced activity score at baseline compared to non-responders, sug-

gesting the hypothesis that response and nonresponse are related to burden of disease at base-

line rather than a difference in specific pathways between the two groups. Indeed, the

molecular disease severity score could identify clinical responders and non-responders before

treatment with 100% specificity and 78.8% sensitivity (Fig 7B). This discriminatory ability was

confirmed in an independent dataset (Fig 7C), [37, 38, 39] with 87.5% specificity and 85.7%

sensitivity, suggesting a robust relationship between the score and patient outcomes.

Discussion

We have demonstrated that by using an approach based on GSVA and signatures characteris-

tic of inflammatory and immune processes ulcerative colitis and Crohn’s disease patient

groups can be segregated by various degrees of underlying functional pathology. Signatures

were commonly enriched in both conditions at baseline, supporting the notion of a disease

continuum within CD and UC, however there was also heterogeneity within each disease

group which was associated with the clinical response to TNF therapy. We describe an Inflam-

matory bowel disease Molecular Activity Disease Score (I_MDS) which provides a means to

track the molecular state of an IBD patient, which we show is tightly coupled to the clinical

state of the individual.

A typical microarray experiment when comparing groups of samples can easily result in

hundreds or thousands differentially expressed genes which must then be interpreted. GSVA

represents an advantage over other methods in that it computes an enrichment score from each

individual sample from the observed gene expression levels, and hence is classified as single-

sample method as opposed to the Over-Representation Analysis (ORA) [40] which relies on

identifying differential expressed gene lists and linking them to a pathway. GSVA thus alleviates

the need to select significant genes as a first step and provides a unique result for a given dataset.

It also provides an estimate of the behavior of a gene set, within the entire dataset, based on the

variation of other genes in the dataset, in an unsupervised manner. Thus, it does not rely on any

predefined patient or sample groups such as those represented by clinical response or non-

response e.g. and produces a list of enrichment scores per individual subject. It also avoids the

common assumption behind the models used for ORA, such as independence between genes, a

Fig 4. Hierarchical clustering heat map of gene set variation analysis enrichment scores of ulcerative colitis participant samples. Shown is the heat map

resulting from the hierarchical clustering of the gene set variation (GSVA) enrichment scores (ES) of ulcerative colitis (UC) participant samples (GSE16879) using

all signatures significantly enriched from comparing CD post-treatment (PT) vs baseline (BL) in clinical responders (R) and non-responders (NR) as well as

comparing R to NR at BL from Fig 2.

https://doi.org/10.1371/journal.pcbi.1006951.g004
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Fig 5. T cell, B cell and monocyte scatterplot representation of gene set variation analysis enrichment scores for the Crohn’s disease and

ulcerative colitis participant samples. Shown are the scatterplots of the gene set variation (GSVA) enrichment scores (ES) of Crohn’s disease (CD)

and ulcerative colitis (UC) participant samples (GSE16879) from signature #1_Tcell.activated.HS.IVS (A, D), #2_Bcell.activated.HS.IVS (B, E) and

#3_Monocyte.activated.HS.IVS (C, F). Samples have been classified into normal healthy volunteer (NHV), clinical responders at baseline (R BL) or

post-treatment (R PT) and clinical non-responders at baseline (NR BL) or post-treatment (NR PT). Panels A, B and C show the scores in UC while D,

E and F show the scores in CD. Pair-wise T-test statistics are listed in S4 Table.

https://doi.org/10.1371/journal.pcbi.1006951.g005
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likely cause of the inflated rate of false positive findings [40]. Furthermore, the association

between the phenotype and the sample-level gene set scores can be conducted with classical sta-

tistical models rendering the analysis of even very complex designs (e.g. time series, longitudinal

designs, etc.) easy. Furthermore, GSVA analysis has recently been used to distinguish between

subsets of psoriatic patients further highlighting the clinical utility of this bioinformatic

approach [41].

Crohn’s disease and ulcerative colitis are complex diseases characterized by relapsing

inflammation depending upon genetic factors, deregulated immune responses, microbial dys-

biosis, and environmental factors [42, 43]. While classified as separate diseases, common driv-

ing disease mechanisms have been highlighted such as the shared genetics risk factors [15, 44,

45], common gene methylation [28, 46] as well as common involvement of various biological

pathways [2, 47, 39, 38]. The notion of a continuum of disorders within inflammatory bowel

diseases (IBD) has also been explored [15]. Our analyses support the notion of a continuum

within IBD where UC and CD samples co-cluster both at baseline and after treatment. The

high level of shared disease biology illustrated by the common enrichment of 59% (61/103) of

all signatures tested also supports this notion. These signatures span a wide array of biology

across different cell types such as e.g. T, B, monocytes, macrophages as well as dendritic cells,

including activation of a specific cell type or exposure of a cell to selected stimuli, different

inflammatory pathways such as e.g. T helper cell (Th), innate lymphoid cells (ILC) or innate

immunity pathways as well as signatures generated from animal models or borrowed from

other diseases such as e.g. a bleomycin lung injury model or asthma. While Th1 responses

have been thought to drive the pathogenesis of CD [48, 49, 50] and Th2 responses drive UC

pathogenesis [48, 51, 52], our data rather suggest presence from all Th cell subsets examined

Table 1. T helper and innate lymphoid cell signature correlations in Crohn’s and ulcerative diseases.

CD

Th1.activated.HS.IVS.UP Th2.activated.HS.IVS.UP Th17.activated.HS.IVS.UP

ID 36 (18 genes) ID 37 (42 genes) ID 39 (18 genes)

siLP.ILC1.MM.UP r: 0.89, p<10–14 r: 0.70, p<10–6 r: 0.76, p<10–8

ID 100 (62 genes) 3 genes 1 gene 1 gene

siLP.ILC2.MM.UP r: 0.60, p<10–4 r: 0.53, p<10–3 r: 0.63, p<10–5

ID 101 (123 genes) 1 gene 1 gene 3 genes

siLP.ILC3.MM.UP r: 0.22, p: 0.15 r: 0.13, p: 0.42 r: 0.38, p = 0.01

ID 102 (17 genes) 1 gene 1 gene 0 genes

UC

Th1.activated.HS.IVS.UP Th2.activated.HS.IVS.UP Th17.activated.HS.IVS.UP

ID 36 (18 genes) ID 37 (42 genes) ID 39 (18 genes)

siLP.ILC1.MM.UP r: 0.79, p<10–15 r: 0.71, p<10–8 r: 0.64, p<10–6

ID 100 (62 genes) 3 genes 1 gene 1 gene

siLP.ILC2.MM.UP r: 0.46, p<10–3 r: 0.57, p<10–5 r: 0.63, p<10–6

ID 101 (123 genes) 1 gene 1 gene 3 genes

siLP.ILC3.MM.UP r: -0.01, p: 0.91 r: -0.14, p: 0.30 r: -0.05, p = 0.71

ID 102 (17 genes) 1 gene 1 gene 0 genes

For each pairwise comparison, the correlation (r), the p value and the number of overlapping genes are indicated.

Insignificant correlations are highlighted in gray.

https://doi.org/10.1371/journal.pcbi.1006951.t001
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especially in NR. This is in line with data published showing increased IFNγ and lower IL13

levels from patient biopsies in UC when compared to CD [53, 54] suggestive of a Th1 contri-

bution in UC. Furthermore, dendritic cells isolated from CD and UC patients showed produc-

tion of both IL17 and IL23 indicative of a Th17 involvement in both diseases as illustrated

from our enrichment results of the Th17 signature in both CD and UC [55]. Increased gut

mucosal IL17A transcripts as well as an increased Th17 and Th1/Th17 cell number observed

in CD and UC patient samples when compared to healthy also support our findings [53, 56,

57]. Group 1 innate lymphoid cells (ILC1s) produce interferon γ and depend on Tbet, group 2

ILCs (ILC2s) produce type 2 cytokines like interleukin-5 (IL-5) and IL-13 and require

GATA3, and group 3 ILCs (ILC3s) include lymphoid tissue inducer cells, produce IL-17 and/

or IL-22, and are dependent on RORγt [58]. Our data show that all ILC signatures were

enriched in both CD and UC in NR supporting a role of all three subsets in IBD. Indeed, an

increased frequency of ILC1 and ILC3 cells in in IBD has been reported when compared to

healthy [34, 59, 60, 61, 62], and this increase is associated with disease severity [63]. ILC2s pro-

ducing IFNγ in addition to IL13 have also recently been described in intestinal tissues from

patients with Crohn’s disease [64] in line with the enrichment of the ILC2 signature not only

in all patient samples but also in NR suggesting that non-response to TNF therapy might also

be linked to ILC2 activity. Highly correlated Th and ILC signature enrichments were seen in

both diseases showing the tight association of these different cell types in the pathology of CD

and UC. It is therefore difficult to differentiate between the roles of Th cells and their ILC

counterparts in the pathophysiology of IBD. Our data advocate for equal involvement of all Th

and ILC subsets where patient samples are differentiated more so by the intensity of the dysre-

gulation of these cell subsets. These data also support the above described notion of a disease

continuum in IBD rather than a UC versus CD classification and emphasize more so a differ-

ence in intensity of activation across both CD and UC across various biological mechanisms.

Neutrophils are key players of innate immunity, migrating to sites of infection to uptake

and kill bacteria, releasing reactive oxygen species. However, how exactly neutrophils contrib-

ute to inflammatory bowel disease remains a controversial area. While there are studies sup-

porting a beneficial role, others seem to point to pathological contributions [65]. It has been

suggested that disturbed signal transduction activation and functionality in neutrophils, may

be associated with intrinsic defects in innate immunity in CD [66]. For example, [67] have

reported slower accumulation of neutrophils and delayed clearance of subcutaneously injected

killed Escherichia coli in CD patients as opposed to controls. Such findings imply a beneficial

role for neutrophils in CD. However, other experimental settings with anti-neutrophil anti-

bodies have reported positive effect of neutrophil depletion in animal models, reducing

inflammation, suggesting otherwise [68]. From our results both neutrophil signatures (#6 Neu-

trophil.activated.HS.IVS; #7 Neutrophil.nas.brushings.HS) were highly enriched in NR in both

UC and CD indicating that activated neutrophils are part of a more severe disease activity pat-

tern. Other innate immunity signatures e.g. the polyinosinic:polycytidylic acid (PolyIC) signa-

tures were derived from a mouse model studying the effect of polyIC admission to lungs [69].

PolyIC is a synthetic analogue of double-stranded RNA, widely used to mimic the effects of

viral infection in animal models. Here we observe that genes that were upregulated after

polyIC were also correlated to NR at baseline in both diseases. These data also suggest an

increased disregulation of innate immune functions in IBD linked to a more severe molecular

Fig 6. Hierarchical clustering heat map of gene set variation analysis enrichment scores of Crohn’s disease and ulcerative colitis participant baseline samples.

Shown is the heat map resulting from the hierarchical clustering of the gene set variation (GSVA) enrichment scores (ES) of the Crohn’s disease (CD) and ulcerative

colitis (UC) participant baseline (BL) samples (GSE16879) using all signatures significantly enriched from comparing CD or UC post-treatment (PT) vs baseline (BL)

samples in clinical non-responders (NR) from Fig 2A.

https://doi.org/10.1371/journal.pcbi.1006951.g006
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Fig 7. Inflammatory bowel disease molecular activity score classification of patient samples. (A) Shown are the scatterplots of the sum of gene set variation

(GSVA) enrichment scores (ES) using all 58 upregulated signatures in Fig 2A common for Crohn’s disease (CD) and ulcerative colitis (UC) participant

samples (GSE16879) using the following formula: I_MDS score =
Pn

i¼1
ESðCD and UCÞ � 1

n �
Pn

i¼1
ESðNHVÞ. Samples have been classified into normal

healthy volunteer (NHV), clinical responders at baseline (R BL) or post-treatment (R PT) and clinical non-responders at baseline (NR BL) or post-treatment

(NR PT). Pair-wise T-test statistics are listed in S5 Table. (B) and (C) show the I_MDS score outputs identifying clinical responders and non-responders before
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disease phenotype as well as linked to NR to an anti-TNF therapy. In summary, the change of

enrichment score of inflammatory signatures because of treatment tends to correlate with

their value at baseline.

Previous gene array studies of UC [70] and CD [71] have identified non-overlapping five

gene panels predictive of clinical response to infliximab. In UC, these markers separated

responders from non-responders with 95% sensitivity and 85% specificity [70]. In CD patients

with Crohn’s colitis were predicted with 100% sensitivity and specificity while no prediction

was achieved for patients with Crohn’s ileitis [71]. The I_MSD score had comparative predic-

tion performances with 100% specificity and 78.8% sensitivity. While neither of the gene pan-

els were confirmed in an independent data set, the I_MSD score was confirmed in an

independent data set for UC with 87.5% specificity and 85.7% sensitivity. Finally, the described

gene panels are disease specific and are not described to capture the disease intensity unlike

the I_MSD score.

When considering implementing the I_MSD in clinical practice, the elaboration of a co-

diagnostic test would be required. For that, additional validation steps of the platform used

would be required followed by a real-world usage validation in a suitable number of patients.

The outcome of the test could be envisaged with two or three different recommendations for

the treating physicians. Indeed, 1) the score obtained from the test is below the 32 cut off and

would therefore come with an anti-TNF treatment recommendation, 2) the score would be 32

or higher and would come with a recommendation against treating with an anti-TNF or 3) a

third category could be defined e.g. for scores hovering around a score of 32 where the deci-

sion would be left to the treating physician. Finally, another application of this score could be

for clinical development of new therapeutics. Indeed, patients could be tested and enrolled if

their score was equal or higher to 32 to select the elaboration of new therapeutics complemen-

tary to anti-TNFs.

Limitations of the current study are twofold. First, the collection of signatures assembled

mainly represents inflammatory biology. While inflammation is a hall mark of IBD a more

diverse set of signatures could potentially allow to identify patient groups with an increased

granularity. Second, the collection of CD samples occurred in the colon only. CD is a patchy

disease and collection of more than one disease location such as e.g. the ileum could also pro-

vide more granularity on the driving molecular mechanisms. Third, we cannot address

whether our results are specific for a therapeutic targeting TNFα as we do not have access to

data sets using a different mode of action. Finally, while a similar approach could be used for

common inflammatory diseases we have not tested the I_MSD derived from our analysis in

UC and CD on any other inflammatory disease treated with an anti-TNF.

Conclusions

To conclude, a major healthcare problem is highly variable efficacy of different treatments in

patients that appear to phenotypically have the same disease. This contributes to increased

patient suffering, both in terms of side effects and continued disease progression due to low

treatment response. An advantage of the approach presented is the ability to identify signature

enrichment at the single patient level enabling patient stratification within and across diseases

increasing the potential to identify patients that may respond to therapeutic agents. Indeed, we

show the potential of certain signatures to be associated with treatment response through the

molecular disease activity score. However, new clinical studies will need to be performed to

treatment with 100% specificity and 78.8% sensitivity (B, GSE16879) and confirmation in an independent dataset [37, 38, 39] with 87.5% specificity and 85.7%

sensitivity.

https://doi.org/10.1371/journal.pcbi.1006951.g007
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test the clinical feasibility of using GSVA for preventative and personalized medicine

approaches as seen previously in studies on glioma [72], subtypes of liver cancer [73] and for

response to dual CXCR2/CCR5 therapy [69].
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