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ARTICLE

Evaluation of Wearable Digital Devices in a Phase I 
Clinical Trial

Elena S. Izmailova1,*, Ian L. McLean1, Gaurav Bhatia2, Greg Hather1, Matthew Cantor2, David Merberg1, Eric D. Perakslis1,  
Christopher Benko2 and John A. Wagner1

We assessed the performance of two US Food and Drug Administration (FDA) 510(k)-cleared wearable digital devices and the 
operational feasibility of deploying them to augment data collection in a 10-day residential phase I clinical trial. The Phillips 
Actiwatch Spectrum Pro (Actiwatch) was used to assess mobility and sleep, and the Vitalconnect HealthPatch MD 
(HealthPatch) was used for monitoring heart rate (HR), respiratory rate (RR), and surface skin temperature (ST). We measured 
data collection rates, compared device readouts with anticipated readings and conventional in-clinic measures, investigated 
data limitations, and assessed user acceptability. Six of nine study participants consented; completeness of data collection 
was adequate (> 90% for four of six subjects). A good correlation was observed between the HealthPatch device derived and 
in-clinic measures for HR (Pearson r = 0.71; P = 2.2e-16) but this was poor for RR (r = 0.08; P = 0.44) and ST (r = 0.14; 
P = 0.14). Manual review of electrocardiogram strips recorded during reported episodes of tachycardia > 180 beats/min 
showed that these were artefacts. The HealthPatch was judged to be not fit-for-purpose because of artefacts and the need 
for time-consuming manual review. The Actiwatch device was suitable for monitoring mobility, collecting derived sleep data, 
and facilitating the interpretation of vital sign data. These results suggest the need for fit-for-purpose evaluation of wearable 
devices prior to their deployment in drug development studies.

Despite the widespread adoption of consumer digital tech-
nologies and their increasing use in healthcare settings, they 
have yet to find widespread application in industry-sponsored 
drug development. Some progress has been made, including 
pilot studies for remotely run clinical trials,1–3 novel techno-
logical solutions to improve medication adherence,4 and mul-
tiple modalities of using digital sensors to create new data 
streams to improve the collection of health-related data.5 

Despite these efforts, published reports of study results re-
main limited. Moreover, the results of some studies indicate 
that digital innovation in health care is more complicated than 
anticipated6 and that some technologies do not perform as 
the researchers had planned.7 In addition, published results 
indicate that there is a need for extensive manual review of 
data and for the investigation of potential device-derived data 
artefacts, activities that can be time consuming.8
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔   Wearable sensors have the potential to collect health-
related data remotely, thus enabling acquisition of dense 
physiological study subject profiles, allowing data collec-
tion on an outpatient basis, and thereby reducing the num-
ber of clinical study hospital or clinical pharmacology unit 
(CPU) visits.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔   We evaluated the performance of two FDA 510(k)-cleared 
devices, HealthPatch MD by Vitalconnect and Actiwatch 
Spectrum Pro by Phillips, for continuous physiological data 
collection, compared device readouts with conventional anal-
ogous measures and published data, and assessed opera-
tional feasibility in a residential phase I clinical trial.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔   The Actiwatch device was suitable for monitoring mo-
bility, collecting derived sleep data, and providing meta-
data for interpreting vital sign data. The HealthPatch device 
was not determined to be “fit-for-purpose” because of the 
artefacts and the need of extensive, time-consuming man-
ual data review.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOL­
OGY OR TRANSLATIONAL SCIENCE?
✔   Our study results indicate the need for evaluation of 
wearable digital device according to fit-for-purpose princi-
ple in the context of clinical investigations.

https://doi.org/10.1111/cts.12602
mailto:elena.s.izmailova@gmail.com
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In early-stage drug development clinical trials, vital sign 
data, such as heart rate (HR) and respiratory rate (RR), are 
typically collected manually by clinical personnel or by using 
electronic devices that record these data at discrete sin-
gle time points. This is generally done at predefined times 
before, during, and after administration of the study drug, 
while a subject is a resident at a clinical pharmacology unit 
(CPU) or returns for follow-up visits. Additional assessments 
of vital sign data are performed in response to suspected 
safety or tolerability issues or if the study drug or a challenge 
agent is expected to have pharmacological effects on vital 
signs. High-density vital sign data recorded continuously 
using wearable digital sensors have the potential (i) to pro-
vide more information on study subjects’ physiological pro-
files and greater sensitivity for detecting changes in these 
parameters, (ii) to allow periods of data collection to be done 
in the outpatient/home setting rather than as inpatients in 
the residential CPU setting, and (iii) as an aid in interpreta-
tion of adverse events, with an overall view to reducing the 
time of residential observation during phase I studies and 
the number of follow-up clinic visits needed.

Wearable digital devices may also have utility for evaluat-
ing the impact of a novel medicine on disease activity or out-
comes. In many therapeutic indications, the impact of a drug 
on activities of daily living, including physical activity levels 
and sleep patterns, is captured routinely as an indication of 
the potentially clinically relevant benefit of therapy or poten-
tial negative side effects. These assessments usually rely 
on the subject’s ability to subsequently recall these events 
for self-completed questionnaires. This type of data can be 
subjective, vague, and prone to confounding and bias,9 as-
pects that may be improved by continuous real-time collec-
tion of activity-related data by digital devices to objectively 
monitor activities of daily living.

The selection and deployment of appropriate wearable 
digital devices in the context of drug development pres-
ents challenges5 that are similar to those encountered 
with the introduction of novel laboratory biomarker tests 
in the early 2000s. To address these challenges, the “fit-
for-purpose” concept was developed by the American 
Association of Pharmaceutical Scientists (AAPS) Biomarker 
Workshop10 and advanced further by the US Food and 
Drug Administration (FDA)-National Institutes of Health 
(NIH) Biomarkers Endpoints and other Tools (BEST) working 
group.11 Using this framework, a potential biomarker should 
be evaluated for a predefined purpose in the context that 
it will be used. We applied this approach to evaluate two 
wearable digital devices that have 510(k) clearance from 
the FDA: the Phillips Actiwatch Spectrum Pro (Actiwatch) 
and the Vitalconnect HealthPatch MD (HealthPatch). We in-
corporated the testing of these devices as an exploratory 
component in a 10-day residential phase I study recruiting 
normal healthy volunteers.

The goal of this substudy was to evaluate whether the 
HealthPatch and Actiwatch devices were fit-for-purpose 
to enhance vital sign data collection and to capture 
physical activity in the context of an industry-sponsored 
early-phase drug development study. Aspects examined 
included (i) a comparison with the traditional conventional 
measures performed at the clinical site, (ii) assessment of 

a diurnal variation of physiological parameters that were 
expected to conform to expected temporal patterns, and 
(iii) understanding data limitations and technical issues. 
We also assessed the operational aspects of device use, 
including acceptability for the study subjects and the site 
personnel.

METHODS

The clinical study was conducted at a US-based single- 
site residential CPU for a 10-day period. All subjects 
were healthy volunteers recruited from the CPU’s panel; 
they had no clinically significant acute or chronic medical 
disorders, were taking no concomitant medications, and 
had no exposure to other investigational agents in the 
30 days preceding the study. The devices were deployed 
during the CPU confinement period only. Informed con-
sent was obtained separately for the device component 
of the study, which was optional for any subject consent-
ing to participate in the core part of the study. The study 
conduct was reviewed and approved by the institutional 
review board.

For the design of the study and authoring of the study 
protocol, the vital signs, activity, and sleep data produced 
by wearable devices were treated as “exploratory,” used 
for device evaluation purpose only, and not linked to pri-
mary or secondary study endpoints, which included phar-
macokinetic and safety assessments. The data were not 
available to CPU or sponsor staff during the conduct of 
the study and were not intended to guide clinical care or 
other decision making.

The Actiwatch12 was worn on the wrist using a standard 
wristwatch-style strap and captured data on motion using 
an accelerometer, which were used to derive information on 
activity level and sleep. Activity level is summarized using 
activity counts, a dimensionless measure of motion that 
removes the effects of gravity, transportation, and other 
acceleration not indicative of activity. The HealthPatch13 
was applied to the anterior surface of the left upper pre-
cordium using an adhesive strip and captured biometric 
data: HR, RR, skin temperature (ST), and step count. Both 
devices were intended to be worn throughout the entire 
10-day period of confinement in the CPU. At the end of the 
study, the site personnel and the study participants were 
asked to complete a satisfaction questionnaire.

Device data collection
The data collected by the Actiwatch were retrieved by 
periodically connecting it to a laptop computer running 
study-specific software, which downloaded the epoch level 
data from the device to the computer before transfer to 
the Philips database (Figure S1). The HealthPatch device 
recorded a single-lead anterior chest wall echocardio-
gram (ECG) voltage every 8 ms, and from the resulting R-R 
interval an estimate of HR was calculated approximately 
every 4 seconds, averaging 15 HR estimates within a min-
ute. The data collected by the HealthPatch were streamed 
from the HealthPatch to a companion iPhone application 
(Healthwatch, version 2.5.4) on a dedicated iPhone 5 via 
Bluetooth technology (Figure S1).
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Device data processing
HealthPatch data were first subjected to a quality control 
step during which invalid readings were filtered using the 
manufacturer’s proprietary software.

To facilitate estimation of data completeness, gap thresh-
olds were defined. This threshold (T) was set to 5 and 30 sec-
onds for HealthPatch and Actiwatch, respectively. Then, for 
each device–subject data stream, data were sorted in time-
stamp order, and the intervals between valid recordings were 
calculated. If an interval was greater than the gap threshold, 
it was considered a gap (i.e., missing data). Total noncov-
ered time was calculated by summing the length of all gaps. 
Percent completeness was defined as 100% × (1-(device 
noncovered time)/total study time).

We calculated compliance separately for each individual 
and each device using the millisecond coverage technique. 
This technique is designed to account for the slight variabil-
ity in the rate at which measurements are taken by measur-
ing the percentage of on-study time that is within T (defined 
above) seconds of a valid measurement. Compliance was 
estimated as the proportion (%) of on-study milliseconds 
within T seconds of a valid measurement.

Summary statistics
Computation of summary statistics across subjects and 
time points allowed us to explore the reasonableness 
of the data. We computed the arithmetic mean, SD, and 
minimum and maximum for all data sources and individ-
uals. In addition, we computed a measurement timeline, 
averaged across individuals for the full study. This allowed 
us to explore any diurnal patterns in the data. All statistical 
analysis was done using the R software package version 
3.3.2 with software libraries “plyr” (https://cran.r-project.
org/web/packages/plyr/index.html) for data processing 
and “lme4” (https://cran.r-project.org/web/packages/lme4/
index.html) for fitting of linear mixed models.

Assessment of diurnal variation
The degree to which measurements varied as a function 
of time of day was analyzed by calculating the minute-
by-minute averages of HR, RR, and ST measurements 
and plotting these as a function of time of day. For each 
measurement, we calculated the minute of the day when 
the measurement was made. All measurements for the 
same minute were combined; for example, to calculate 
the “average HR” for 8:01 am, all HR measurements taken 
between 8:01 am and 8:02 am were examined for all study 
days and for all subjects. Measurements were also grouped 
into “daytime” and “nighttime” periods. For this analysis, 
daytime was defined as between 8:00 am and 9:00 pm and 
nighttime as between 12:00 am and 6:00 am. The periods 
between 6:00 am and 8:00 am and between 9:00 pm and 
12:00 am were anticipated to be “grey areas” with consider-
able variability within and between the subjects as to awake 
or asleep status during these periods.

Comparison between conventional in-clinic and 
wearable device measures
We compared the HR, RR, and ST measurements reported 
by the HealthPatch to the time-matched clinic measurements 

of HR, RR, and core body temperature (BT), respectively. 
In-clinic HR was collected using the Dinamap device. The 
study site’s electronic source data system automatically 
captured the procedure timestamp at the time of collection. 
BT was collected using an electronic oral thermometer 
again linked to the Dinamap unit. In-clinic RR was collected 
manually by the site staff by observing the subjects’ chest 
wall movements and counting respiration cycles over a 
defined period and entered immediately into the site’s 
system, together with the time of data entry. We mapped 
the corresponding data from the wearable devices to the in-
clinic data and then assessed the degree of concordance 
between the mapped data points at matched time points. 
The degree of concordance between in-clinic and wearable 
device data was determined using three separate strategies: 
correlation, regression, and Bland-Altman analyses. First, 
we calculated the Pearson correlation coefficient between 
the in-clinic and mapped wearable measurements. For 
regression, we performed ordinary least squares regression 
with the in-clinic measurement as the independent variable 
and the wearable measurement as the dependent variable.

For the Bland-Altman analyses,14 we produced Bland-
Altman Mean (BAM) and Bland-Altman Difference (BAD) val-
ues. For each in-clinic measurement, BAM was the average 
of the in-clinic and mapped wearable measurements, and 
BAD was the difference between the in-clinic and mapped 
wearable measurement. Bland-Altman plots were generated 
consisting of a scatterplot of BAM (x-axis) against BAD 
(y-axis). The points were color-coded by individual to help 
visualize any individual-specific bias. Computations of mean 
bias and 95% limits of agreement were also performed. The 
mean bias was simply the mean of BAD values. The 95% 
limits of agreement were calculated as 1.96 times the SD of 
BAD values.

Comparison between HealthPatch and Actiwatch 
actigraphy data
We investigated the extent of correlation between the 
HealthPatch step count and Actiwatch activity units. We 
divided each subject’s time in the clinic into 1-hour intervals, 
beginning and ending on the hour. We then summed total 
activity units reported for each hour and calculated steps 
by subtracting step count at the start of the hour from step 
count at the end. Based on the epoch time (~1 second for 
HealthPatch and 30 seconds for Actiwatch), we calculated 
the number of measurements comprising complete data 
for 1 hour. We excluded any interval that was < 90% com-
plete in either measurement and determined the Pearson 
correlation coefficient between activity units/hour and 
steps/hour.

RESULTS
Subject demographics
Six of the nine subjects enrolled in the core clinical study 
consented to participate in the exploratory wearable digital 
device evaluation component. Reasons given for noncon-
sent were the following: a history of prior severe cutaneous 
hypersensitivity to adhesives (one subject) and the percep-
tion that an honorarium payment should be offered by the 
sponsor for additional study procedures. The demographic 

https://cran.r-project.org/web/packages/plyr/index.html
https://cran.r-project.org/web/packages/plyr/index.html
https://cran.r-project.org/web/packages/lme4/index.html
https://cran.r-project.org/web/packages/lme4/index.html
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profile of the participants was as follows: five men and one 
woman; age range 18–55 years inclusive; three white sub-
jects, two African-American subjects, one multiracial sub-
ject, and one smoker.

Completeness of data collection
For the HealthPatch, data completeness rates among the 
six subjects ranged from 83.6−99.2% (mean 93.1 ± 7.4%; 
Table S1 and Figure S2). For the Actiwatch, complete-
ness rates ranged from 62.6−98.6% (mean 88.9 ± 15%); 
the low rate (62.6%) occurred because the subject 
removed the device for the last 3 days of the study for 
unspecified reasons. Periods of loss of valid data for the 
HealthPatch device were attributed to poor skin contact 
and subjects removing the devices, again for unspecified 
reasons. Additional loss of valid Actiwatch data occurred 
due to device calibration issues and subjects remov-
ing devices without reporting this to the site personnel 
(Figure S2).

Comparison of in-clinic and wearable device 
measures
Comparison of the paired HR data showed a strong cor-
relation between in-clinic and wearable measurements 
(Pearson’s r = 0.71, P = 2.2e-16; Figure 1), confirmed 
by regression analysis (β = 0.81). Bland-Altman analysis 

(Figure 1) showed that, on average, in-clinic measurements 
were 0.91 bpm lower than their wearable counterparts. 
We estimated the 95% limits of agreement at 7.2 bpm, 
corresponding to 11% of the mean HR. Overall, the HR 
wearable-device data correlated well with the traditional in-
clinic counterpart.

Recordings for RR derived from the HealthPatch seemed 
to be substantially different from the corresponding in-clinic 
measures. There was no significant relationship between the 
in-clinic and wearable device measurements (Figure 1) by 
either correlation (Pearson’s r = 0.08, P = 0.44) or regres-
sion analysis (β = 0.14). Bland-Altman analysis corroborated 
these findings, with 95% limits of agreement of 6.0 breaths/
min corresponding to 35% of the mean RR, indicating that 
the RR reported by the HealthPatch were statistically inde-
pendent of the RR measured in-clinic.

There was no significant relationship between the ST 
as reported by the HealthPatch and in-clinic oral BT by 
either correlation (Pearson’s r = 0.14, P = 0.16) or regres-
sion analyses (β = 0.31). Bland-Altman analysis indicated 
that ST and oral temperature had different distributions 
(Figure 1).

Actigraphic mobility and sleep data
The actigraphy data indicated much lower movement ac-
tivity during the nighttime period, as expected. Table 1 

Figure 1  The comparison of in-clinic and wearable measurements for heart rate (HR), respiratory rate (RR), and skin temperature 
(ST) by correlation, regression (a−c), and Bland-Altman (d−f) analyses. The solid lines in a, b, and c are the line y = x, which would be 
expected if concordance were perfect; the dotted line is the actual regression line. In c there is no solid line because ST is significantly 
lower than core temperature. The Bland-Altman analysis results are presented in d, e, and f. The black dotted line is the line y = 0 
indicating no mean difference between the two measures. The red dotted line is the mean difference line based on the actual data. f 
ST there is no black dotted line because ST is significantly lower than core temperature. a and d show the analyses for HR, b and e 
shows RR, c and f shows ST. Points are color-coded with a unique color for each subject.
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shows a summary of the data range (minimum and max-
imum) recorded by the Actiwatch. Analysis of total sleep 
time (Table 1) suggested that the subjects’ mean sleep 
time was of 358 ±  91.1 minutes, or ~6 hours per night, 
with substantial variation between subjects.

Additionally, we compared actigraphy data derived from 
both HealthPatch (chest worn) and Actiwatch (wrist worn) 
devices by examining correlation of corresponding device 
outputs: step counts and activity counts. The comparison 
of these activity measures indicated that the readouts from 
these devices were broadly in agreement (Figure S3). The 
degree of correlation varied among study subjects (Table 
S2). However, we consistently observed some low values 
reported from Actiwatch devices corresponding to 0 val-
ues reported by the HealthPatch device (Figure S3) in all 
subjects.

Diurnal patterns
HR, RR, ST, and movement activity all demonstrated signif-
icant diurnal variation. HR, RR, and activity displayed very 
similar temporal patterns: lowest at night, highest in the af-
ternoon, and an early evening nadir (Figure 2), as expected. 
The ST showed a different pattern; we observed the highest 
ST at night followed by a sharp drop in the morning.

Vital sign data
Most HR values reported by the HealthPatch were within 
or close to the normal range for healthy adults at rest, 
~50–100 beats/min (bpm). Similarly, most reported RR 
recordings were within the expected physiological range 
(Figure 3). Most measurements for ST were within the 
range of previously reported for healthy adult normal ST 
(33–35°C; Figure 3) but were significantly different from 

Table 1  Summary statistics for activity measurements and total sleep time derived from the Actiwatch data

Subject ID

Daytime activity,  
counts/minute 

min−max

Nighttime activity,  
counts/minute 

min−max
TST, minutes 

min−max
TST, minutes 
mean ± SD

58001_0003 0–1132 0–801 196–501 367.9 ± 89

58001_0007 0–1453 0–514 190.5–536 376.5 ± 126.7

58001_0011 0–1499 0–584 306–471.5 367.5 ± 51.4

58001_0012 0–1063 0–908 118.5–383.5 268.6 ± 90.3

58001_0015 0–1697 0–998 313–498.5 409.8 ± 59.5

58001_0018 0–1697 0–1063 242–439 362.6 ± 68.7

OVERALL 0–1697 0–1063 118.5–536 358.8 ± 91.1

TST, total sleep time.
Range by endpoints for measurements of daytime activity, nighttime activity, and TST.

Figure 2  The aggregate diurnal patterns for heart rate (a), respiratory rate (b), skin temperature (c), and activity counts (d).
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Figure 3  The histogram depicting the range of value distribution for heart rate (a), respiratory rate (b), and skin temperature (c).
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the body core temperature as measured with the oral ther-
mometer at the same time point.

Investigation of reported abnormal HR and RR values
To aid interpretation of HR and RR values that were out-
side of the expected resting range we compared the 
temporal change patterns of HR and RR as reported by 
the HealthPatch with activity level and wake-sleep status 
derived from the Actiwatch. Elevated readings were sep-
arated into two categories: (i) modestly elevated values 
that might be readily ascribed to changes in body posi-
tion, physical activity, and/or study procedures, and (ii) 
significantly elevated values – those that would require 
further attention as they could indicate potential drug-
related safety signals should they occur in a phase I set-
ting and be temporally related to exposure to the study 
drug or to a challenge agent. Readouts for the same pe-
riod were examined graphically (Figure 4), revealing that 
most episodes of elevated HR and RR occurred at times 
of increased physical activity. We found that comparing 
time-matched data by direct visual comparison of HR and 

RR data on the one hand and activity counts and wake-
sleep status on the other was informative for interpreting 
moderately abnormal readings. However, this visual re-
view process was time-consuming.

There were several episodes when the HR was elevated 
above 150 bpm or even 180 bpm, which exceeds reported 
“normal” HR ranges for a comparable healthy volunteer 
study population.15 This finding was unexpected given that 
the study recruited healthy volunteer subjects, that the study 
subjects were confined to the CPU for the duration of the 
wearable device evaluation, that no cardiac-related adverse 
events were expected based on the properties of the in-
vestigational compound or were detected during the study 
by conventional means, and that, in compliance with the 
study protocol, the subjects were restricted from strenuous 
physical exercise. Manual reviews of the ECG waveforms 
were done for periods during which HR values were below 
50 bpm or above 180 bpm. This indicated that all device-
reported values below the normal range were consistent 
with the reported in-clinic HR values (Figure 5a), consistent 
with sinus bradycardia occurring in healthy individuals.

Figure 5  Visual examination of the echocardiogram (ECG) waveforms for episodes with reported heart rates of 44 bpm (a), 79 bpm 
(b), 203 bpm (c), and 193 bpm (d), bpm, beats/min.
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However, examination of single-lead ECG strips corre-
sponding to reported HR values above 180 bpm revealed 
artefacts of data recording and data processing (Figure 5, c 
and d) rather than true episodes of tachycardia. This additional 
investigation of these reported periods of out-of-range HR was 
resource-intensive, requiring manual visual review by a physi-
cian of each ECG tracing corresponding to these periods.

The number of time intervals containing values outside of 
normal range that would require follow-up was determined 
by calculating the number epochs with HR values above 
150 bpm and above 180 bpm (Table 2). The number of 
such epochs was highly variable between subjects, with the 
highest number for subject 58001_0018. We also calculated 
the number and total duration of gaps in data collection in 
order to estimate the overall amount of vital sign data not 
being collected, thus providing an estimate of the likelihood 
of missing a safety signal if the device had been used as 
the primary method for collecting vital sign data. Table S3 
shows the number of time intervals and a total duration of 
such intervals, with the highest number occurring in subject 
58001_0018. We found significant gaps in the completeness 
of vital sign data collection, with between 0.6 and 35.4 hours 
of data missing over the course of the 10-day study period.

The reported minimum ST values of 0°C were likely due to 
poor patch adherence or other artefact, despite the appar-
ently valid skin impedance measures.

Study subject and site personnel feedback
At the end of the study, both the study participants and the 
study coordinators were asked to complete a brief satis-
faction questionnaire to assess their comfort level with the 
device technology used and their willingness to participate 
in similar study procedures in the future. The majority of the 
subjects indicated a high level of acceptability for the de-
vices and a willingness to participate in future studies that 
assessed wearable digital device technologies.

Overall, study coordinators at the CPU reported high lev-
els of satisfaction on the training and technical support they 
receive. However, in free-form feedback the study coordina-
tors did highlight a desire to gain additional “hands-on” ex-
perience with devices and their associated software in order 
to increase their comfort level.

DISCUSSION

This study assessed the feasibility of using 510(k)-cleared 
wearable digital devices for collecting physiological and 

activity data in the context of a residential drug develop-
ment clinical study together with the performance and fit-
for-purpose validation of these devices. The HealthPatch 
and Actiwatch devices used did not interfere with the other 
study procedures, such as dosing, safety, and pharma-
cokinetic sample collection and were well received by the 
study subjects and the site personnel. Activity counts and 
sleep duration data derived from the Actiwatch device had 
face validity, followed expected diurnal patterns, and were 
consistent with previously published results.16 The average 
total sleep time of 6 hours is perhaps shorter than a typical 
night’s sleep for a healthy adult; this may be a consequence 
of the unfamiliar environment of the CPU. The observed di-
urnal patterns in HR, RR, ST, and activity were consistent 
with the previous reports.17,18 Our experience of periods of 
missing vital sign data is consistent with previously pub-
lished results.8

There were significant limitations with the HR data pro-
duced by the HealthPatch device because of the volume of 
artefacts produced that require a follow-up and a manual 
review. Although the HR recordings showed good correla-
tion with traditional in-clinic measures, there were many re-
ported episodes of tachycardia due to voltage artefacts that 
required manual visual review by a physician to resolve.

Differences between RRs as determined by the device 
and by manual in-clinic measures may in fact reflect the dif-
ferences between manual and device-mediated methods, 
which have been described by other groups.19 Differences 
between surface ST and body core temperature are ex-
pected.20 ST is typically lower and more variable than BT20,21 
and is affected by the site of measurement, clothing, envi-
ronmental temperature, and even emotional state. However, 
we expected some degree of relationship between these 
two variables. In general, we observed much smaller varia-
tion in core temperature than ST, as expected, which further 
underscores the distinction between the two parameters.

The comparison of activity data generated by HealthPatch 
and Actiwatch devices revealed that the measurements 
were broadly in agreement although not perfectly cor-
related. Less than perfect correlation was expected be-
cause the devices are located on different parts of the body 
(trunk vs. wrist); in addition, different activity readouts (step 
counts vs. activity counts) impacted the types of physical 
activities detected (i.e., walking vs. moving the upper body 
only). Given that the Actiwatch readout provided data for 
a wider variety of physical activities, the activity counts 
derived from Actiwatch were used for vital sign data in-
terpretation. These differences illustrate the need for data 
standardization for similar device readouts (e.g., variables 
associated with actigraphy).

The extent to which each device was evaluated was driven 
by the intended use of the data. We applied more rigor for the 
HealthPatch data analysis because of its potential to detect 
a safety signal. The data derived from the Actiwatch device 
played a secondary role and were largely used to interpret 
the vital sign values outside of the normal range.

The device evaluation portion of this study has several 
limitations. In the broad context of drug development, the 
phase I study in which these devices were evaluated was of 
low complexity in terms of device implementation logistics, 

Table 2  Quantification of number and percent of epochs with HR 
values above 150 and 180 bpm

Subject
Number (%) of epochs 

with HR > 150 bpm
Number (%) of epochs 

with HR > 180 bpm

58001_0003 29 (0.02) 13 (0.01)

58001_0007 18 (0.01) 5 (0.00)

58001_0011 9 (0.00) 6 (0.00)

58001_0012 67 (0.04) 6 (0.00)

58001_0015 99 (0.06) 33 (0.02)

58001_0018 258 (0.16) 77 (0.05)

bpm, beats/min; HR, heart rate.
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data analysis, and interpretation. The study subjects were 
inpatients and were monitored by the CPU personnel for the 
entire duration of the study, which facilitated data interpre-
tation and helped to qualify certain findings as artefacts. In 
addition, the small size of the study (N = 6) allowed the many 
reports of out-of-range vital signs (e.g., potential tachycar-
dia episodes) to be reviewed manually. This may prove to 
be too resource-intensive in a larger study. Our findings 
demonstrated significant challenges with continued device 
use, data collection, processing, and, most importantly, data 
interpretation. We anticipate that the impact of these issues 
would be even higher with a study involving more subjects, 
if additional procedures were included (e.g., imaging or in-
vasive sampling) or if the device component of the study 
was done remotely with study subjects wearing the devices 
at home. We also observed missing data, an effect that is 
likely to be amplified in study subjects with medical con-
ditions who are seen in usual practice. Adherence was an 
issue in this study of relatively low complexity, although it 
was comparable with other similar reports8; it is likely to be 
a limiting factor in subjects with disease conditions as well. 
In addition, our ability to review information was somewhat 
restricted, as the device manufacturer uses proprietary soft-
ware algorithms for initial data processing.

Further limitations on the use of wearable devices in 
drug-development studies are that with the model of the 
device evaluated in this study and the available analysis soft-
ware packages: (i) the derivative data were not available in 
“real time” during the study, which would delay the detec-
tion of acute safety signals and would not enable the inves-
tigator or sponsor to make real-time clinical decisions on the 
management of safety issues, and (ii) the single-lead ECG 
information that is reported is limited to HR, and, in partic-
ular, does not provide interpretation of potential rhythm ab-
normalities or of important electrocardiographic intervals, 
such as the QTc time. However, for arrhythmia detection, a 
single-lead ECG device has the advantages of ease of use 
and convenience (compared with conventional Holter mon-
itoring22) and in this context of use, might be fit-for-purpose 
with appropriate software development. The use of a chest 
wall patch device to detect atrial fibrillation in a pragmatic 
population-based study of over 2,000 subjects was recently 
reported.23 In addition, our study demonstrated the criti-
cal need for access to the source data in order to evaluate 
study results, to confirm reports of abnormal activity, and to 
understand the data limitations. Source data and algorithm 
transparency remain an issue with both consumer grade 
and some medical grade devices in the context of clinical 
investigations.

Our findings indicate the need for careful evaluation of 
wearable digital devices according to the fit-for-purpose 
principle before the device-derived data can be used to 
support primary or secondary study endpoints, irrespec-
tive of the regulatory clearance. Regulatory evaluation of 
device performance under the auspices of the FDA 510(k) 
clearance program conveys a level of reassurance regarding 
the technical performance of a device. However, receipt of 
510(k) clearance should not be taken to imply that the de-
vice is fit-for-purpose for an industry-sponsored drug devel-
opment study. We did not clinically validate the HealthPatch 

as fit-for-purpose for augmented physiological data collec-
tion because of artefacts, including false-positive HR signals 
and missing data. This issue of false-positive signals is not 
inherent to any specific device. Several groups have previ-
ously reported a false-positive rate from ECG monitors in the 
intensive care unit setting as high as 75–93%.24 Our finding 
of poor correlation between device-reported and manual 
in-clinic measurements of RR is also consistent with results 
reported previously.19 Nonetheless, the issue of specificity 
of safety monitoring limits the potential utility digital devices 
for drug development. We believe that a device similar to the 
HealthPatch device could be of utility for monitoring study 
subjects if the issues of false-positive results and miss-
ing data are addressed to an acceptable extent. The data 
derived from such a device can be used in a manner similar 
to an “early warning score” system25 to generate signals to 
be investigated further and facilitate building an investiga-
tional drug safety profile early during clinical development.

There are many promising uses of wearable devices in clin-
ical trials as well as several challenges. Potential applications 
drive toward an enhanced understanding of disease variability, 
treatment response, safety assessment, innovation in clinical 
trial design and conduct, as well as increasing efficiency and 
decreasing costs in clinical trials. Although the promises are 
clear, the challenges are not insignificant and include scien-
tific, regulatory, ethical, legal, data management, infrastruc-
ture, analysis, and security challenges.5 The current study 
demonstrates practical examples of scientific/regulatory, data 
management, infrastructure, and analysis issues, as described 
above. We did not encounter significant obstacles with ethical, 
legal, or security issues, but the importance of these may have 
been diminished by the pilot nature of this substudy.

In summary, comparison between specific wearable 
digital devices and in-clinic measures established a strong 
correlation for HR but poor correlation between in-clinic 
and wearable measurements of RR and of ST using the 
HealthPatch. We concluded that the HealthPatch was not 
fit-for-purpose for HR monitoring because of the artefacts 
it produced and the amount of time required for data 
processing and review. The number of artefacts would need 
to be greatly reduced before a wider of implementation of 
this device in clinical trials. The Actiwatch device was used 
as a supporting application to interpret the vital sign data 
and was suitable for the intended purpose of monitoring 
movement, aiding interpretation of abnormal vital sign 
data, and collecting certain sleep parameters. For wearable 
devices to gain wider applicability in drug development, 
we need to develop and establish acceptance for common 
issues, including medical need, device choice, context of 
use, fit-for-purpose validation, and predefined operational 
requirements, as well as data collection, processing, 
and interpretation. Careful consideration must be given 
to clinical validation and context of use to assure that 
device measurements are fit-for-purpose. Clinical Trial 
Transformation Initiative made substantial progress in 
addressing these issues by developing recommendations 
for implementation of mobile technologies in human 
experimentation.26 However, there is a great need to 
supplement these recommendations with the results 
derived from clinical studies. The current study illustrates 
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the critical role for evaluation, both analytical and clinical, 
in the applicability of wearable devices.

Supporting Information. Supplementary information accompa-
nies this paper on the Clinical and Translational Science website (www.
cts-journal.com).

Figure S1. Data flow diagrams for the Actiwatch and the HealthPatch 
devices in the phase I study.
Figure S2. Completeness of data collection for the HealthPatch (a) 
and Actiwatch (b) devices.
Figure S3. The comparison of activity measurements by the 
HealthPatch (step counts, x-axis) and Actiwatch (activity counts, y-axis) 
devices for study subjects 58001_003 (a), 58001_007 (b) 58001_0011 
(c), 58001_0012 (d), 58001_0015 (e), and 58001_0018 (f).
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