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Abstract

Introduction: Activation of antigen-independent inflammation [a.k.a. the “innate” immune 

response(IIR)] plays a complex role in allergic asthma (AA). The mechanisms how the IIR 

promotes allergic sensitization, structural remodeling and altered epithelial signaling are not 

understood.

Areas covered: This manuscript overviews: 1. Studies identifying how allergens and viral 

patterns activate the IIR; 2. Research that reveals how specialized bronchiolar epithelial cells 

trigger inflammation; 3. Reports describing how the IIR causes mucosal cell-state change and 

barrier disruption; and, 4. Observations linking mucosal mesenchymal transition with expansion of 

the myofibroblast population.

Expert commentary: Luminal allergens and viruses activate TLR signaling in key sentinel cells 

producing epithelial cell state transition and expand the pulmonary myofibroblast population. 

These signals are transduced through a common NFκB/RelA -bromodomain containing 4 (BRD4) 

pathway, an epigenetic remodeling complex reprogramming the genome. Through the actions of 

this pathway, the pulmonary IIR is a major modifier of adaptive immunity, AA and acute 

exacerbation-induced remodeling.
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1. Introduction:

Allergic Asthma (AA)affects ~ 8% of the US population, now > 25 million (M) in number 

(1,2). This disease is characterized by reversible airway obstruction and Th2 lymphocytic 

inflammation (1). Currently we know that AA begins early in childhood and has a 

predominant allergic component characterized by increased Th2 cells and eosinophils in the 

airway mucosa, with secretion of Th2 mediators (IL5, IL13) and production IgE (3). AA is 

the result of complex genome-environmental interactions, accelerated by upper respiratory 

tract infection. Early in the course of disease, enhanced production of ECM in the lamina 
reticularis is observed associated with epithelial injury and repair. Persistent injury-repair 

may contribute to ongoing airway remodeling, a process that contributes to a gradual decline 

in pulmonary function in a subset of patients.
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Although AA has been thought to be a disease of adaptive immunity caused by an imbalance 

of the Th lymphocytes (1), the Th hypothesis is challenged to explain how respiratory viral 

infections are linked to the initiation and exacerbations of disease, why Th2 directed 

therapies are not uniformly effective for treating AA, and how innate signatures are observed 

in subtypes of asthmatics (4, 5). Emerging evidence indicates that antigen-independent, 

“innate”, responses play important roles in the etiology and progression of the disease. In 

both the normal and asthmatic airway, innate immune responses (IIRs) are triggered by viral 

infections and/or exposure to common aeroallergens. In addition, the IIR to viral pathogens 

is modified by pre-existing atopy, and similarly viral infections predispose to the 

development of atopy (6, 7). A broader view of the dysregulation of innate immunity in AA 

should therefore be considered.

1.1 The IIR is a modifier of AA.

Early life exposures to microbes and microbial patterns remodel the airway and 

subsequently shape the immunological defenses. In immunologically naïve lungs, microbial 

patterns trigger antigen-independent responses mediated by germline-encoded pattern 

recognition receptors (8). Pattern recognition receptors recognize molecules produced by 

replicating organisms triggering a intracellular signaling pathways resulting in robust 

inflammatory and interferon (IFN) response. In addition, the IIR plays an important role in 

shaping the susceptibility to atopy and AA. For example, the “hygiene hypothesis” links 

early life exposures to microbial products to protection from allergic disease, including AA 

(9). A seminal study comparing two genetically similar human populations has provided 

potential mechanisms how high microbial exposure may be protective from AA. This study 

involved a natural experiment involving two communities in the US Midwest with striking 

differences in the incidence of asthma (10). Here, the Hutterite and Amish communities are 

geographically separate farming communities, with Hutterite having similar rates of AA as 

the US population and Amish being paradoxically protected. Investigating potential 

environmental causes, house dust collected from the Amish community was found to have 

high microbial-derived lipopolysaccharide content; aerosol delivery of this dust was 

protective of experimental asthma in a rodent model. Amish children had higher levels of 

circulating immature neutrophils with activated TNF and IRF7 gene signatures. 

Mechanistically, the protective effect was shown in rodent model of AA to be dependent on 

TLR4 signaling adapters, MyD88 and Trif (10). One interpretation of these findings is that 

these early aerosol exposures to LPS from environmental gram-negative bacteria activate the 

IIR, whose effects shape development of pulmonary adaptive immunity from an allergic Th2 

phenotype to an AA-protective Th1 response.

By contrast, other activators of the IIR promotes progression of AA through production of 

acute exacerbations and airway remodeling. Acute exacerbations are episodes of clinical 

decompensation produced by acute inflammation in response to viral respiratory infections. 

Prospective observational studies of children in high risk families found that the number of 

clinically apparent wheezing episodes produced by rhinovirus infection are highly predictive 

for the diagnosis of asthma later (11, 12). Similarly, viral lower respiratory tract infections 

(LRTIs) in early life, is associated with reduced lung function and increased airway 

reactivity (wheezing) that persists for as much as a decade after the infection (13–16). A 20-
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year follow-up study in Finland concluded that an RSV LRTI in infancy was an independent 

risk factor for decreased lung mechanics (17). These essential findings have been replicated 

in an 18 year follow-up study in Swedish cohort (6, 18), as well as the Dutch ALSPAC study 

(13). Although post-infectious wheezing has not been consistently shown to be durable after 

10 years after resolution of RSV- associated LRTI (6, 17–20), the persistence of reduced 

pulmonary function is highly significant. The Tucson Children’s Respiratory Study 

identified reduced pulmonary function in children at school age who had bronchiolitis before 

the age of 3 (20). Long term follow-up studies of reduced lung function in childhood are 

predictive of adult COPD and asthma-COPD overlap syndrome (21). Collective 

interpretation of these findings suggest that the type of innate activation, its frequency or 

timing shape the pulmonary adaptive IIR, producing distinct outcomes.

1.2 Epithelial injury-repair is a driver of airway remodeling.

The findings that frequent exacerbations are associated with reduced pulmonary function 

(specifically, reduced expiratory flow rates) suggests that acute exacerbations are associated 

with structural remodeling of the airways (Figure 1). Remodeling is a collective term that 

refers to structural changes in the airways resulting in enhanced collagen deposition in the 

subepithelial basement membrane (lamina reticularis), disruption of the epithelial barrier, 

epithelial cell-state change (mucous metaplasia and/or mesenchymal transition), and smooth 

muscle hypertrophy (22, 23). Enhanced mucus production from expansion of submucosal 

goblet cell population and hypertrophy of airway smooth muscle layers enhances small 

airway obstruction, reducing lung compliance and producing hyperreactivity to 

methacholine (22). Importantly,remodeling is thought to be a progressive, irreversible 

process (22).

Epithelial injury and cell-state changes associated with AA may be an important driving 

force in structural remodeling. Epithelial injury disrupts the semi-impermeable epithelial 

barrier, enhancing mucosal permeability. Barrier disruption may account, in part, for 

susceptibility to virus and enhanced allergen penetration and atopy. Barrier disruption may 

also explain, in part, the clinically recognized progression of allergic rhinitis to AA (24). 

Allergic rhinitis precedes AA in 2/3 of cases and is associated with nonspecific AHR (25).

1.3 Specialized epithelial cells in the tracheobronchiolar segment are key sentinel cells 
that trigger the pulmonary innate response.

Specific cell types in the airways are responsible for detecting the presence of microbial 

pathogens and triggering the pulmonary IIR; these cells are referred to as “sentinel” cells. 

Although the cell types that play these roles depend on the route of delivery and type of 

molecular pattern, the airway epithelium plays a central role in initiating viral infection and 

aeroallergen-provoked IIRs (26). Airway epithelilal cells express cell-surface localized TLR 

receptors, whose activation produces acute oxidative response, producing cytokine and 

chemokine production (Figure 2), resulting in disruption of barrier function and neutrophil 

influx (27, 28). The details of these intracellular signaling pathways have been extensively 

reviewed previously (8, 29, 30). The consequences of innate activation results in global 

cellular genomic and proteomic responses (31, 32).
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Recent studies indicate that the epithelial-driven mucosal IIR is dictated by the anatomic 

location in the airway. The airway epithelium can be functionally divided into three 

anatomically distinct regions: trachea, bronchioles and alveoli (52). Pseudostratified 

columnar epithelium from the trachea provide innate defense by muco-ciliary escalator 

activity and secretion of high molecular weight mucin glycoproteins that bind pathogens and 

facilitate their clearance. By contrast, cuboidal bronchiolar cells provide innate defenses by 

synthesizing and secreting over 400 proteins as free and membrane-bound nanoparticles 

(exosomes)(31). Well-described proteins in the IIR include CXC and CC-type chemokines, 

type I and III IFNs, as well as IFN-stimulated genes (31). Of relevance to the pathogenesis 

of Th2 inflammation in AA, bronchiolar-derived airway epithelial cells produce more Th2-

polarizing chemokines, such as MIP1α, MCP, TSLP, CCL20 and IL6 than do tracheal 

epithelial cells (7, 33, 34). Alveolar epithelial cells produce surfactants, proteins that, in 

addition to maintaining alveolar patency, also function as anti-microbial agents (8).

Recent studies using tissue-specific gene knockouts have provided new insights into the 

identity of airway sentinels in response to luminal virus. An interesting epithelial 

subpopulation found in the bronchiolar alveolar junction is responsible for repopulating the 

distal bronchioles in response to injury (35). These cells come from progenitors that express 

both secretoglobin (Scgb1a1) and surfactant. Selective depletion of the NFκB subunit, RelA, 

in these cells by tissue-specific expression of the Cre recombinase have provided definitive 

proof that these cells are the major functionally important innate sensors of viral infection 

(36, 37). Mice with deletion of NFκB/RelA in the Scgb1a1 progenitor-derived population 

have significantly reduced leukocytic inflammation and obstruction in response to RSV 

infection (37). Similarly, TLR3-driven viral inflammation is also mediated by the same 

bronchiolar-derived epithelial cells. Similar to the findings with RSV infection, mice 

depleted of NFκB/RelA in the Scgb1a1 progenitor cells respond to TLR3 agonists with 

reduced neutrophilia, epithelial-dependent chemokine expression and myofibroblast 

expansion (36). Previous work also indicated that the Scgb1a1 –derived bronchiolar cell 

mediates inflammation, AHR and remodeling via the canonical NFκB/RelA pathway in 

response to the house dust mite allergen (38). Collectively these data are consistent that this 

unique bronchiolar progenitor epithelial cell population secretes unique Th2 polarizing 

cytokines and remodeling factors, and activation is required for innate inflammatory 

response in the airway via chemokine-induced neutrophil recruitment.

1.4 Repetitive (chronic) innate activation produces airway remodeling.

In addition to viral patterns, common aeroallergens, derived from plant (e.g., ragweed 

pollen) or animal sources (e.g., cat dander) are TLR ligands in airway epithelial cells, and 

produce a robust intracellular IIR (27, 39). Of these aeroallergens, cat dander has been 

particularly important because of population studies, such as the NHANES, have identified 

this allergen as one of the most prevalent indoor house allergens associated with asthma in a 

significant number of patients (40). Recent mechanistic studies have shown that cat dander 

produces acute oxidative injury, epithelial CXCL2 secretion and neutrophilia downstream of 

the Myd88-NFκB/RelA pathway (41). In a recent publication, the exciting link between 

innate signaling and airway remodeling was produced, where repetitive cat dander exposure 

triggered ECM production, epithelial cell state transition, myofibroblast transition and 
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mucous metaplasia (42). These characteristic features of airway remodeling required NFκB/

RelA signaling and association with the chromatin remodeling factor, bromodomain 

containing protein 4 (BRD4).

1.5 Mechanisms how the NFκB-BRD4 drives epithelial cell-state transition and 
remodeling.

In TLR3-activated cells, RelA binds to the BRD4 coactivator, promoting genomic 

reprogramming (43). This pathway has been elucidated in some detail. TLR3-induced 

intracellular ROS activate Ribosomal S6 kinases to phosphorylate RelA on Ser 276. 

Phospho-276 RelA is rapidly acetylated by p300/CBP and is bound by BRD4 through 

bromodomain (BD) interactions with the newly acetylated Lys side chains (44, 45). Through 

its site-specific DNA binding activity, RelA repositions BRD4 to the promoters of 

immediate-early cytokine genes, where it phosphorylates Ser 2 of the carboxyl terminus of 

RNA Pol II. Phospho Ser 2 licenses RNA Pol II to produce full-length mRNA transcripts 

(43, 46). This transcriptional elongation step enables the rapid elicitation of the IIR.

1.6 How innate signaling produces epithelial cell state changes (mesenchymal 
transition).

A consistent finding from TLR exposures in mice is that these pathways induce mucosal 

changes associated with epithelial de-differentiation and mesenchymal transition (42, 51, 

56). Mesenchymal transition involves a series of cell-state changes (57) driven by master 

transcription factors and BRD4-mediated reprogramming (58) resulting in the expression of 

core mesenchymal regulatory factors, including the Snail family transcriptional repressor 

(SNAI1) and Zinc Finger E-Box Binding Homeobox (ZEB1). These transcription factors 

silence epithelial differentiation markers, such as CDH1 (59). Not only limited to rodent 

models, enhanced TGFβ signaling and mesenchymal transition is found in the airways of 

humans with AA (60).

Interestingly, although acutely NFκB activation produces chemokine secretion and 

neutrophilic inflammation, persistent activation triggers reprogramming of fibrogenic genes 

and the core transcriptional regulators of epithelial cell state transition (36, 42, 43). With 

repetitive stimulation, activated NFκB/RelA repositions BRD4 to the promoters of 

fibrogenic mesenchymal genes (48, 51). In addition, RelA binding induces the atypical 

histone acetyltransferase (HAT) activity of BRD4, acetylating histone H3 on Lys (K) 122, a 

modification that destabilizes nucleosomes, enhancing transcription through chromatin-

compacted gene bodies (47, 48). Through this epigenetic reprogramming mechanism, 

persistent NFκB/RelA activation from a variety of TLR agonists induces mesenchymal cell 

state transition and ECM remodeling associated with airway fibrosis (Figure 3).

Systems levels studies of the mesenchymal transition in normal airway epithelial cells has 

shown that NFκB/RelA is a “master” transcription factor. Here the term master transcription 

factor refers to a specific class of transcription factors that autoregulate as well as regulate 

the expression of downstream drivers of the transition. Next generation sequencing studies 

of NFκB/RelA-depleted Sgbc1a1 expressing progenitor cells shows that not only does 

NFκB/RelA regulate its own expression, but that it controls the expression of rate-limiting 
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genes in at least three key EMT autoregulatory pathways: 1) the WNT/β-catenin morphogen 

pathway, 2) the JUN transcription factor, and 3) the SNAI1-ZEB1 amplification loop 

(61,62). Through these activities NFκB/RelA controls key autoregulatory loops involved in 

committed cell fate decision from partial mesenchymal state to a fully committed 

mesenchymal state (61, 62). These findings suggest translational approaches to inhibit 

NFκB signaling may reverse mesenchymal transition, restore disrupted barrier function, and 

reduce the atopic march from AR to AA.

1.7 Altered mucosal IIRs in remodeling.

In naïve epithelial cells, the IIR results in the activation of pro-inflammatory and anti-viral 

signaling. There is evidence to suggest that the balance between inflammatory and anti-viral 

signaling is altered by the Th2 milieu in AA. Humans with AA challenged intranasally with 

RV exhibit a rapid oxidative response, associated with epithelial-derived chemokine 

secretion (IL-33), clinical symptoms and Th2 cell inflammation, including delayed 

eosinophilia (7, 33, 66). These studies consistently have found that the airways of AA elicit 

more a robust oxidative response, chemokine expression and clinical symptoms than seen in 

normal controls.

By contrast there is evidence that patients with severe AA have defects protective mucosal 

IFN production in response to respiratory virus infections. Studies in response to the 

“wheezogenic” paramyxovirus RSV have shown that nasal epithelial cells in children with a 

history of viral wheeze and/or atopy have decreased mucosal IFN secretion and increased 

viral shedding (63). Additionally, impaired mucosal IFN response and epithelial apoptosis to 

RV infection has been observed in patients with severe asthma (64,65). One potential 

mechanism has been recently elucidated by examining the anti-viral response of 

mesenchymal transitioned cells, characteristic of the mucosa in patients with severe asthma. 

This study identified defective in inducible interferon regulatory factor 1 (IRF1) expression 

(Figure 4). In naïve cells, IRF1 is highy induced by NFκB/RelA and IRF3 transcription 

factors, whereas in mesenchymal transitioned cells, IRF1 expression is defective. Defective 

IRF1 expression is the result of an epigenetic modification, producing occlusion of the 

innate signals RelA and IRF3 from binding the IRF1 promoter. IRF1 is necessary for the 

expression of type III IFNs (IFNLs 1 and 2/3). Induced by the EMT, ZEB1 binds to- and 

silences the IRF1 promoter. ZEB1 silences IRF1 through the catalytic activity of the 

enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), forming repressive 

H3K27(me3) marks (67). These detailed mechanistic studies reveal the complex relationship 

of how cell-state transition from airway remodeling produces defective mucosal antiviral 

responses through ZEB1-initiated epigenetic silencing.

Mucosal remodeling does not only affect the IRF1-IFN pathway. Other systems level studies 

have shown that the mesenchymal cell state change produces distinct coupling of the IκB 

kinase -NFκB and Jak-STAT pathways as well (49, 50, 68). This rewiring of intracellular 

signaling pathways is due to global changes in kinase and phosphatase expression in the 

setting of epigenomic reprogramming, and suggests that the diseased mucosa responds to 

inflammatory signals in distinct ways.
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1.8 Mesenchymal transition is coupled to myofibroblast expansion

αSMA+/COL1+- coexpressing myofibroblasts are a secretory phenotype of lung stromal 

mesenchymal cells that are major producers of ECM proteins and matrix metalloproteinases 

that contribute to lamina reticularis expansion (69), an early and consistent finding in AA 

(70). Expanded myofibroblast populations have been observed in acute asthma, fatal severe 

asthma and refractory asthma (71, 72). Mesenchymal cell state changes are associated with 

secretion of paracrine growth factors that expand and sustain the subepithelial myofibroblast 

population. Mechanistically, repetitive allergen exposures activate the epithelial expression 

of IL6, a growth factor that coordinates myofibroblast expansion. IL6 triggers α-SMA 

expression, autocrine TGFβ stimulation and extracellular matrix production in fibroblasts 

(73). These factors mediate a mechanistic link between mucosal cell-state transition and 

myofibroblast transdifferentiation (Figure 3).

2. Expert commentary.

Although AA has been thought to be a disease of adaptive immunity caused by an imbalance 

of the Th lymphocytes, the Th hypothesis is challenged to explain clinical evidence how 

acute exacerbations produced by respiratory viral infections are linked to the initiation and 

exacerbations of AA, and why innate signatures are observed in subtypes of asthmatics (4, 

5).

Innate immunity has a complex interaction with the adaptive immunity, controlling the 

genesis and progression of AA. Early life exposures to aerosolized bacterial LPS has a 

profound impact on shaping the pulmonary adaptive immune response, protecting from Th2 

polarization and AA. By contrast, childhood exposures to certain wheezogenic viruses are 

highly associated with AA; a body of evidence indicates that this relationship is causal.

Viruses and allergens are responsible for the majority of acute exacerbations in AA, events 

linked to declines in pulmonary function through remodeling (74, 75). Some key 

mechanistic studies have begun to provide understanding of this relationship. Both viruses 

and allergens trigger a robust IIR through TLRs. Repetitive TLR activation produces cell-

state transition, epithelial barrier disruption, expansion of the pulmonary myofibroblast 

population, and consequent fibrosis.

The presence of chronic inflammation affects mucosal innate responses in some substantial 

ways through global rewiring intracellular signaling pathways that affect the type and 

kinetics of the IIR. These effects should be taken into account in developing therapeutic 

interventions in the diseased airway.

3. Five year view

Further work on dissecting the temporal importance and type of innate activation in 

pulmonary adaptive immunity and structural remodeling will help to clarify the situations 

when innate inflammation is protective or pathogenic. In situations where innate immunity 

is pathogenic, short term suppression of its activity may be an effective therapeutic strategy. 

Recent advances showing that the NFκB/RelA-BRD4 complex mediates both virus and 
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allergen-induced epithelial barrier dysfunction and remodeling, validates this pathway for 

therapeutic development. Recent mechanistic studies implicating epigenomic remodeling in 

epithelial cell-state changes, disruption of the anti-viral IFN response, reprogramming innate 

signaling indicate that epigenomic modifiers may also be an approach to restore epithelial 

injury-repair process back to normal.

4. Key Issues

Airway epithelial cells are phenotypically heterogenous by their location in the respiratory 

tract, and play distinct roles in mediating the innate pulmonary host defense. In particular, 

Scgb1a1-expressing progenitor cells of the bronchiolar-alveolar junction play central roles in 

innate inflammation in response to viruses and allergen exposures.

Acute viral infections and aero-allergen exposures activate NFκB/RelA, a common TLR 

effector pathway, whose binding indirectly induces BRD4 HAT activity. Acutely, NFκB-

BRD4 mediates neutrophilic inflammation.

Chronic innate activation produces epithelial barrier disruption, cell-state transition, and 

reprogramming fibrotic response. Downstream the myofibroblast population dynamically 

increases, collectively resulting in enhanced ECM deposition, fibrosis and functional defects 

in pulmonary function.

Cat dander is a ubiquitious aeroallergen that activates mucosal TLR4-NFκB signaling 

producing innate inflammation repositions the atypical histone acetyltransferase, BRD4, to 

reprogram fibrogenic genes whose expression result in cell state transition,

Mesenchymal transition is coupled to myofibroblast transdifferentiation and ECM 

remodeling through paracrine cellular signaling.

The regulatory factors controlling cell-state transition modify the mucosal IFN response. 

Mesenchymal transition disrupts IRF1 expression, a key factor controlling the anti-viral 

mucosal IFN response and production of type III IFNs.

The mechanisms and consequences of global rewiring intracellular signaling pathways in 

remodeling mucosa may modify therapeutic responses.
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Figure 1. 
Role of innate immunity in response to environmental triggers of asthma. A schematic 

diagram of the relationship of respiratory virus infection and aeroallergen exposures on 

activation of the innate mucosal response and relationship of downstream events, including 

clinical (acute) exacerbation of disease, remodeling, and chronic alterations in lung function. 

Abbreviations are AHR, airway hyperreactivity; RV, rhinovirus; RSV, respiratory syncytial 

virus.
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Figure 2. 
Role of the tracheobronchiolar epithelial cell in innate inflammation and remodeling. 

Schematic view of the lung with actions of the Sgb1a1-derived tracheobronchiolar cell in 

mediating viral and allergen induced innate responses. Innate activated distal small airway 

preferentially elaborate cytokines associated with Th2 polarization and airway remodeling. 

These include CCL20, a mucin inducing cytokine, thymic stromal lymphopoietin (TSLP), a 

chemokine involved in Th2 polarization, and growth factors IL6 and transforming growth 

factor β (TGFβ). The role of the tracheobronchiolar cell may participate in the linkage 

between childhood viral bronchiolitis and asthma.
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Figure 3. 
Linkage of innate inflammation with airway remodeling and mesenchymal transition. Top 

panel schematic view of normal bronchiole (left) and asthmatic bronchiole (right) with 

structural remodeling. Bottom panel, mechanistic processes. Repetitive activation of toll like 

receptor (TLR) signaling by respiratory virus or aero-allergens activates mucosal NFkB/

RelA to complex with the BRD4 coactivator in the airway epithelial cells. Subsequently, 

mesenchymal transition occurs with loss of epithelial adherens junctions (green), resulting in 

disruption of epithelial barrier function. Production of fibrogenic cytokines induces airway 

remodeling including myofibroblast transdifferentiation, and extracellular matrix formation. 

CD, cat dander; Col1, collagen; FN1, fibronectin 1; HDM, house dust mite allergen.
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Figure 4. 
Epigenetic reprogramming of the innate anti-viral interferon response (IFN). Relationship of 

chronic activation of the TLR pathway with suppression of the interferon response factor-1 

(IRF1) and type III IFN (IFNL) pathway. Acute activation of TLR signaling results in 

dramatic upregulation of the IRF1 transcription factor resulting in high levels of IFNL 

expression in the epithelial state. Repetitive activation of TLR-NFκB/RelA signaling 

triggers expression of the core mesenchymal regulator, Zinc Finger E-Box Binding 

Homeobox 1 (ZEB1). ZEB1 recruits a silencing histone methyltransferase EZH2 to inhibit 

IRF1 gene expression, resulting in reduced IFNL expression in mesenchymal state produced 

in airway remodeling. TLR, toll like receptor; TRIF, TIR domain containing adaptor 

inducing IFNβ; Myd88, Myeloid Differentiation Primary Response 88.

Brasier Page 17

Expert Rev Respir Med. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction:
	The IIR is a modifier of AA.
	Epithelial injury-repair is a driver of airway remodeling.
	Specialized epithelial cells in the tracheobronchiolar segment are key sentinel cells that trigger the pulmonary innate response.
	Repetitive (chronic) innate activation produces airway remodeling.
	Mechanisms how the NFκB-BRD4 drives epithelial cell-state transition and remodeling.
	How innate signaling produces epithelial cell state changes (mesenchymal transition).
	Altered mucosal IIRs in remodeling.
	Mesenchymal transition is coupled to myofibroblast expansion

	Expert commentary.
	Five year view
	Key Issues
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

