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Functional neuroimaging has provided fundamental advances in our understanding of human 

brain function and is increasingly used clinically for defining atypical function and surgical 

planning. For example, functional imaging with blood oxygenation level dependent (BOLD) 

contrast as a response measure is used as a clinical tool for defining atypical development, 

pathology, surgical planning, and evaluating treatment outcomes. Despite years of statistical 

advances in the analysis of complete whole brain data, there has been a limited statistical 

advance to address the pronounced missingness in many functional imaging studies that use 

large discovery or small clinical case data. For example, functional magnetic resonance 

imaging (fMRI) analyses do not always include the entire brain due to image acquisition 

space limitations and susceptibility artifacts (a loss and spatial distortion of signal that 

results from a disruption in the magnetic field). The consequence is ‘no data’ or ‘bad data’, 

respectively. No data occurs when the image acquisition doesn’t cover the whole head which 

leads to no values. In addition to susceptibility artifacts, bad data can occur across the brain 

because of motion artifacts. Because statistic maps with applied effect size or significance 

thresholds do not typically include information about which voxels were omitted from 

analyses, missing data can result in Type II errors for regions that were not tested. Missing 

data in fMRI studies can therefore undermine the benefits provided by high quality imaging 

technology used to generate data testing predictions about brain function.

One approach to this problem is to use appropriate statistical techniques that account for the 

missing data. However, missing data are almost universally addressed by excluding voxels 

from analyses. For example, implicit masking in single subject analyses limits the analysis 

space across subjects when group analyses are performed with spatially varying masked 

single subject results. As a result, brain regions are excluded from the analysis that may be 

of theoretical or clinical interest, which directly increases risk for Type II errors. When 

voxels with incomplete observations are omitted from group-level analyses, the smaller 

number of tests and less conservative multiple comparison correction can also increase the 
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Type I error rate. If the missing data are non-ignorable, analyzing the space with complete 

observations only may bias effect size estimates (Figure 1).

Missing fMRI data, resulting from incomplete voxel level information, can be missing 

completely at random (MCAR) because of variation in where images are acquired across the 

brains of different subjects or because of small variations in the quality of normalization at 

the edges of the brain across subjects. It can also be MAR because factors such as head size 

influence the coverage of a bounding box that determines the space of image acquisition. On 

the other hand, missing fMRI data can be MNAR, perhaps because the tissue is damaged. 

MCAR data can be addressed by removing voxels from group analyses, but this leads to 

biased inference if missingness is MAR or MNAR [1–3].

One solution for MAR is to impute missing data, which could significantly expand the 

coverage of the analysis, increase power, and enhance interpretations of fMRI results by 

leveraging the spatial and temporal features of the fMRI data. In particular, multiple 

imputation (MI) can be used to model spatial and temporal predictors of voxel intensity, as 

well as subject factors, such as head size and head motion, that exacerbate susceptibility 

artifact in the data [1,2]. However, MI is only valid when data are missing at random 

(MAR). An alternative method for MAR is incomplete Multi-Source Feature (iMSF) 

learning, where samples with at least one data source can be used to estimate missing values. 

But, this requires that data from different imaging modalities are available and may not be 

suitable for task-based fMRI experiments [3].

A more challenging missing data mechanism is when fMRI data are not missing at random 

(MNAR). For example, missingness due to the non-random exclusion of voxels that are 

associated with brain activity related to speech processing during a word recognition task 

can lead to MNAR. A systematic failure to measure the same anatomical space could also 

lead to MNAR if the reason for the missing data is related to the task under study. For 

example, a systematic failure to appropriately measure the BOLD signal due to a variety of 

factors, including neurovascular uncoupling in stroke and tumor patients, can produce bad 

data or no data when methods are used to appropriately exclude atypical BOLD responses 

[4,5]. There also may be differences for acquired brain regions in high resolution studies 

because of an interaction between head motion and slice selection across subjects. Excluded 

regions that are a focus of a study would then be MNAR. Little is known about how to deal 

with MNAR fMRI data. Thus, it is very important for statisticians in imaging to develop and 

validate methods to deal with missing fMRI data that leverage the spatial and temporal 

information in fMRI datasets.

Methods to address the missing data problem in fMRI datasets will have a broad impact. 

These methods should be able to substantially increase: 1) statistical power; 2) 

interpretability of theoretical models of brain function; and 3) use of fMRI biomarkers for 

treatment. Moreover, they should substantially improve clinical imaging where data is often 

lost (for example, because of patient motion artifact), thereby improving the clinical 

interpretation of functional imaging datasets and enhancing the sensitivity and specificity of 

results from neuroimaging studies. These will also help investigators meet funding agency 

requirements for handling missing data. Finally, these statistical methods for dealing with 
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missing fMRI data should be capable of quantifying the extent to which these methods 

quantitatively (effect size), qualitatively (spatial coverage) increase the sensitivity and 

specificity of analyses of fMRI data compared to the standard approaches.

When missingness is MNAR, it is critical that sound methods are used to model both the 

missingness process and the BOLD measurement process. Valid inferences generally require 

either specifying the correct model for the missing data mechanism and/ or distributional 

assumptions for the BOLD response. The resulting estimators and tests are typically 

sensitive to these assumptions [6,7]. Pattern mixture and shared parameter models have been 

shown to lead to valid inference [6–10]. However, no single MNAR model is going to be 

reliable unless it is compared against other MNAR and MAR models. Thus, it is suggested 

that MNAR modeling be done in a sensitivity analysis framework [6,9,11–18]. Sensitivity 

analysis can be done in three different ways [12]. These include local sensitivity, global 

sensitivity and model-based sensitivity analysis. Despite the high significance of the 

problem, however, limited focus has been placed on development and adaptation of methods 

for missing fMRI data [11–17]. Thus, developing approaches for missing fMRI data in both 

frequentist and Bayesian frameworks is very important.

There are relatively few tools for analyzing MNAR data. Those available are in the form of 

tailored computer code and invariably target a specific model with restrictive assumptions. 

This is because, while analysis models are somewhat standard, the model for the probability 

of dropout has to be carefully chosen for the problem at hand. In particular, covariates that 

are predictive of dropouts have to be identified and included properly in the missing data 

model. There is limited development and implementations of Bayesian MNAR analysis [12]. 

Computing is commonly performed using OpenBUGS/ WinBUGS. Recent developments 

have allowed OpenBUGS/ WinBUGS to be directly called from high-level languages such 

as R via the R2OpenBUGS/R2WinBUGS package. The sensitivity analysis R package 

SAMON developed in can be used to implement both local SEN and global SEN analysis 

methods for MNAR in both group and subject level fMRI studies [18–20]. We have 

provided the neuroimaging community with code to perform multiple imputation (http://

www. nitrc.org/projects/multimpute), but the relatively limited adoption of these types of 

missingness methods suggests that increased awareness of missingness pitfalls is critical.
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Figure 1: 
The fMRI missing ness problem. The standard approach in fMRI group statistics is to omit 

voxels from tests that do not contain observations from every subject. Omitting partial 

datasets from analysis is costly to spatial coverage, particularly along edges of the brain. In 

cross-sectional views (columns: axial, sagittal, and coronal planes), group-level statistics 

would be affected by missing data across subjects. A) Observed cases (top row) and B) 

missing cases (bottom row) show the number of individuals with data in each voxel after 

spatially normalizing an fMRI dataset. The colour scale and labelled contour lines indicate 

the number of (A) observed or (B) missing cases for each voxel, from a sample of 49 total 

study participants. Most missing data was due to susceptibility artefact and scanner 

operators who were inconsistent in their placement of an image acquisition bounding box 

that had limited brain coverage.
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