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Abstract

A decision to eat or not to eat can be beneficial or detrimental to an organism, depending on 

internal and external conditions. Because feeding is essential for survival, as it replenishes energy 

and nutrients, in safe environments, its expression is prioritized over other behaviors. Under threat, 

responding to danger is a higher priority for survival and feeding is paused even in hungry states. 

Thus, successful expression of feeding behavior requires adaptive control that utilizes cognitive 

processes to dynamically assess and update internal drives and environmental changes. Recently 

identified key circuit components, which are important in anticipatory responding based on food 

memories and predictions and in resolving feeding versus threat avoidance competition, will be 

discussed within a connectional schema.
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Introduction

Organisms must feed to survive. They also need to avoid danger and adjust feeding behavior 

(foraging and consumption) accordingly. A decision to eat or not to eat, therefore, reflects 

both the internal drives and external conditions. In safe environments, when energy and 

nutrient resources are low or their depletion is anticipated, feeding takes priority over other 

behaviors. Conversely, under imminent threat, real or anticipated, attending and responding 

to danger takes priority over replenishing energy and nutrients, and feeding is halted even in 

hungry states. Accordingly, successful expression of feeding is coordinated with other 

survival behaviors (e.g., defensive), and is regulated in response to actual and expected 

events (e.g., energy and nutrients usage/gains, danger, reward).

The assessments of internal and external environments that guide feeding behavior engage 

cognitive processes, including learning and memory and decision-making. These 

computations are complex but do not require consciousness; they can occur in the absence, 

or independent, of conscious awareness and the fundamental principles are conserved across 
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mammals. Consequently, research findings in animal models have improved our 

understanding of the neural mechanisms underlying human feeding control and its 

dysregulation (e.g., [1] and [2]). Notable progress has been made in uncovering the neural 

mechanisms mediating physiological control of food consumption, in the context of energy 

metabolism and body weight regulation [3]. In contrast, much remains unknown about the 

neural mechanisms mediating adaptive control of feeding behavior. In part, this is due to 

scarcity of prior behavioral investigations combined with neural analyses, and in part due to 

methodological limitations and complexity of the underlying neural substrates. Recent 

methodological advancements with opto-and chemo-genetics have enabled cell-specific 

manipulations within functional circuits in behaving animals [4,5]. Novel circuit 

mechanisms underlying adaptive control of feeding behavior that were revealed with these 

approaches are highlighted here within an established connectional schema. These findings 

are interpreted within the concept of survival circuits that was put forward by LeDoux and 

others [6–8].

Survival Circuits: Brief Overview of Connectional Organization

Anatomical connections in rodents indicate that the neural systems underlying mammalian 

survival behaviors are similarly organized [9,10]. Within each circuitry, physiological and 

environmental sensory inputs could converge with cognitive, hedonic and behavioral state 

information at multiple stages of processing. The expression of each behavior is 

accompanied with appropriate physiological (endocrine, autonomic) responses and their 

coordinated expression is orchestrated through hypothalamic systems. These circuitries 

could cross-communicate, and have access to sensory and motor brainstem areas, cognitive 

processing via cortical and hippocampal systems, and action and reward control via striatal 

systems [9,10].

The connectional patterns further suggest that the incoming and processed information could 

be shared across the forebrain-brainstem components, via converging or parallel pathways 

(Figure 1). Similarly, each circuit’s outputs (cognitive, behavioral, physiological) could be 

initiated after different stages of processing. Consequently, distinct functional circuitries 

may be recruited within a broader connectional network, depending on the type of input 

(physiological, cognitive) and levels of processing, from innate (reflex) to highly integrated 

(predictive). For instance, when survival depends on rapid control of feeding—to enhance 

food seeking and consumption under starvation or to pause these behaviors when 

encountering a proximal danger—relatively simple, reflex-type circuitries may be engaged 

[11], similar to the patterns observed in defensive behaviors [12,13]. Under other 

circumstances, more complex computations within an integrated circuitry determine the 

expression of feeding behavior. These processes involve continuous assessments of internal 

and external environments and updating through cognitive processes (learning and memory, 

decision-making, planning) about ongoing and expected changes.

Petrovich Page 2

Curr Opin Behav Sci. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Anticipatory Regulation of Feeding: Learning and Memory Integration 

Across the Network

The ability to regulate an ongoing behavior in anticipation of future events is clearly 

advantageous to survival. Regulation of feeding in anticipation of future energy changes is 

also advantageous physiologically, as it should minimize the extent of homeostatic 

perturbations [14]. Adaptive regulation is based on prior experience but how learning and 

memory are integrated within the feeding circuitry has not been clear. Recent work 

demonstrated that the hypothalamic neurons are critical for food memory encoding and 

recall, and that acquired predictions are dynamically updated across the feeding circuitry.

Hypothalamus: Food Memories and Predictions

In a recent study, Sharpe, Schoenbaum, and colleagues [15] demonstrated with optogenetic 

methods in a novel GAD-Cre rat that the lateral hypothalamic GAD-expressing (LHAGABA) 

neurons are required for cue-food learning and memory. They manipulated the LHAGABA 

neurons during a Pavlovian conditioning task, where cue-food associations were assessed by 

the cue’s ability to drive food seeking (food receptacle approach). Temporally selective 

silencing of the LHAGABA neurons during the cue presentations disrupted the acquisition 

and memory of cue-food associations. These findings are consistent with prior evidence that 

the LHA is recruited during cue-food learning acquisition [16] and that the LHAGABA 

neurons are critical in the control of feeding behavior ([17–19]. Indeed, the LHA may 

function as a motivation-cognition interface within the feeding network [20].

Another hypothalamic area, the arcuate nucleus (ARH) is considered a primary sensory 

relay for energy balance signals. It contains two sets of neurons, orexigenic, AgRP (NPY/

GABA) and anorexigenic, POMC/CART. These neurons respond to energy signals (e.g., 

adipose-released hormone, leptin), GI-derived satiety signals (e.g., CCK), and food 

deprivation (ghrelin) in opposite ways to ultimately stimulate or inhibit food consumption, 

respectively [3]. Intriguingly, these neurons respond rapidly upon food presentation during a 

meal, which suggests they are dynamically guided by predicted, rather than actual, meal-

associated changes. Chen, Knight and colleagues [21] found that in fasted mice, the activity 

of the AgRP (NPY/GABA) neurons was high, as expected, but it decreased as soon as food 

was presented and eating began. The opposite was found for the POMC/CART neurons. 

When food was removed during a meal, these patterns were reset, activity of AgRP neurons 

increased, while POMC/CART neurons decreased.

According to these patterns, the ARH neurons may be critical during the food seeking rather 

than consumption phases of feeding behavior (additional evidence reviewed in [3]). In that 

regard, Livney, Andermann and colleagues [22] demonstrated in mice that the AgRP 

neurons regulate food seeking induced by food cues and processing within the insular 

cortex, according to hunger state. They found that the AgRP neurons reach the insular cortex 

via relays in the paraventricular thalamus (PVT) and the basolateral amygdala (BLA). 

Interestingly, at least the PVT and insular components of that circuitry also guide flexible 

behavioral control under competing cognitive drives.
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Insular Cortex, Paraventricular Thalamus & Central Amygdala: Behavioral Guidance 
During Flexible, Anticipatory Responding

Mammals, from rodents to primates, show innate preference for sweet over biter tastes, 

indicated by acceptance and rejection swallowing patterns, respectively [23]. These biases 

likely reflect hardwired survival strategies, as typically sweet tastes signal nutrients while 

bitter tastes predict decayed foods. The input and output components of the basic circuitry 

for these responses—the sensory (taste) and motor (controlling orofacial muscles) neurons 

—are located in the brainstem [10]. Accordingly, rats with the brainstem disconnected from 

the forebrain can respond reflexively to accept sweet and reject bitter tastes [24]. Without 

the brainstem-forebrain communications, however, these rats cannot integrate prior 

experience and respond in a flexible way [24]. It has been know for a long time that the 

insular cortex is important for taste integration and memory [25,26], but the circuitry 

through which it guides feeding behavior based on taste-associated memory has not been 

clear. A recent study demonstrated that its pathway to the central nucleus of the amygdala 

(CEA) is necessary in guiding flexible anticipatory responding when different cues predict 

appetitive (sweet) or aversive (bitter) tastes [27].

In mice, Schiff, Li and colleagues [27] identified an excitatory monosynaptic connection 

from the insular cortex to the lateral CEA, somatostatin and PKCδ neurons. They 

demonstrated that the insular-CEA1 pathway is required during a go/no-go task, where mice 

respond to one cue to receive a sweet (sucrose) liquid and withhold responding to another 

cue in order to avoid a bitter (quinine) liquid. Bilateral inhibition of the transmission within 

the insular-CEAl pathway, with the tetanus toxin light chain expressed in a Cre-dependent 

manner, impaired correct responding, most notably during the no-go trials when animals 

suppress licking in response to the quinine cue. These manipulations specifically impacted 

adaptive control, when behavioral choice is guided by cues, but not when mice responded to 

increased concentration of quinine. Activation of the insular-CEAl pathway by 

photostimulation was sufficient to induce lick suppression and place aversion and to serve as 

a negative reinforce (instead of quinine).

The CEA is well positioned to coordinate suppression of feeding behavior in anticipation of 

multifaceted aversive outcomes. In addition to the insular cortex, it receives cortical inputs 

from the BLA, PFC and HF [28], as well as inputs from the brainstem sensory and feeding 

areas (reviewed in [29]). Some of these inputs have been shown to selectively promote 

appetitive or avoidance behaviors. Optogenetic stimulation of distinct BLA pathways (from 

neurons expressing Rspo2 or Ppp1r1b) to the CEA, induced freezing or self-stimulation 

[30]. The BLA inputs to the mPFC (prelimbic area), which could potentially reach the CEA, 

bias the expression of defensive behaviors [31]. The BLA-mPFC pathways are 

topographically organized and distinct subsystems may differently bias appetitive and 

aversive behaviors [32,33].

The CEA is also connected with the PVT [34,35], which mediates adaptive responding when 

food reward- and danger cue-induced behaviors are pitted against each other. Choi and 

McNally [36] demonstrated that chemogenetic silencing of the PVT selectively interfered 

with balancing the expression of food seeking (lever presses and approach to food 
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receptacle) and threat avoidance (freezing), but did not impact the expression of either 

behavior alone or bias the balance in one direction.

Silencing the PVT did not completely reverse the balance between food seeking and threat 

avoidance, indicating that additional areas within the critical circuitry contribute to the 

computations that resolve the outcome of these competitions. These additional areas could 

exert influence by impacting the PVT targets, notably two striatal regions, the nucleus 

accumbens (ACB) and CEA [34,35,37]. Prior, influential work has established the ACB in 

motivational and hedonic control of feeding behavior, and provided the foundation for its 

interactions with the LHA and ventral pallidum [38,39]. Recent work found that the ACB 

dopamine D2 receptor–expressing neurons inhibit food-reward seeking under innate threat, 

and their responses were guided by the LHA orexin/hypocretin neurons [40]. The PVT 

receives inputs from the mPFC and hippocampal formation [41], which could concurrently 

influence the ACB and CEA [42–46].

Central Amygdala Circuitry in Resolving Feeding versus Threat Avoidance 

Competition

Cessation of eating under threat is adaptive, as it enables the expression of defensive 

behaviors. The CEA is necessary for cessation of food consumption in response to innate 

and learned threat cues, as well as satiety signals [29,47,48]. To effectively inhibit feeding 

behavior, the CEA is structurally well positioned to engage multiple pathways that would 

simultaneously impact hypothalamic and brainstem targets [29]. The CEA is also well 

positioned to receive physiological and environmental sensory inputs from different stages 

of processing, including integrated information from cortical and thalamic areas (discussion 

above, Figure 1). Functional activation patterns during fear-cue induced anorexia suggest 

that the CEA circuitry coordinates conflict resolution when threat avoidance competes with 

food consumption [29]. In accordance with an integrative role in adaptive control of survival 

behaviors, the CEA has been shown to coordinate the expression of prey hunting and biting 

behaviors through divergent pathways [49].

The CEA also drives food consumption [29] and Douglass, Lüthi, Klein and colleagues [50] 

showed that the serotonin receptor 2a-expressing (CEAHtr2a) neurons are critical. The 

activity of these neurons increased during food consumption and their bidirectional 

manipulations modulated intake accordingly. The effects of these manipulations were 

reinforcing, based on food and place preference and self-stimulation assays. This study also 

identified that CEAHtr2a neurons inhibit local and brainstem targets that suppress food 

consumption, the CEAPKCδ neurons [48], and the parabrachial nucleus [51]. Thus, the CEA 

substrates underlying the drives to consume or avoid food may compete at multiple targets.

The CEA neurons are exceedingly diverse [30,52,53] and determining how they are 

organized locally and at their targets remains an important inquiry. Another area of pressing 

interest is determining individual differences that lead to dysregulation and maladaptive 

behaviors. In that regard, there are profound sex differences in anorexia nervosa, and in 

animal models of threat (fear cue) induced short-term anorexia female rats show enhanced 

inhibition of feeding compared to males [54–56]. There are also sex differences in the mPFC 
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recruitment during inhibition of feeding under threat, as well as under a cognitive drive to 

eat [29,57]. That work highlights the mPFC circuitry, as a potential source of vulnerability to 

maladaptive control of feeding.

Concluding Remarks

Adaptive control of feeding behavior is essential for survival. The underlying mechanisms 

require interactions between cognitive, hedonic, and physiological systems. Accordingly, 

these processes are supported by a highly integrated and exceedingly complex neural 

circuitry. The schematic in Figure 1 illustrates multiple anatomical pathways that could 

support distinct functional circuitries during adaptive control of feeding behavior, depending 

on the type of input (physiological, cognitive) and a degree of processing (shorter versus 

longer and more integrated loops between sensory inputs and behavioral outputs for 

reflexive versus cognitive control). Recently identified circuit components that are important 

during anticipatory regulation of feeding and during competition with other survival 

behaviors are conceptualized within this framework (Figure 1). Displayed are novel findings 

that hypothalamic neurons participate in formation of food memories and that acquired 

predictions are dynamically updated across the feeding network, and that the central 

amygdala circuitry resolves feeding and threat avoidance competition. The outlined network 

may serve as a blueprint for future work investigating adaptive regulation of feeding, as well 

as for potential sites of dysregulation when hunger and other survival drives compete.
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Highlights

• Feeding behavior is regulated in anticipation of future energy deficits and 

threats

• Hypothalamic regulators participate in formation of food memories and 

predictions

• An integrated neural circuitry coordinates feeding with other survival 

behaviors

• Central amygdala circuitry in resolving feeding versus threat avoidance 

competition
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Figure 1. 
Feeding Behavior Neural Network.

The diagram depicts the organization of the connections that mediate adaptive control of 

feeding behavior. For clarity, some brains areas are not shown (e.g., pallidal regions) and 

only select areas and connections that were discussed in the text are represented.

Abbreviations: ACB-nucleus accumbens; ARH-arcuate nucleus of the hypothalamus; BLA-

basolateral area of the amygdala; CEA-central nucleus of the amygdala; DMX-dorsal motor 

nucleus vagus nerve; HF-hippocampal formation (includes hippocampal proper and 

subiculum); LHA-lateral hypothalamic area; NTS-nucleus of the solitary tract; PAG-
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periaqueductal gray; PB-parabrachial nucleus; PVH-paraventricular hypothalamic nucleus; 

PVT-paraventricular thalamic nucleus; VTA-ventral tegmental area.

Petrovich Page 12

Curr Opin Behav Sci. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Survival Circuits: Brief Overview of Connectional Organization
	Anticipatory Regulation of Feeding: Learning and Memory Integration Across the Network
	Hypothalamus: Food Memories and Predictions
	Insular Cortex, Paraventricular Thalamus & Central Amygdala: Behavioral Guidance During Flexible, Anticipatory Responding

	Central Amygdala Circuitry in Resolving Feeding versus Threat Avoidance Competition
	Concluding Remarks
	References
	Figure 1.

