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Abstract

In sleep research, applying finite mixture models to sleep characteristics captured 8 through 

multiple data types, including self-reported sleep diary, a wrist monitor capturing movement 

(actigraphy), and brain waves (polysomnography), may suggest new phenotypes that reflect 

underlying disease mechanisms. However, a direct mixture model application is challenging 

because there are many sleep variables from which to choose, and sleep variables are often highly 

skewed even in homogenous samples. Moreover, previous sleep research findings indicate that 

some of the most clinically interesting solutions will be those that incorporate all three data types. 

Thus, we present two novel skewed variable selection algorithms based on the multivariate skew 

normal (MSN) distribution: one that selects the best set of variables ignoring data type and another 

that embraces the exploratory nature of clustering and suggests multiple statistically plausible sets 

of variables that each incorporate all data types. Through a simulation study we empirically 

compare our approach with other asymmetric and normal dimension reduction strategies for 

clustering. Finally, we demonstrate our methods using a sample of older adults with and without 

insomnia. The proposed MSN-based variable selection algorithm appears to be suitable for both 

MSN and multivariate normal cluster distributions, especially with moderate to large sample sizes.
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1 Introduction

1.1 Clinical Motivation

Current psychiatric diagnoses are based almost entirely on self-reported experiences. 

Unfortunately, treatments for such diagnoses are not effective for all patients. One hypothe-

sized reason for this is the “artificial grouping of heterogeneous syndromes with different 

pathophysiological mechanisms into one disorder” (Cuthbert and Insel, 2013). To address 
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this problem, the National Institute of Mental Health (NIMH) instituted the Research 

Domain Criteria (RDoC) framework in 2009. RDoC is a research framework that calls for 

understanding and even potentially refining the boundaries of existing diagnoses by 

integrating data from multiple levels of information (genes, cells, molecules, circuits, 

physiology, behavior, and self-report; Insel et al. 2010; Casey et al. 2013; Cuthbert and Insel 

2013). Clustering comes to the forefront as a key tool in this effort. Mixture models in 

particular are useful because they are based on a likelihood, and thus, standard measures 

such as the BIC can be used to select the optimal number of clusters (Fraley and Raftery, 

1998). Applying mixture models to variables captured across multiple levels of information 

could reveal clusters that are defined by self-report as well as biological processes. Such 

clusters could help to clarify underlying pathophysiological mechanisms and inform the 

development of personalized treatments or improved diagnostic classifications.

Sleep medicine is a field for which research within the RDoC framework is particularly 

valuable (Levenson et al., 2015; Harvey and Tang, 2012; Cuthbert and Insel, 2013). For 

example, insomnia is characterized by difficulties falling and staying asleep and 

accompanied by daytime symptoms such as irritability and fatigue (American Psychiatric 

Association, 2013; Hauri and Sateia, 2005). Clinicians currently only use self-report 

measures such as a daily sleep diary (Diary) to diagnose individuals with insomnia. 

However, there is a great deal of heterogeneity in etiology and symptom expression beyond 

the presence or absence of this diagnosis (e.g., see Vgontzas et al. 2013), and researchers 

also recognize the importance of objective measures of sleep including actigraphy (ACT; 

measurement of movement via wrist monitor) and polysomnography (PSG; measurement of 

electroencephalographic, electromyographic and electrooculographic signals).

As shown in Table 1, Diary, ACT, and PSG each capture some homologous sleep char-

acteristics. However, they capture sleep at different levels (self-report, behavioral, 

physiological), and discrepancies or similarities across homologous measures can be 

informative (Kay et al., 2015; Lund et al., 2013; Baillet et al., 2016). Also as shown in Table 

1, Diary, ACT, and PSG each capture sleep characteristics that are unique to their 

measurement type. Thus, clustering on Diary, ACT, and PSG measures could indicate how 

subjective, behavioral, and physiological processes synergistically produce signs and 

symptoms within homogenous subgroups of individuals.

The AgeWise sleep study (Buysse et al., 2011) is useful for illustrating the importance of 

using mixture models to reveal clusters based on Diary, ACT, and PSG measures, as well as 

the methodological challenges involved. This study followed 216 older adults with (61.1%,N 
= 132) and without (38.9%,N = 84) insomnia for one week, during which the Pittsburgh 

Sleep Diary (Monk et al., 1994) and ACT were used to capture sleep characteristics. On two 

of the seven nights, PSG was also used. We identified 70 Diary, ACT, and PSG 

characteristics that were clinically meaningful (see Table 1). Although we had no a priori 
information regarding which specific variables were useful for clustering, we did 

hypothesize that an explicit subset of variables - including at least one of each of Diary, 

ACT, and PSG data types - would produce clinically meaningful clusters and inform 

hypothesis generation.
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1.2 Methodological Challenges

The intersection of three methodological challenges preclude the direct application of 

existing mixture-model-based methods to the AgeWise data. First, clusters are expected to 

be skewed, requiring the use of a skewed mixture distribution. Second, the consideration of 

multiple data types produces a large number of correlated variables. This necessitates a 

method for selecting a subset of useful clustering variables; however, to date, variable 

selection algorithms based on skewed distributions do not exist. Third, existing variable 

selection frameworks do not promote the selection of clinically meaningful sets of variables. 

This latter challenge is particularly salient given our interest in revealing clusters based on 

self-report, behavioral, and physiological measures of sleep. Further background on each of 

these three challenges follows.

1.2.1 Challenge 1: Skewed Clusters—In the full AgeWise sample, 79% (55/70) of 

the variables of interest (Table 1) have significant skewness. In a more homogenous 

AgeWise subsample such as the 84 older adults without insomnia, the identical set of 

variables have significant skewness. Many of these variables are counts of minutes awake, 

and thus, are naturally skewed because they are bounded by zero. For these reasons, we 

expect that underlying clusters in these sleep data may actually follow a skewed distribution 

rather than the more commonly assumed normal distribution.

Numerous mixture models based on asymmetric distributions have been developed in recent 

years. These include approaches based on various forms of the skew normal and skew t 

distributions (Lin, 2009; Pyne et al., 2009; Lin, 2010; Vrbik and McNicholas, 2012; Cabral 

et al., 2012; Lee and McLachlan, 2014, 2013b,c; Lachos et al., 2010), including the flexible 

canonical fundamental skew t-distribution (CFUST; Lee and McLachlan 2016b). There are 

also mixture models based on the generalized hyperbolic (Browne and McNicholas, 2015; 

Tortora et al., 2014; Wraith and Forbes, 2015), Poisson (Karlis and Meligkotsidou, 2007), 

normal inverse Gaussian (Karlis and Santourian, 2009), and Laplace (Franczac et al., 2014) 

distributions. We are not aware of the use of any of these asymmetric distributions in sleep 

research.

1.2.2 Challenge 2: A Large Number of Potential Clustering Variables—We 

identified 70 potentially clinically meaningful Diary, ACT, and PSG variables captured in 

the AgeWise study (Table 1). However, given the exploratory nature of the research 

question, there were no a priori hypotheses regarding which variables to include in the 

clustering model. In the spirit of application, our priority was to maximize the interpretation, 

utility, and overall clinical relevance of the resulting subgroups. Thus, we aimed to identify 

an explicit subset of clinically meaningful variables that was useful for clustering.

The challenge of variable selection is compounded by the fact that many of the AgeWise 

variables are highly correlated or even redundant. The median (Q1, Q3) Spearman 

correlation magnitude among these variables was 0.11 (0.05,0.22). The maximum 

correlation was 0.99, observed between N3 and %N3. While these two variables are highly 

redundant, both have clinical value and it is unknown which one – if either of them – might 

be useful for clustering.
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A well-known stepwise variable selection framework for Gaussian mixture modeling was 

proposed by Raftery and Dean (2006) with improvements by Maugis et al. (2009). This 

framework can be implemented with the clustvarsel function (Scrucca and Raftery, 2014) in 

R (R Core Team, 2015). Other variable selection algorithms include Variable Selection for 

Classification and Clustering (VSCC), which is based on within-group variance and can be 

implemented with the vscc function (Andrews and McNicholas, 2013b) in R, and a method 

by McLachlan et al. (2002) for clustering microarray data. However, because these variable 

selection algorithms assume normality, we do not hypothesize that they will be appropriate 

for sleep data. Specifically, we expect that they will tend to select the most highly skewed 

variables for clustering, regardless of whether these variables are actually useful for 

revealing underlying skewed subgroups. Because no explicit variable selection algorithm for 

skewed clusters currently exists, this is an important area of methodological development.

In contrast to the aforementioned approaches that explicitly select a subset of variables for 

clustering, there are also implicit dimension reduction techniques that suggest clusters based 

on a weighted combination of all variables. Parsimonious Gaussian Mixture Models 

(PGMMs) are based on mixtures of factor analyzers (McNicholas and Murphy, 2008, 2010) 

and are implemented with the pgmm function (McNicholas et al., 2015) in R. There are also 

implicit dimension reduction approaches based on mixtures of skew normal (Lin et al., 

2016), skew t (Murray et al., 2014a,b; Lin et al., 2015), and generalized hyperbolic (Tortora 

et al., 2016) factor analyzers as well as methods based on the Fisher discriminative subspace 

(Bouveyron and Brunet, 2012). For non-mixture-model-based clustering, Witten and 

Tibshirani (2010) developed a dimension-reduction technique called sparse k-means 

clustering that uses regularization, implemented with the sparcl function (Witten and 

Tibshirani, 2013) in R. These implicit dimension reduction approaches may be of interest in 

many applications, but for our aim of revealing clinically meaningful subsets of variables, 

this feature only makes the clustering results more difficult to interpret.

There have been some comparisons of clustvarsel to other variable selection and dimension 

reduction methods, including VSCC, PGMM, and sparse k-means clustering (McNicholas 

and Murphy, 2008; Andrews and McNicholas, 2013a; Witten and Tibshirani, 2010). These 

comparisons indicated that there may be situations in which clustvarsel is not as effective as 

other approaches. However, there is no comprehensive evaluation of the accuracy of explicit 

variable selection algorithms relative to implicit dimension reduction. Thus, it is difficult to 

determine which strategy might be preferred in any given situation. Further simulation 

studies must be performed to evaluate explicit variable selection and implicit dimension 

reduction methods across a range of skewed and normal cluster scenarios.

1.2.3 Challenge 3: Obtaining a Clinically Meaningful Solution—In sleep 

research, investigators collect Diary, ACT, and PSG measurements because information 

from all three together provide a deeper understanding of underlying sleep processes. 

Clusters defined by a set of variables including at least one of each of the three data types 

are likely to be clinically meaningful, suggest hypotheses to guide researchers in further 

investigation of underlying disease processes and personalized treatments, and have 

relevance for the NIMH RDoC framework (Insel et al., 2010). However, given the automated 
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nature of data-driven variable selection algorithms, their application to Diary, ACT, and PSG 

data will not necessarily suggest a set of variables that contains all three types of variables.

In addition, we expect that there may actually be multiple sets of variables – each including 

all three data types – that could be used to reveal statistically plausible clustering solutions. 

Clustering is inherently highly exploratory, and as such, it is reasonable to evaluate multiple 

solutions and determine which one(s) to pursue depending on the extent to which they 

provide clinically useful information (Ciu et al., 2007). Thus, it will be important to develop 

variable selection algorithms that can suggest multiple statistically plausible sets of variables 

containing Diary, ACT, and PSG data.

1.3 Proposed Solutions

The aforementioned challenges highlight the methodology that needs to be developed and 

evaluated prior to applying mixture models to Diary, ACT, and PSG data to reveal 

meaningful clusters. These challenges call for: (1) the development of explicit variable 

selection algorithms based on asymmetric distributions; (2) further extensions to these 

algorithms to reveal multiple statistically plausible subsets of variables that each incorporate 

all data types of interest; and (3) simulations comparing explicit variable selection and 

implicit dimension reduction techniques.

In light of these needs, we propose two novel variable selection algorithms. The first 

algorithm, skewvarsel, extends multivariate normal (MVN) algorithms proposed by Raftery 

and Dean (2006) and Maugis et al. (2009) to the skew normal distribution (Pyne et al., 2009; 

Azzalini and Valle, 1996). The second algorithm, skewvarsel-p, extends the skewvarsel 

algorithm by considering all possible permutations of the data types to suggest multiple 

statistically plausible solutions that each incorporate all data types. This latter algorithm is 

particularly useful for hypothesis generation in situations where knowledge is expected to be 

gained by considering multiple data types together (e.g., for research within the NIMH 

RDoC framework). Through a simulation study, we empirically evaluate and compare the 

proposed skewvarsel algorithm to other existing explicit variable selection and implicit 

dimension reduction techniques. Finally, we apply our methods to the AgeWise data (Buysse 

et al., 2011) to reveal clinically meaningful subgroups based on Diary, ACT, and PSG 

measures.

2 Methodology

2.1 Multivariate Skew Normal Distribution

The proposed skewed variable selection algorithms can in principle be used with any 

asymmetric distribution. We initiate our work using the multivariate skew normal (MSN) 

distribution proposed by Pyne et al. (2009) and Azzalini and Valle (1996), sometimes also 

called the “restricted” MSN distribution (Lee and McLachlan, 2013c). Although this MSN 

distribution is known to be less flexible than other asymmetric distributions (Lee and 

McLachlan, 2013c), it is easily embedded within our proposed variable selection algorithm 

because it is computationally efficient, does not overly rely on starting values, converges 

relatively quickly, and has both regression and mixture model estimation tools available. 

Wallace et al. Page 5

J Am Stat Assoc. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, we hypothesize that potential limitations related to use of the MSN distribution 

for variable selection can be overcome by fitting a more flexible asymmetric mixture model 

(e.g., the CFUST, Lee and McLachlan 2016b) to the selected variables.

For p ≥ 1 dimensions, the MSN density as presented by Pyne et al. (2009) is

f (y; μ, Σ, δ) = 2ϕp(y; μ, Σ)Φ1 δTΣ−1(y − μ); 0, 1 − δTΣ−1δ , (1)

where ϕp and Φp are the standard p-dimensional MVN pdf and cdf, respectively; Σ is the 

scale matrix; δ is the vector of parameters indicating the skewness of each dimension; and μ 
is the location parameter vector. Likelihood inference for the MSN distribution is discussed 

by Azzalini and Genton (2008). In univariate regression models, the location parameter of 

the ith individual, μi, is modeled as xiβ, where xi is a 1 × p dimensional set of covariate 

values and β is a p × 1-dimensional vector of regression parameters. We use the selm 

function in the sn package (Azzalini, 2014) in R to fit regression models.

The mixture model based on the MSN distribution is

f (y; Θ) = ∑
g = 1

G
πg f y; Θg ,

where f(y;Θg) is the MSN density for cluster g as given in equation (1), ∑g = 1
G πg = 1, Θg = 

{μg,Σg,δg}, and Θ = {Θ1,Θ2,...,ΘG} is the set of all unknown parameters across the G 
clusters. Parameters can be estimated using the EM algorithms presented by Pyne et al. 

(2009) and Cabral et al. (2012), implemented through the EMMIXSkew package (Wang et 

al., 2013) in R. In this package, the within-cluster covariance can take one of 5 different 

patterns.

2.2 Bayes Factors for Comparing Skewed Clustering Models

A landmark method for variable selection in model-based clustering was presented by 

Raftery and Dean (2006). At each step of their variable selection algorithm, they partition 

the data as Y = {YC,Yj,YNC}, where YC represents the subset currently used for clustering, 

Yj represents the variable currently being considered for inclusion, and YNC represents the 

remaining “non-clustering” variables. They use a Bayes factor (Kass and Raftery, 1995) to 

assess whether the evidence for clustering on both YC and Yj outweighs the evidence for 

clustering only YC alone. Their method accounts for the association between Yj and YC 

through a regression of Yj on YC.

A criticism of the strategy proposed by Raftery and Dean (2006) is that it over-penalizes 

potential clustering variables Yj that are not related to all components of YC. Thus, Maugis 

et al. (2009) extended the method by allowing for Yj to depend on only a (possibly null) 

subset of YC, denoted YR(j), selected through backwards stepwise regression. In turn, 

Scrucca and Raftery (2014) extended the method to use best subset regression to select 

YR(j), implemented with the clustvarsel function in R.
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Motivated by Raftery and Dean (2006) and Maugis et al. (2009), our variable selection 

algorithm is driven by the iterative comparison of two models,

M1 : f YC, Y j, YNC C, M1 = f YNC Y j, YC f Y j YR( j), M1 f YC C, M1

versus

M2 : f YC, Y j, YNC C, M2 = f YNC Y j, YC f Y j, YC C, M2 .

In this model comparison, f(Yj|YR(j),M1) is the likelihood from a MSN regression of Yj on 

YR(j), and f(YC|M1) and f(YC,Yj|M2) are the likelihoods from MSN mixture models of YC 

and {YC,Yj}, respectively. In model M1, a variable Yj considered for clustering provides no 

additional information about cluster membership C after conditioning on YR(j) ⊆ YC. In 

model M2, Yj provides information about cluster membership C above and beyond YC.

As proposed by Raftery and Dean (2006) and further discussed by Maugis et al. (2009), 

models M1 and M2 can be compared using a Bayes factor,

B12 =
f (Y M1)

f (Y M2)
=

f Y j YR( j), M1 f YC M1
f Y j, YC M2

.

Because Bayes factors are difficult to compute, a useful approximation by Kass and Raftery 

(1995) is

2 log B12 ≈ BIC M1 − BIC M2 , (2)

where BIC = 2 log (maximized likelihood) − p log(n), p is the number of independent 

parameters in the model, and n is the sample size.

We express BIC(M1) in equation (2) as

BIC1 Y j YC = BICR Y j YR( j) + max
2 ≤ g ≤ G, m ∈ M

BICC(g, m) YC , (3)

where BICR(Yj|YR(j)) is the BIC from the MSN regression of Yj on YR(j), BICC(g,m)(YC) is 

the BIC from the MSN mixture model of YC with g subgroups and covariance pattern m, 

and M is the set of covariance patterns considered. Similarly, we express BIC(M2) in 

equation (2) by

BIC2 Y j YC = max
2 ≤ g ≤ G, m ∈ M

BICC(g, m) Y j, YC , (4)
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where BICC(g,m)(Yj,YC) is the BIC from the MSN mixture model of {YC,Yj} with g sub-

groups and covariance pattern m. Thus, the approximation to 2logB12 in equation (2) can be 

written as

ΔBIC Y j YC = BIC1 Y j YC − BIC2 Y j YC , (5)

where BIC1(Yj|YC) and BIC2(Yj|YC) are given in equations (3) and (4), respectively. When 

ΔBIC(Yj|YC) is sufficiently negative, Yj provides additional information about the cluster 

membership after considering variables YC already in the model. When ΔBIC(Yj|YC) is 

sufficiently positive, Yj does not provide additional information about cluster membership 

after considering variables YC already in the model. Finally, when YC is null (i.e., no 

variables are already entered in the clustering model), we evaluate the evidence of univariate 

clustering on a variable Yj as

ΔBIC Y j = BICR Y j − max
2 ≤ g ≤ G, m ∈ M

BICC(g, m) Y j , (6)

where BICR(Yj) is the BIC from an intercept-only regression of Yj and BICC(g,m)(Yj) is the 

BIC from a univariate skew normal mixture model of Yj with g clusters and covariance 

structure m.

2.3 Skewed Variable Selection Algorithm

In this section we present our proposed skewvarsel algorithm, within which the MSN 

mixture model comparisons detailed in section 2.2 are embedded. The algorithm is similar to 

the one presented by Raftery and Dean (2006). However, like Maugis et al. (2009), we allow 

only a subset of variables YR(j) ⊆ YC to be related to Yj, with YR(j) selected through a 

stepwise regression algorithm. We assume a relatively large pool of initial variables (e.g., 70 

in the AgeWise data); thus, we use forward selection to create YR(j) because it requires 

fitting fewer and lower-dimensional models.

The main steps of the skewvarsel algorithm are: (1) considering all possible variables, select 

the single variable most useful for clustering; (2) considering all possible remaining 

variables, select the second variable most useful for bivariate clustering along with the first 

variable; and (3) iteratively enter and remove variables to improve model fit until the set 

stabilizes. In detail, Y represents the full set of variables, Y\Y1 denotes all of Y except Y1, 

and δI and δR are the BIC difference thresholds that indicate enough evidence to include or 

remove a variable, respectively.

• Step 1: Inclusion. Calculate ΔBIC(Yj) in (6) for each Yj ∈ Y. Select Y j1
 such that 

j1 = argminj ΔBIC(Yj). Create YC = Y j1
 and YNC = Y \YC.

• Step 2: Inclusion. Calculate ΔBIC(Yj|YC) in (5) for each Yj ∈ YNC. Select Y j2
such that j2 = argminj ΔBIC(Yj|YC). Update YC = YC ∪ Y j2

 and YNC = Y \YC.
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• Step 3. Iteration. Iterate between inclusion and removal steps until no variables 

are entered or removed or the same variable is entered and removed.

– Inclusion. Calculate ΔBIC(Yj|YC) for each Yj ∈ YNC. Select Y ji
 for 

inclusion such that ji = argminj ΔBIC(Yj|YC) only if minj ΔBIC(Yj|YC) 

≤ δI. If a variable is selected for inclusion, update YC = YC ∪ Y ji
 and 

YNC = Y \YC.

– Removal. Calculate ΔBIC(Yj|YC\Yj) for each Yj ∈ YC. Select Y ji + 1
for removal such that ji+1 = argmaxj ΔBIC(Yj|YC\Yj) only if maxj 

ΔBIC(Yj|YC\Yj) ≥ δR. If a variable is selected for removal, update YNC 

= YNC ∪ Y ji + 1
 and YC = Y \YNC.

Embedded within the skewvarsel algorithm is the computation of BICR(Yj|YR(j)) in equation 

(3), the BIC from the MSN regression of Yj on YR(j), where YR(j) ⊆ YC is selected through a 

forward selection algorithm. The main steps of this forward selection algorithm are: (1) 

select the single variable in YC most useful for predicting Yj (if no variable is useful, stop); 

(2) determine the second variable in YC most useful for predicting Yj along with the first 

variable (if no additional variable is useful stop); (3) iteratively enter and remove variables in 

YC for predicting Yj until the algorithm stabilizes. In detail, ΔBICR(Yj|Y1) = BICR(Yj)

−BICR(Yj|Y1) is the BIC difference between MSN regressions of Yj alone and Yj on Y1. 

Similarly, ΔBICR(Yj|Y1,Y2) = BICR(Yj|Y1) − BICR(Yj|Y1,Y2) is the BIC difference 

between MSN regressions of Yj on Y1 and Yj on {Y1,Y2}. To simplify notation, we again 

use δI and δR to denote the BIC difference thresholds required to enter or remove a variable. 

However, in practice, the thresholds used for the clustering and regression variable selection 

algorithms can differ.

• Step 1. Calculate ΔBICR(Yj|Yl) for each Yl ∈ YC. Select Y l1
 such that l1 = 

argminl ΔBICR(Yj|Yl) only if minl ΔBICR(Yj|Yl) ≤ δI. If a variable is selected set 

YR(j) = Y l1
 and continue to step 2. Otherwise stop.

• Step 2. Calculate ΔBICR(Yj|YR(j),Yl) for each Yl ∈ YC\YR(j). Select Y l2
 such that 

l2 = argminl ΔBICR(Yj|YR(j),Yl) only if minl ΔBICR(Yj|YR(j),Yl) ≤ δI. If a 

variable is selected update YR(j) = YR(j) ∪ Y l1
 and continue to step 3. Otherwise 

stop.

• Step 3. Iteration. Iterate between inclusion and removal steps until no variables 

are entered or removed or the same variable is entered and removed.

– Inclusion. Calculate ΔBICR(Yj|YR(j),Yl) for each Yl ∈ YC\YR(j). Select 

Y li
 for inclusion such that li = argminl ΔBICR(Yj|YR(j),Yl) only if minl 

ΔBICR(Yj|YR(j),Yl) ≤ δI. If a variable is selected for inclusion update 

YR(j) = YR(j) ∪Y li
.

Wallace et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



– Removal. Calculate ΔBICR(Yj|YR(j)\Yl,Yl) for each Yl ∈ YR(j). Select 

Y li + 1
 for removal such that li+1 = argmaxl ΔBICR(Yj|YR(j)\Yl,Yl) only 

if maxl ΔBICR(Yj|YR(j)\Yl,Yl) ≥ δR. If a variable is selected for 

removal set YR(j) = YR(j)\Y li + 1
.

A notable difference between the regression and clustering variable selection algorithms is 

that in the regression algorithm we require the BIC difference to meet the threshold δI at the 

very first step in order to continue, whereas in the clustering algorithm we only require the 

BIC difference to meet the threshold δI in the iterative steps. This is because we want to 

promote selection of at least one variable in the clustering variable selection algorithm, but 

prefer efficiency in the regression variable selection algorithm embedded within it. These 

criteria can be altered depending on the specific research aims and data.

2.4 Skewed Variable Selection Algorithm Considering Data Type

In a data set with many potential clustering variables, we expect that there are many 

statistically plausible sets of variables for clustering, some which produce more clinically 

meaningful solutions than others. Thus, in the spirit of exploratory data analysis, we propose 

a variable selection algorithm called skewvarsel-p. It is based on the skewvarsel algorithm 

but uses permutations of data types to suggest multiple statistically plausible sets of 

variables that each incorporate at least one of every data type. The use of permutations in 

this way allows for exploration of multiple solutions, thereby maximizing one’s ability to 

reveal at least one solution that is clinically meaningful. This algorithm is relevant for 

research within the NIMH RDoC framework as well for any investigator interested in 

revealing solutions that incorporate one of each data type.

For each permutation of data types, the main steps of the algorithm are: (1) sequentially 

enter the variable of each data type that is most useful for clustering, thereby establishing a 

pool of variables containing at least one of every data type; (2) enter an additional variable 

of any data type; and (3) iteratively enter and remove variables until the algorithm stabilizes. 

In the iterative step 3, we do not allow for the first set of variables (selected in step 1) to be 

removed in order to ensure one of each data type is included. However, if one does not want 

to force one of each data type, this criterion can be relaxed. In detail, we consider K data 

types denoted D1,...,DK. There are π = 1,...,K! ways to permute these data types. We denote 

Dπ(1),...,Dπ(K) as the ordered data types from the πth permutation, such that data type Dπ(k) 

produces the set of variables Yπ(k). Because the selection of a variable depends on the 

variables selected before it, our strategy is to apply a variable selection algorithm to each of 

the K! permutations of data types. The algorithm for the πth permutation follows, and uses 

the same stepwise algorithm for selecting YR(j) as detailed in the skewvarsel algorithm in 

section 2.3.

• Step 1. Inclusion of data type Dπ(1): Calculate ΔBIC(Yj) in (6) for each Yj ∈ 
Yπ(1). Select Y j1

 such that j1 = argminj ΔBIC(Yj). Set YC1
= Y j1

 and YNC = Y \

YC1
.
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• Steps k = 2,...,K. Inclusion of data type Dπ(k): Calculate ΔBIC(Yj|YC1
) in (5) for 

each Yj ∈ Yπ(k). Select Y jk
 such that jk = argminj ΔBIC(Yj|YC1

). Update 

YC1
= YC1

∪ Y jk
 and YNC = Y \YC1

.

• Step K +1. Inclusion of any data type: Calculate ΔBIC(Yj|YC1
) for each Yj ∈ 

YNC. Select the (K+1)st clustering variable Y jK + 1
 such that jK+1 = argminj 

ΔBIC(Yj|YC1
) only if minj ΔBIC(Yj|YC1

) ≤ δI. If a variable is selected set 

YC2
= Y jK + 1

, YC = {YC1
,YC2

}, YNC = Y \YC, and proceed to the iterative step. 

Otherwise stop.

• Step K +2. Iteration: Iterate between inclusion and removal steps until no 

variables are entered or removed or the same variable is entered and removed.

– Inclusion: Calculate ΔBIC(Yj|YC) for each Yj ∈ YNC. Select Y ji
 for 

inclusion such that ji = argminj ΔBIC(Yj|YC) only if argminj ΔBIC(Yj|

YC) ≤ δI. If a variable is selected for inclusion set 

YC2
= YC2

∪ Y ji
, YC = YC1

, YC2
, and YNC = Y \YC.

– Removal: Calculate ΔBIC(Yj|YC\Yj) for each Yj ∈YC2
. Select Y ji + 1

for removal such that ji+1 = argmaxj ΔBIC(Yj|YC\Yj) only if argmaxj 

ΔBIC(Yj|YC\Yj) ≥ δR. If a variable is selected for removal, update 

YC2
= YC2

\Y ji + 1
, YC = YC1

, YC2
, and YNC = Y\YC.

Our focus is on an application with only three data types; thus, searching for sets of 

clustering variables based on all six permutations is reasonable. However, it is inevitable that 

one would eventually consider more than three data types. Just four data types produces 24 

sets of variables, which may already be too overwhelming and time consuming to sort 

through. Two adaptations to streamline the above strategy are: (1) only consider 

permutations beginning with the variable(s) that have the strongest evidence of univariate 

clustering; and (2) instead of considering all permutations, enter the first variable with the 

strongest evidence of univariate clustering based on any data type, enter the second variable 

with the strongest evidence of bivariate clustering among the remaining data types, and so 

on. This latter strategy produces a single set of clustering variables that incorporates all data 

types. Finally, although the skewvarsel-p algorithm was motivated by our desire to select 

subsets containing one variable of each data type, it can be easily generalized to select 

subsets containing one variable from each of any pre-specified groupings. For example, after 

performing a factor analysis, one could apply this algorithm to select one variable that 

loaded on each identified factor.
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2.5 Data Generation

We evaluated the proposed skewvarsel algorithm relative to other explicit and implicit 

dimension reduction techniques when variables are skewed, considering both MSN and 

MVN cluster scenarios. For each scenario, we generated two variables {X1,X2} that are 

informative for dividing the sample into three clusters based on a clustering assignment C, 

two variables {X3,X4} that are unrelated to C, and two variables {X5,X6} that are related to 

X1 and X2, respectively, but which do not actually provide any information about C after 

conditioning on X1 and X2.

Parameter values for X1 and X2 (clustering variables) within MSN and MVN cluster 

scenarios were selected by fitting MSN and MVN mixture models to PSG %N3 and PSG 

Bed variables from the AgeWise data. These variables were selected because both MSN and 

MVN mixture models suggested three clusters based on these two variables, and because 

%N3 is significantly skewed and Bed is not.

For the MSN scenario, parameter values for X3 and X4 (irrelevant variable)s were selected 

by fitting MSN distributions to Diary Quality and PSG SL variables. Neither was shown to 

be useful for univariate MSN clustering, but SL was highly skewed and Quality was not. For 

the MVN scenario, parameter values for X3 and X4 were selected by fitting MVN 

distributions to Diary Quality and Diary Mood variables; neither was shown to be useful for 

univariate MVN clustering and neither was significantly skewed. For both MSN and MVN 

scenarios, X5 and X6 (correlated variables) were generated by adding noise to X1 and X2, 

respectively. Further details on parameter values and data generation are provided in Table 2.

We generated 1000 data sets for each of three sample sizes (N = 200, N = 500, and N = 800) 

for both MSN and MVN scenarios. In the MSN scenario with N = 500, the mean(SD) 

Spearman correlations of interest were 0.48(0.03) for {X1,X2}, 0.70(0.02) for {X1,X5}, and 

0.61(0.03) for {X2,X6}. In the MVN scenario with N = 500, the mean (SD) Spearman 

correlations of interest were 0.54(0.03) for {X1,X2}, 0.64(0.03) for {X1,X5}, and 0.65(0.03) 

for {X2,X6}. Considering these moderately large correlations, we expect that our simulation 

scenarios represent moderate-to-difficult clustering problems. Example data are shown in 

Figure 1.

2.6 Model Fitting and Summary

For each of the 1000 simulated data sets in each of six scenarios (MSN and MVN clusters; 

N = 200, 500, and 800) we applied three explicit variable selection algorithms: (1) 

skewvarsel, (2) clustvarsel (Scrucca and Raftery, 2014), and (3) vscc (Andrews and 

McNicholas, 2013b). For skewvarsel and clustvarsel variable selection, we set δI = δR = 0 

and considered 1 − 6 clusters and all available covariance patterns. The vscc algorithm 

assumes > 1 cluster exists; thus only 2−6 clusters were considered. After explicit variable 

selection, we computed the percentages of correct variable sets, number of times each 

specific variable was selected, and number of times no variables were selected.

For each of 500 simulated data sets, we used each identified subset of variables (selected 

through skewvarsel, clustvarsel, or vscc) to fit mixture models based on three distributions: 

(1) MVN, (2) MSN, and (3) CFUST (clustvarsel and skewvarsel only; N = 200 only). Both 
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MVN and MSN mixture models were fit to ensure that distributional problems related to 

variable selection versus the subsequent fitting of the mixture model were not conflated. 

CFUST mixture models were fit because they are are highly flexible asymmetric 

distributions (Lee and McLachlan, 2016b) and we hypothesized that they could improve 

model accuracy. However, CFUST models were only fit in the N = 200 scenario to variables 

selected through clustvarsel and skewvarsel. This is because they can be extremely 

computationally intensive, often requiring > 24 hours to obtain a single final model result 

with larger N (e.g., N = 500 or N = 800) and/or with > 2 variables (as tended to be selected 

through vscc).

We also applied two implicit dimension reduction approaches to all six simulated variables: 

(1) parsimonious Gaussian mixture models (PGMM; McNicholas and Murphy 2008); and 

(2) sparse k-means clustering (Witten and Tibshirani, 2010). We fit sparse k-means models 

to all 1000 simulated data sets. We fit PGMM to only 500 simulated data sets because it is a 

much more computationally intensive model.

For all mixture-model-based clustering approaches (CFUST, MSN, and MVN mixture 

models fit to selected subsets of variables; PGMM), we allowed for any available covariance 

pattern, considered 1 − 6 clusters, and 1 − 2 factors where relevant. For sparse k-means 

clustering, we rescaled each variable to the range [0,1] with the transformation (X − 

Xmin)/(Xmax − Xmin) and used the sparcl function in R (Witten and Tibshirani, 2013). We 

used 200 permutations to select the best tuning parameter for each cluster number and 

applied the gap statistic with 500 bootstrap samples to select among 1 − 6 clusters. 

Additional computational details (e.g., initialization, likelihood tolerance, R functions) for 

all models are provided in Table 3.

Finally, for each selected clustering model, we recorded the number of clusters and 

calculated the Adjusted Rand Index (ARI, Hubert and Arabie 1984) if more than one cluster 

was identified. The ARI quantifies the level of cluster recovery, that is, the similarity 

between the true and estimated cluster assignments. An ARI of one (the maximum value) 

indicates perfect cluster recovery. ARI cutoff values of 0.9, 0.8, and 0.65 indicate excellent, 

good, and moderate recovery, respectively. ARI values < 0.65 suggest poor recovery. The 

expected value of the ARI under random classification is zero (Steinley, 2004). R was used 

for all data generation, model-fitting, and summary methods within the simulation.

2.7 Explicit Variable Selection Results (Table 4)

2.7.1 MSN Clusters—When clustering variables were mixtures of MSN clusters, the 

MVN-based clustvarsel algorithm identified the correct subset of variables in only 5 − 16% 

of the simulations. It tended to ignore X2 (useful for MSN clustering, not skewed), in favor 

of X3 (not useful for MSN clustering, skewed). Its performance declined with larger sample 

sizes, most likely because the larger N provided more power to reveal MVN clusters within 

the skewedyet-irrelevant X3 variable. The MSN-based skewvarsel identified the correct 

subset of variables for 43 − 84% of the simulations and improved with larger sample sizes. It 

had difficulty identifying X2 but rarely selected other irrelevant or correlated variables. The 

vscc algorithm selected the correct subset in only 3% of the simulations. It almost always 

selected the correct clustering variables (X1 and X2) but along with these also selected the 

Wallace et al. Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



other non-clustering variables, especially the correlated variables. Thus, for variable 

selection with underlying MSN clusters, skewvarsel out-performed clustvarsel and vscc.

2.7.2 MVN Clusters—When clustering variables were mixtures of MVN clusters, both 

skewvarsel and clustvarsel variable selection algorithms identified the correct variables the 

majority of the time. With N = 200, skewvarsel performed even better than clustvarsel, 

identifying the correct subset of variables in 90% of the simulations (compared to 74% from 

clustvarsel). The performance of the vscc algorithm in the MVN cluster scenario was similar 

to its performance in the MSN cluster scenario. It selected the correct subset of variables in 

only 2% of the data sets and tended to select a larger subset than necessary. Thus, for vari-

able selection skewed variables and MVN clusters, both skewvarsel and clustvarsel out-

performed vscc.

2.8 Clustering Results

2.8.1 MSN Clusters (Table 5; Figure 2)—With N = 200, the skewvarsel+CFUST 

approach (i.e., fitting a CFUST mixture model to variables selected through skewvarsel) and 

the PGMM approach had the best performances, with ARIs > 0.60. However, both of these 

approaches suggested only two (rather than the correct three) clusters the majority of the 

time. The vscc and skewvarsel approaches followed by MSN or MVN clustering and the 

clustvarsel+CFUST approach resulted in ARIs between approximately 0.55 to 0.60. The 

clustvarsel+MVN, clustvarsel+MSN, and sparse k-means approaches had the poorest 

performances, with ARIs < 0.55.

With N = 500 and N = 800, the skewvarsel+MSN approach resulted in the largest ARIs. 

Notably, with N = 800 it produced an ARI of 0.762 (0.755, 0.768) and correctly identified 

three clusters in 79% of the simulations. We did not fit the CFUST mixture model for these 

larger sample sizes because of the computational burden; however based on findings from 

the N = 200 scenario we expect the skewvarsel+CFUST strategy would also have performed 

well. The skewvarsel+MVN, vscc+MSN, vscc+MVN, clustvarsel+CFUST, and PGMM 

approaches performed relatively well, with ARIs > 0.50. Notably, PGMM reached moderate 

cluster recovery with an ARI of 0.650 (0.639, 0.660) for N = 500, although it only selected 

the correct number of clusters in 44% of the simulations. The clustvarsel+MVN, clustvarsel

+MSN, and sparse k-means approaches performed poorly, with ARIs < 0.50. Notably, the 

performance of clustvarsel decreased with larger N, and when followed by MVN clustering 

it typically identified too many clusters.

2.8.2 MVN Clusters (Table 6; Figure 2)—With N = 200, the clustvarsel+MVN, 

skewvarsel+CFUST, and skewvarsel+MVN approaches had the best performances, with 

ARIs > 0.50. clustvarsel+MVN and skewvarsel+MVN tended to select two or three clusters, 

while skewvarsel+CFUST tended to only select one cluster. Sparse k-means and clustvarsel

+CFUST had ARIs between 0.45 and 0.50 and tended to select one cluster. The remaining 

approaches all had ARIs < 0.50.

With N = 500, clustvarsel+MVN and skewvarsel+MVN performed very well, with ARIs > 
0.65 and correct identification of three clusters for over 95% of the simulated data sets. 
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clustvarsel+MSN and vscc+MVN had ARIs > 0.50 and most often selected three clusters. 

The remaining approaches had ARIs < 0.50.

With N = 800, all clustvarsel and skewvarsel approaches performed well, with ARI’s > 0.65 

and correct identification of 3 clusters for > 90% of simulated data sets. Notably, both 

skewvarsel+MVN and clustvarsel+MVN identified three clusters in 99.8% of simulated data 

sets. The vscc approaches had ARIs slightly below 0.50 and tended to select two or three 

clusters. The two implicit approaches (PGMM and sparse k-means) performed poorly, with 

ARIs between approximately 0.40 to 0.45.

3 AgeWise Application

We applied mixture models the AgeWise data (Buysse et al., 2011) to reveal novel, clinically 

meaningful subgroups based on sleep characteristics captured through Diary, ACT, and PSG 

data types. Because of prior findings indicating the importance of sleep discrepancies across 

data types (Kay et al., 2015; Lund et al., 2013; Baillet et al., 2016), our particular clinical 

interest was in using a set of variables for clustering that included at least one of each of the 

Diary, ACT, and PSG variables. To accomplish this, we applied our proposed skewvarsel-p 

variable selection algorithm, which assumes skewed clusters and suggests multiple 

statistically plausible sets of variables that each incorpo-rate Diary, ACT, and PSG variables. 

For comparison purposes we also applied our proposed MSN-based skewvarsel variable 

selection algorithm and the MVN-based analogue clustvarsel (Scrucca and Raftery, 2014). 

For each set of variables suggested, we applied mixture models based on three different 

distributions (MVN, MSN, CFUST) and selected the final clustering solution based on the 

BIC.

For variable selection, we considered 1 − 6 clusters, allowed for all available covariance 

patterns, and required a BIC difference of −10 to enter or remove a variable. For subsequent 

mixture modeling, we used a maximum of 1000 EM iterations with a tolerance of 10−6. 

Because the CFUST model is particularly dependent on initial values, we generated initial 

values from both “restricted” and “unrestricted” skew t-distributions, the latter of which was 

fit with the fmmst function from the EMMIXuskew package (Lee and McLachlan, 2013a) in 

R. All other analyses were performed using the the R functions and packages described in 

Table 3.

3.1 Results from the skewvarsel-p Algorithm

Table 7 shows the six sets of variables revealed by the skewvarsel-p algorithm, one for each 

permutation of the Diary, ACT, and PSG data types. After examining all six sets, we selected 

the set indicated by both the Diary-ACT-PSG and Diary-PSG-ACT permutations for further 

examination. This set consisted of: (1) standard deviation of Diary Sleep Latency [sdSL(D)]; 

(2) mean of ACT SL [SL(A)]; (3) mean of PSG SL [SL(P)]; (4) mean of Diary SL [SL(D)]; 

and (5) mean of PSG NREM [NREM(P)]. Because this set was selected by two 

permutations, it suggests a more stable clustering solution. Moreover, it is clinically relevant 

because this set contains self-report, behavioral, and physiological homologues of SL. SL 

has been associated with numerous medical and psychological outcomes, and the 

exploration of differences and similarities of SL variables within each subgroup has the 
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potential to produce clinically meaningful findings (Vgontzas et al., 2013; Troxel et al., 

2010, 2012; Dew et al., 2003).

The BIC indicated that the CFUST mixture model with two clusters was the best fit for this 

selected set of variables. Clusters are illustrated in Figure 3 and further characterized in 

Table 8. Individuals in cluster 1 (N1 = 140) were generally better sleepers than those in 

cluster 2 (N2 = 76), with lower SL across all data sources (i.e., fewer minutes to fall asleep) 

and more non-REM sleep. Overall, these findings emphasize the importance of studying SL 

across multiple data types in future research. Finally, although individuals in cluster 1 were 

“better” sleepers than those in cluster 2, approximately half were diagnosed with insomnia 

(compared to approximately three-quarters in cluster 2). This disconnect between cluster 

(based on Diary, ACT, and PSG) and insomnia diagnosis (based on Diary and clinical 

interviews) highlights how clustering on multiple data types can clarify heterogeneity 

beyond the presence or absence of a diagnosis based only on self-report.

Finally, we note that by considering all permutations we were able to explore six po-tential 

solutions, each containing Diary, ACT, and PSG, and select the one that was most clinically 

meaningful. Had we only considered one permutation (e.g., selected the first variable to be 

the one of any data type with the strongest evidence of univariate clustering, selected the 

second variable to be the one out of remaining data types with the strongest evidence of 

bivariate clustering, and so on) we would have only been able to consider the solution from 

the set of variables indicated in the SVS-p(PAD) permutation. This set is not as clinically 

useful as the one we selected because it does not contain all three homologues of SL. 

However, in further research this would also be an important solution to investigate further.

3.2 Comparison Across Different Sets of Clustering Variables

As shown in Table 9, the seven unique sets of variables produced very different clustering 

solutions, with ARIs ranging from -0.008 to 0.477. These different clustering solutions 

emphasize how there can be multiple statistically plausible ways to cluster the sample 

depending on which variable set is considered. Table 9 also highlights how the subgroups 

revealed through clustering on multiple data types provide entirely different information 

than the insomnia diagnosis based only on self-report. Thus, there is a great deal of 

heterogeneity in this sample beyond that which can be explained by self-report alone. This 

finding lends credence to the NIMH’s call for clarifying the boundaries of existing 

diagnoses by integrating data from multiple data sources (Insel et al., 2010; Casey et al., 

2013; Cuthbert and Insel, 2013).

4 Discussion

We presented two exploratory variable selection methods for skewed model-based 

clustering. The first, skewvarsel, uses a stepwise algorithm to reveal a subset of variables 

that is useful for skewed clustering. The second, skewvarsel-p, is also based on a stepwise 

algorithm but suggests multiple plausible sets of variables for skewed clustering that each 

incorporate data captured across multiple data types. The second method is motivated by the 

National Institute of Mental Health Research Domain Criteria (RDoC) framework, which 

calls for the identification of novel and clinically meaningful phenotypes based on data from 
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multiple levels of information (i.e., self-report, behavior, and physiology, circuits, molecules, 

cells, and/or genes), as well as our own a priori hypotheses regarding the importance of 

similarities and discrepancies across data types in sleep research.

Our simulation study indicated that skewvarsel is a promising approach for selecting an 

explicit subset of clustering variables, especially with large sample sizes (N ≥ 500). When 

underlying clusters were skewed, skewvarsel was more accurate in selecting the correct 

subset of variables than either vscc or clustvarsel variable selection algorithms, which are 

based on underlying assumptions of normality. vscc consistently selected too many 

variables, and clustvarsel gravitated towards selecting the most highly skewed variables, 

regardless of whether they were actually useful for clustering. Moreover, when underlying 

clusters were normally distributed, our skewvarsel algorithm performed at least as well as 

clustvarsel and better than vscc. When underlying clustering are skewed, applying a more 

flexible mixture model distribution such as the CFUST (Lee and McLachlan, 2016b) to 

variables selected through either skewvarsel or clustvarsel may improve the accuracy of the 

final clustering solution.

Our simulation also evaluated two implicit dimension reduction approaches: sparse kmeans 

clustering and parsimonious Gaussian mixture models (PGMM). With MSN clusters and N 
= 200, the level of cluster recovery obtained through PGMM was competitive with mixture 

models fit to variables selected through skewvarsel. With larger sample sizes, PGMM lagged 

behind the MSN mixture models fit to variables selected through skewvarsel. However, 

PGMM performed at least as well as the MVN mixture models fit to variables selected 

through skewvarsel. Somewhat surprisingly, neither of the implicit approaches performed 

particularly well in the MVN scenario, where skewed variables were mixtures of MVN 

clusters. When considering these findings, it is important to note that data were generated 

with an underlying assumption of an explicit subset of variables being useful for either 

MVN or MSN clustering. Moreover, our simulation was based on only six variables, which 

may favor explicit variable selection methods over implicit dimension reduction. In future 

work it will be important to further compare explicit variable selection and implicit 

dimension reduction techniques in both lower and higher dimensional data. It will also be 

important to evaluate other implicit dimension reduction approaches, including mixtures of 

factor analyzers based on the generalized hyperbolic (Tortora et al., 2016), skew normal (Lin 

et al., 2016), and skew t (Murray et al., 2014a,b; Lin et al., 2015) distributions.

When data are skewed, one may also consider transforming the data prior to applying a 

MVN-based variable selection algorithm and mixture model. Given the pervasiveness of 

skewed data in sleep research, such transformations are commonly used (e.g., see Tarokh et 

al. 2011; Borodulin et al. 2009). However, the goal of clustering is to explain the natural 

heterogeneity in a sample, and a transformation inherently alters this natural heterogeneity. 

For example, a log transformation stretches out values in the range of (0 − 1] and contracts 

values in the range (1,∞). Consistent with Schork et al. (1990), we argue that the skewness 

observed in a distribution is a fundamental trait, and thus, transforming the data to remove 

this skewness has the potential to remove the most interesting aspect of the data. However, 

others contend that a well-thought-out transformation prior to clustering may improve 

results (Yeung et al., 2001), and mixture models that incorporate the Box-Cox 
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transformation within the algorithm have even been proposed (Lo and Gottardo, 2012). As 

such, the use of transformations prior to clustering remains a topic under debate.

Computation time for the skewvarsel algorithm varies based on sample size and the number 

of variables considered. In the MSN simulation scenario (6 variables) the mean(SD) minutes 

to run the skewvarsel algorithm was 6.90(1.00) for N = 200, 18.90(0.46) for N = 500, and 

29.45(0.62) for N = 800. In the MVN simulation scenario (6 variables) the mean(SD) 

minutes to run the skewvarsel algorithm was 7.20(0.47) for N = 200, 18.30(0.30) for N = 

500, and 28.97(0.17) for N = 800. In the application section (70 variables, N = 216), the six 

permutations from the skewvarsel-p algorithm had computational times of 55 minutes 

(ADP), 79 minutes (APD), 109 minutes (PDA), 110 minutes (PAD), 74 minutes (DAP), and 

75 minutes (DPA). The skewvarsel algorithm had a computational time of 78 minutes. These 

times could be substantially reduced if model-fitting were parallelized within the algorithm. 

While these times are not unreasonable in the context of skewed clustering, we note that 

they are substantially (i.e., approximately 100–200 times) slower than the clustvarsel 

algorithm.

Our findings should be considered in the context of some limitations. The AgeWise sample 

of N = 216 may be somewhat small for the proposed method, as indicated by our simulation 

study findings. The methods should be applied to a larger and independent sample to 

validate our findings. In addition, the current algorithm is based on the MSN distribution, 

which is one of the more restrictive asymmetric distributions. We used this distribution in 

part because efficient, computational tools were readily available. Ideally, the suitability of 

the distribution for the data at hand, and not the availability of easy computational tools, 

should be the primary consideration for selecting a distribution. The proposed methods can 

and should be extended to other, more flexible distributions that allow for asymmetry, 

including methods for combining MVN mixture components (Hennig, 2010; Baudry et al., 

2010).

A limitation of the simulation study is that we set a maximum of 1000 iterations for some 

model-based clustering approaches. This setting had the potential to be most limiting for the 

highly parameterized CFUST model. For the MSN cluster scenario with N = 200, 284/500 

skewvarsel+CFUST models had not converged at a tolerance of 10−5 by 1000 iterations. 

Even so, the median (Q1, Q3) convergence for these models was 0.0002(0.0001, 0.0006). 

Because these models were close to converging at the 10−5 criterion, we expect that setting a 

maximum of 1000 iterations had only a minor impact on the results.

In conclusion, this research highlights the need to consider skewed variable selection and 

mixture model approaches in applied sleep research, where investigators commonly capture 

sleep through self-reported (Diary), behavioral (ACT), and physiological (PSG) measures. 

However, the methods presented herein are generalizable to other areas of application as 

well. For example, skewed data are also common in genetics (Yeung et al., 2001; Eisen et 

al., 1998) and biological marker research (Reinke et al., 2014; Fakhry et al., 2013; 

Hlebowics et al., 2011; Bafadhel et al., 2011), as evidenced by the common use of log and 

square root transformations in practice. These types of data are of central interest in the 

NIMH RDoC initiative, and we expect that applying our methods in these areas will move 
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researchers closer to clarifying the heterogeneity observed in diagnoses based on self-report, 

revealing underlying disease mechanisms, and generating hypotheses for personalized 

treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Sample simulated data sets with MSN (top) and MVN (bottom) clusters.
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Figure 2: 
Adjusted Rand Index (ARI) and 95% confidence interval for each clustering strategy in the 

MSN (top) and MVN (bottom) scenarios. Results are based on 500 simulated data sets (1000 

for sparse k-means). The ARI was only calculated if > 1 cluster was detected.
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Figure 3: 
CFUST clustering results based on variables selected through the Diary-ACTPSG and 

Diary-PSG-ACT permutations of the skewvarsel-p algorithm. Black circles represent the 

“Lower Sleep Latency (SL)” cluster. Red triangles represent the “Higher SL” cluster.
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Table 1:

Diary, actigraphy (ACT), and polysomnography (PSG) characteristics.

Diary, ACT, and PSG (Means and standard deviations (SDs) over 7 nights for Diary and ACT;
Means over 2 nights for PSG)

Wake up time (Wake)

Bed time (Bed)

Minutes between bed and wake (Sleep Duration)

Minutes between bed and sleep onset (Sleep Latency, SL)

Minutes awake after first sleep onset (Wake After Sleep Onset, WASO)

Minutes between bed and wake minus WASO and SL (Total Sleep Time, TST)

% minutes asleep after bed time (Sleep Efficiency, SE)

Diary Only (Means and SDs over 7 nights)

Number of awakenings

Sleep quality (Quality)

Mood upon awakening (Mood)

Alertness upon awakening (Alertness)

ACT Only (Means and SDs over 7 nights)

Restlessness based on mobile and immobile periods

Sum of all activity

Average activity per minute

Standard deviation of activity

Maximum activity

PSG Only (Means over 2 nights)

Minutes awake during the 1st half of the night

Minutes awake during the 2nd half of the night

Minutes awake during the last two hours of the night

Minutes of stage N1 sleep (N1)

Minutes of stage N2 sleep (N2)

Minutes of delta (stage N3) sleep (Delta)

Minutes of non-rapid eye movement (i.e., stages N1, N2, and N3) sleep (NREM)

Minutes of rapid-eye movement sleep (REM)

% minutes asleep after sleep onset

% minutes of stage N1 sleep (% N1)

% minutes of stage N2 sleep (% N2)

% minutes of delta (stage N3) sleep (% Delta)

% minutes of NREM sleep (% NREM)

Minutes from sleep onset to REM sleep (REM Latency, RL)

RL minus minutes awake between sleep onset and onset of REM sleep

Stage N3 in 1st NREM period / Stage N3 in 2nd NREM period
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Table 2:

Parameters for MVN and MSN cluster scenarios in the simulation study.

Multivariate Normal: MVN (μ, σ) Multivariate Skew Normal:
MSN (μ,σ,δ)

Clustering Variables

[Xlg,X2g] ~ MVN(μg, Σg) [X1g,X2g] ~ MSN(μg,Σg,δg)

μ1 = [0.50, 4.00], Σ1 = 3.00 0.02
0.02 0.90 μ1 = [-0.20,18.00], Σ1 = 0.011 −0.013

−0.013 1.42 , δ1 = [2.60, 3.90]

μ2 = [14.00, 21.00], Σ2 = 3.00 −0.10
−0.10 1.00 μ2 = [9.00, 23.00], Σ2 = 53.50 −0.99

−0.99 0.17 , δ2 = [1.40, -0.30]

μ3 = [23.00, 23.50], Σ3 = 55.10 1.80
1.80 0.90 μ3 = [26.00, 24.50], Σ3 = 21.20 −0.24

−0.24 0.13 , δ3 = [-0.90, -1.10]

p1 = 0.40, p2 = 0.30, p3 = 0.20 p1 = 0.54, p2 = 0.14, p3 = 0.32

Irrelevant Variables

X3 - MVN(68.00, 287.00) X3 ~ MSN(0.40, 2.00, 31.00)

X4 - MVN(60.00, 296.00) X4 ~ MSN(62.00, 292.00,0.00)

Correlated Variables

X5 = X1 + Z1, Z1 ~ MVN(0,60) X5 = X1 + Z1, Z1 ~ MSN(0.00,60.00,3.00)

X6 = X2 + Z2, Z2 ~ MVN(0,3) X6 = X1 + Z1, Z1 ~ MSN(0.00,3.00,0.00)
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Table 4:

Variable selection results from 1000 data sets in each scenario. X1 and X2 are useful for clustering, X3 and X4 

are independent of X1 and X2 and are not useful for clustering, and X5 and X6 are not useful for clustering 

after conditioning on X1 and X2.

Selection Algorithm N % Correct %X1 %X2 %X3 %X4 %X5 %X6 % None

MSN Clusters

vscc

200 3.3 100.0 95.6 62.1 59.8 95.8 69.4 0.0

500 0.0 100.0 94.9 72.4 67.9 99.7 69.2 0.0

800 0.1 100.0 89.5 76.5 67.0 99.8 67.4 0.0

clustvarsel

200 15.6 100.0 16.8 48.3 0.0 0.1 0.7 0.0

500 13.5 100.0 28.7 85.8 0.0 0.0 0.0 0.0

800 5.3 100.0 52.3 94.7 0.0 0.0 0.0 0.0

skewvarsel

200 43.2 99.3 47.9 0.0 0.6 12.7 7.4 0.7

500 65.1 100.0 69.0 0.0 0.4 9.4 2.5 0.0

800 84.2 100.0 89.4 0.0 0.5 6.2 1.2 0.0

MVN Clusters

vscc

200 2.3 100.0 98.4 67.6 67.6 94.1 91.0 0.0

500 0.1 100.0 93.4 78.6 78.6 98.6 90.2 0.0

800 0.0 100.0 79.3 50.1 50.4 96.4 76.2 0.0

clustvarsel

200 74.0 100.0 76.4 0.5 0.3 1.5 2.3 0.0

500 99.6 100.0 99.9 0.1 0.0 0.2 0.0 0.0

800 99.8 100.0 100.0 0.1 0.0 0.1 0.0 0.0

skewvarsel

200 90.0 100.0 98.5 1.0 1.6 4.9 2.4 0.0

500 98.0 100.0 100.0 0.6 0.3 1.1 0.0 0.0

800 99.9 100.0 100.0 0.0 0.1 0.0 0.0 0.0
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Table 5:

Results from the MSN cluster scenario based on 500 simulations for each sample size (1000 for sparse k-

means). The percentage of models selecting each number of clusters is based on only those data sets for which 

any variables were selected for clustering.

Approach

N ARI (95% CI)

Number of Clusters (%)

1 2 3 4 5 6

VSCC+MVN

200 0.599(0.585,0.612) 0.2 41.8 48.2 7.8 1.4 0.6

500 0.589(0.578,0.600) 0.0 38.0 28.8 26.2 6.0 1.0

800 0.515(0.504,0.525) 0.0 24.6 11.2 36.0 23.0 5.2

VSCC+MSN

200 0.556(0.543,0.568) 11.6 82.6 5.8 0.0 0.0 0.0

500 0.569(0.559,0.579) 0.8 81.6 15.4 2.2 0.0 0.0

800 0.558(0.546,0.569) 0.0 71.0 21.4 6.8 0.8 0.0

clustvarsel+MVN

200 0.473(0.460,0.486) 0.0 9.0 49.8 34.2 6.0 1.0

500 0.372(0.362,0.382) 0.0 0.0 1.8 35.2 37.6 25.4

800 0.359(0.351,0.366) 0.0 0.0 0.0 7.6 39.2 53.2

clustvarsel+MSN

200 0.512(0.497,0.527) 0.2 68.2 29.6 1.6 0.4 0.0

500 0.498(0.484,0.512) 0.0 23.8 55.2 18.6 2.4 0.0

800 0.458(0.445,0.471) 0.0 5.2 39.8 39.8 11.2 4.0

clustvarsel+CFUST 200 0.574(0.563,0.585) 9.4 86.0 4.0 0.60 0.0 0.0

skewvarsel+MVN

200 0.560(0.547,0.574) 0.0 21.93 51.51 25.35 1.01 0.20

500 0.517(0.507,0.527) 0.0 0.6 11.4 72.2 14.6 1.2

800 0.526(0.520,0.533) 0.0 0.0 3.4 78.4 15.4 2.8

skewvarsel+MSN

200 0.595(0.584,0.605) 0.20 87.12 12.27 0.40 0.0 0.0

500 0.702(0.693,0.711) 0.0 49.6 49.6 0.8 0.0 0.0

800 0.762(0.755,0.768) 0.0 16.0 79.0 4.8 0.2 0.0

skewvarsel+CFUST 200 0.615(0.607,0.623) 24.4 73.8 1.2 0.0 0.0 0.0

PGMM

200 0.608(0.598,0.617) 0.0 67.6 27.2 1.8 1.2 2.2

500 0.650(0.639,0.660) 0.0 33.8 43.8 18.8 3.6 0.0

800 0.584(0.569,0.598) 0.0 9.0 35.0 28.6 22.2 5.2

sparse k-means

200 0.392 (0.377, 0.408) 63.4 16.0 15.0 4.9 0.7 0.0

500 0.425 (0.410, 0.440) 50.5 11.8 27.6 7.0 2.9 0.2

800 0.420 (0.406, 0.434) 42.3 12.5 33.2 6.8 4.8 0.4
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Table 6:

Results from the MVN cluster scenario based on 500 simulations for each sample size (1000 for sparse k-

means). The percentage of models selecting each number of clusters is based on only those data sets for which 

any variables were selected for clustering.

Approach

N ARI (95% CI)

Number of Clusters (%)

1 2 3 4 5 6

vscc+MVN

200 0.384(0.369,0.400) 0.0 54.8 29.2 12.6 3.4 0.0

500 0.506(0.490,0.521) 0.0 39.0 52.4 6.6 1.6 0.4

800 0.497(0.481,0.512) 0.0 49.6 45.4 3.8 1.0 0.2

vscc+MSN

200 0.357(0.348,0.367) 0.2 93.4 6.4 0.0 0.0 0.0

500 0.451(0.438,0.464) 0.0 59.4 39.6 1.0 0.0 0.0

800 0.486(0.471,0.502) 0.0 46.4 50.2 3.4 0.0 0.0

clustvarsel+MVN

200 0.508(0.490,0.525) 0.0 47.2 48.4 4.2 0.2 0.0

500 0.690(0.683,0.696) 0.0 2.4 96.8 0.6 0.2 0.0

800 0.708(0.706,0.711) 0.0 0.0 99.8 0.2 0.0 0.0

clustvarsel+MSN

200 0.360(0.348,0.372) 0.0 87.0 13.0 0.0 0.0 0.0

500 0.564(0.549,0.579) 0.0 31.8 67.8 0.4 0.0 0.0

800 0.659(0.649,0.669) 0.0 8.6 90.6 0.8 0.0 0.0

clustvarsel+CFUST 200 0.479(0.455,0.504) 61.8 17.4 20.2 0.6 0.0 0.0

skewvarsel+MVN

200 0.537(0.520,0.553) 0.0 39.2 56.0 4.4 0.4 0.0

500 0.686(0.679,0.693) 0.0 3.2 96.0 0.6 0.0 0.2

800 0.708(0.706,0.711) 0.0 0.0 99.8 0.2 0.0 0.0

skewvarsel+MSN

200 0.364(0.352,0.375) 0.0 86.4 13.6 0.0 0.0 0.0

500 0.451(0.438,0.464) 0.0 59.4 39.6 1.0 0.0 0.0

800 0.660(0.650,0.670) 0.0 8.8 90.2 1.0 0.0 0.0

skewvarsel+CFUST 200 0.541(0.518,0.563) 66.8 9.6 23.2 0.4 0.0 0.0

PGMM

200 0.321(0.313,0.329) 0.0 91.4 4.4 1.8 1.0 1.4

500 0.374(0.363,0.386) 0.0 82.8 11.6 4.4 1.2 0.0

800 0.408(0.395,0.422) 0.0 75.8 17.4 3.0 3.6 0.2

sparse k-means

200 0.452 (0.444, 0.461) 47.6 21.9 27.5 2.7 0.3 0.0

500 0.459 (0.452, 0.467) 34.6 13.2 46.4 5.0 0.8 0.0

800 0.454 (0.446, 0.461) 26.9 11.9 52.4 7.4 1.3 0.1

J Am Stat Assoc. Author manuscript; available in PMC 2019 May 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wallace et al. Page 32

Ta
b

le
 7

:

V
ar

ia
bl

e 
se

le
ct

io
n 

an
d 

cl
us

te
ri

ng
 r

es
ul

ts
 b

as
ed

 o
n 

A
ge

W
is

e 
da

ta
. F

or
 th

e 
sk

ew
va

rs
el

-p
 a

lg
or

ith
m

, t
he

 s
pe

ci
fi

c 
pe

rm
ut

at
io

n 
of

 d
at

a 
ty

pe
s 

is
 p

ro
vi

de
d 

in
 

pa
re

nt
he

se
s,

 w
he

re
 P

=
PS

G
, A

=
A

ct
ig

ra
ph

y,
 a

nd
 D

=
D

ia
ry

. V
ar

ia
bl

es
 r

ep
re

se
nt

 a
ve

ra
ge

s 
ov

er
 m

ul
tip

le
 n

ig
ht

s 
of

 o
bs

er
va

tio
n 

un
le

ss
 p

re
fi

xe
d 

w
ith

 “
sd

”,
 in

 

w
hi

ch
 c

as
e 

th
ey

 r
ep

re
se

nt
 th

e 
st

an
da

rd
 d

ev
ia

tio
n.

 T
he

 P
, A

, o
r 

D
 in

 p
ar

en
th

es
es

 a
ft

er
 e

ac
h 

va
ri

ab
le

 in
di

ca
te

s 
th

e 
da

ta
 s

ou
rc

e 
th

ro
ug

h 
w

hi
ch

 it
 w

as
 

m
ea

su
re

d.
 S

ee
 T

ab
le

 1
 f

or
 f

ul
l v

ar
ia

bl
e 

de
sc

ri
pt

io
ns

 a
nd

 a
bb

re
vi

at
io

ns
.

A
lg

or
it

hm
V

ar
ia

bl
es

 S
el

ec
te

d
Sk

ew
ne

ss
 R

an
ki

ng
s

Sp
ea

rm
an

 r
 M

ed
ia

n 
(M

in
., 

M
ax

)
C

lu
st

er
 D

is
tr

ib
ut

io
n

N
um

be
r 

of
 C

lu
st

er
s

cl
us

tv
ar

se
l

SL
(P

),
 s

dS
L

(D
),

 S
L

(D
),

 S
L

(A
),

 R
L

(P
),

 R
L

A
(P

)
5,

14
,7

,6
,2

0
0.

07
(0

.0
03

,0
.9

3)
C

FU
ST

2

sk
ew

va
rs

el
%

D
el

ta
(P

),
 D

el
ta

(P
),

 B
ed

(P
)

30
,2

8,
60

0.
05

(0
.0

2,
0.

99
)

M
SN

4

sk
ew

va
rs

el
-p

(P
D

A
)

%
D

el
ta

(P
),

 s
dM

oo
d(

D
),

 s
dS

E
(A

),
 D

el
ta

(P
),

 T
ST

(P
)

30
,4

3,
4,

28
,5

6
0.

16
(0

.0
02

,0
.9

9)
C

FU
ST

4

sk
ew

va
rs

el
-p

(P
A

D
)

%
D

el
ta

(P
),

 s
dS

L
(A

),
 s

dS
L

(D
),

 D
el

ta
(P

),
 S

L
(D

),
 T

ST
(P

)
30

,9
,1

4,
28

,6
,5

6
0.

15
(0

.0
7,

0.
83

)
C

FU
ST

3

sk
ew

va
rs

el
-p

(A
PD

)
SL

(A
),

 %
D

el
ta

(P
),

 s
dW

A
SO

(D
),

 D
el

ta
(P

)
6,

30
,2

1,
28

0.
13

(0
.0

3,
0.

99
)

C
FU

ST
2

sk
ew

va
rs

el
-p

(D
A

P)
sd

SL
(D

),
 S

L
(A

),
 S

L
(P

),
 S

L
(D

),
 N

R
E

M
(P

)
14

,6
,5

,6
,6

7
0.

19
(0

.0
5,

0.
83

)
C

FU
ST

2

sk
ew

va
rs

el
-p

(D
PA

)
sd

SL
(D

),
 S

L
(P

),
 S

L
(A

),
 S

L
(D

),
 N

R
E

M
(P

)
14

,6
,5

,6
,6

7
0.

19
(0

.0
5,

0.
83

)
C

FU
ST

2

sk
ew

va
rs

el
-p

(A
D

P)
SL

(A
),

 s
dW

A
SO

(D
),

 N
2(

P)
, s

dS
L

(A
)

6,
21

,7
0,

9
0.

20
(0

.0
3,

0.
92

)
C

FU
ST

2

J Am Stat Assoc. Author manuscript; available in PMC 2019 May 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wallace et al. Page 33

Table 8:

Cluster characteristics based on variables selected through the skewvarsel-p algorithm, with clusters revealed 

using a CFUST mixture model. Effect sizes are Cohen’s d for continuous measures and risk difference for 

categorical measures. Variables represent the averages of multiple nights of observation unless prefixed with 

“sd”, in which case they represent the standard deviation. The P, A, or D in parentheses after each variable 

indicates the data source (PSG, ACT, or Diary) through which it was measured. Table 1 provides full variable 

descriptions and abbreviations.

Lower SL
C1(N = 140)

Higher SL
C2(N = 76)

Effect
Size

Sleep Characteristics for Clustering

sdSL(D) 6.81(3.62,12.81) 33.68(18.95,63.33) 0.62

SL (A) 13.45(7.14,21.31) 36.43(26.1,62.04) 0.63

SL (P) 8.12(4.63,14.12) 13.96(9.73,19.99) 0.33

SL (D) 10(6.46,16.5) 18.33(9.46,38.5) 0.34

NREM (P) 289(245.38,329) 268.17(239.34,299) −0.15

Additional Sleep Characteristics

WASO (D) 32.64(9.14,61.17) 39.09(23.3,65) 0.10

WASO (A) 45.39(29,60) 53.25(37.47,66.93) 0.17

WASO (P) 68.16(44.5,98.75) 82.33(51.08,126.17) 0.13

TST (D) 380.62(339.88,436.87) 351.62(309.64,385.52) −0.25

TST (A) 396.5(359.57,433.55) 395.07(356.23,435.07) 0.01

TST (P) 371(327,406.92) 349.59(309.5,390.62) −0.15

Quality (D) 62.22(51.13,78.65) 53.81(47.11,65.45) −0.20

% Stage N3 (P) 3.87(1.07,12.1) 4.1(0.55,9.78) −0.07

Clinical and Demographic Characteristics

Insomnia dx (%,n) 53.6(75) 75.0(57) 0.21

Age 69.15(64.32,75.31) 70.08(65.5,76.21) 0.09

Female (%,n) 69.3(97) 73.7(56) 0.04

White (%,n) 92.8(128) 89.2(66) −0.04
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